Approximate Bayesian Computation: a simulation based approach to inference

Size: px
Start display at page:

Download "Approximate Bayesian Computation: a simulation based approach to inference"

Transcription

1 Approximate Bayesian Computation: a simulation based approach to inference Richard Wilkinson Simon Tavaré 2 Department of Probability and Statistics University of Sheffield 2 Department of Applied Mathematics and Theoretical Physics University of Cambridge Workshop on Approximate Inference in Stochastic Processes and Dynamical System R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 / 9

2 Stochastic Computation Implicit Statistical Models Two types of statistical model: Prescribed models - likelihood function is specified. Implicit models - mechanism to simulate observations. Implicit models give scientists more freedom to accurately model the phenomenon under consideration. The increase in computer power has made there use more practicable. Popular in many disciplines. Time t R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 2 / 9

3 Fitting to data Most models are forwards models, i.e., specify parameters θ and i.c.s and the model generates output D. Usually, we are interested in the inverse-problem, i.e., observe data, want to estimate parameter values. Different terminology: Calibration Data assimilation Parameter estimation Inverse-problem Bayesian inference R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 3 / 9

4 Monte Carlo Inference Aim to sample from the posterior distribution: π(θ D) prior likelihood = π(θ)p(d θ). Monte Carlo methods enable Bayesian inference to be done in more complex models. MCMC can be difficult or impossible in many stochastic models, e.g., if P(D θ) unknown - true for many stochastic models, or where there are convergence or mixing problems, often caused by highly dependent data arising from an underlying tree or graphical structure. Population Genetics Epidemiology Evolutionary Biology R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 4 / 9

5 Likelihood-Free Inference Rejection Algorithm Draw θ from prior π( ) Accept θ with probability P(D θ) Accepted θ are independent draws from the posterior distribution, π(θ D). R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 5 / 9

6 Likelihood-Free Inference Rejection Algorithm Draw θ from prior π( ) Accept θ with probability P(D θ) Accepted θ are independent draws from the posterior distribution, π(θ D). If the likelihood, P(D θ), is unknown: Mechanical Rejection Algorithm Draw θ from π( ) Simulate D P( θ) Accept θ if D = D The acceptance rate is P(D): the number of runs to get n observations is negative binomial, with mean n P(D). R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 5 / 9

7 Approximate Bayesian Computation I If P(D) is small, we will rarely accept any θ. Instead, there is an approximate version: Approximate Rejection Algorithm Draw θ from π(θ) Simulate D P( θ) Accept θ if ρ(d, D ) ǫ R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 6 / 9

8 Approximate Bayesian Computation I If P(D) is small, we will rarely accept any θ. Instead, there is an approximate version: Approximate Rejection Algorithm Draw θ from π(θ) Simulate D P( θ) Accept θ if ρ(d, D ) ǫ This generates observations from π(θ ρ(d, D ) < ǫ): As ǫ, we get observations from the prior, π(θ). If ǫ =, we generate observations from π(θ D). ǫ reflects the tension between computability and accuracy. R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 6 / 9

9 Approximate Bayesian Computation II If the data are too high dimensional we never observe simulations that are close to the field data. Reduce the dimension using summary statistics, S(D). Approximate Rejection Algorithm With Summaries Draw θ from π(θ) Simulate D P( θ) Accept θ if ρ(s(d),s(d )) < ǫ If S is sufficient this is equivalent to the previous algorithm. R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 7 / 9

10 Error Structure Example (Gaussian Distribution) Suppose X i N(µ,σ 2 ), with σ 2 known, and give µ an improper flat prior distribution, π(µ) = for µ R. Suppose we observe data with x =. samples Pick µ U(, ) ǫ =. ǫ =.5 Simulate X i N(µ,σ 2 ) Accept µ if x < ǫ. Then π(µ x ǫ) = ( ) ( ǫ µ Φ Φ σ 2 /n 2ǫ ǫ µ σ 2 /n and Var(µ x ǫ) = Var(µ x = )+ ǫ2 3 ) Density Density Density ǫ = ǫ = 5 Density 5 5 R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 8 / 9 µ µ µ µ

11 Approximate MCMC Rejection sampling is inefficient, as θ is repeatedly sampled from its prior distribution. The idea behind MCMC is that by correlating observations more time is spent in regions of high likelihood. R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 9 / 9

12 Approximate MCMC Rejection sampling is inefficient, as θ is repeatedly sampled from its prior distribution. The idea behind MCMC is that by correlating observations more time is spent in regions of high likelihood. Approximate Metropolis-Hastings Algorithm Suppose we are currently at θ. Propose θ from density q(θ,θ ). Simulate D from P( θ ). If ρ(d, D ) ǫ, calculate h(θ,θ ) = min (, π(θ )q(θ ),θ) π(θ)q(θ,θ. ) Accept the move to θ with probability h(θ,θ ), else stay at θ. Adaptive tolerance choices. Sisson et al. and Robert et al. proposed an approximate sequential importance sampling algorithm. R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 9 / 9

13 ABC-within-MCMC Problem: a low acceptance rate leads to slow convergence. R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 / 9

14 ABC-within-MCMC Problem: a low acceptance rate leads to slow convergence. Suppose θ = (θ,θ 2 ) with π(θ D,θ 2 ) known, π(θ 2 D,θ ) unknown. We can combine Gibbs update steps (or any M-H update) with ABC. R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 / 9

15 ABC-within-MCMC Problem: a low acceptance rate leads to slow convergence. Suppose θ = (θ,θ 2 ) with π(θ D,θ 2 ) known, π(θ 2 D,θ ) unknown. We can combine Gibbs update steps (or any M-H update) with ABC. ABC-within-Gibbs Algorithm Suppose we are at θ t = (θ t,θt 2 ). Draw θ t+ π(θ D,θ2 t) 2. Draw θ2 π θ 2 ( ) Simulate D P( θ t+, θ2 ) If ρ(d, D ) < ǫ, set θ2 t+ = θ2. Else return to step 2. This is often the case for models with a hidden tree structure generating highly dependent data. R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 / 9

16 Example From Population Biology Inferring ancestral divergence times Time t R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 / 9

17 Choosing summary statistics and metrics We need summaries S(D), which are sensitive to changes in θ, but robust to random variations in D a definition of approximate sufficiency (LeCam 963): distance between π(θ D) and π(θ S(D))? D..5 a systematic implementable approach for finding good summary statistics. Complex dependence structures can be accounted for. D R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 2 / 9

18 ABC Approach Data can be thought of in two parts: the observed number of fossils D i found in ith interval the total number of fossils found, D +. D denotes simulated data. A suitable metric might be ρ(d, D ) = Note: no data summaries here k D i D i D + + D + D + i= D + R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 3 / 9

19 Not going so well Extant Population Size Iteration Number R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 4 / 9

20 Tweak the metric The simulated N values are too small (376 modern species) Easy to combine different types of information with ABC Change the metric ρ(d, D ) = k D i D i D + + D + D + + N N i= D + This gives approximate samples from π(θ D,N = 376) P(D,N = 376 θ)π(θ) R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 5 / 9

21 .2.. Density.3 Results Divergence Time (My) R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 6 / 9

22 Extensions Model selection: Ratio of acceptance rates π M (S S) π M2 (S S) Bayes Factor. Relative acceptance rates gives posterior model probabilities. Hopeless in practice as it is too sensitive to the tolerance ǫ. Raftery and Lewis (992) and Chib (995) give computational schemes to calculate Bayes factors. Neither works. Expensive Simulators: Emulate the stochastic model with a Gaussian process emulator. Richard Boys, Darren Wilkinson et al.. R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 7 / 9

23 Pros and cons of ABC Pros Cons Issues Likelihood is not needed Easy to code Easy to adapt Generates independent observations (parallel computation) Hard to anticipate effect of summary statistics (needs intuition) Over dispersion of posterior due to ρ(d, D ) < ǫ For complex problems, sampling from the prior does not make good use of observations One run or many? How to choose good summary statistics? How good an approximation do we get? R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 8 / 9

24 References M. A. Beaumont and W. Zhang and D. J. Balding, Approximate Bayesian Computatation in Population Genetics, Genetics, 22. P. Marjoram and J. Molitor and V. Plagnol and S. Tavaré, Markov Chain Monte Carlo without likelihoods, PNAS, 23. S. A. Sisson and Y. Fan and M. M. Tanaka, Sequential Monte Carlo without Likelihoods, PNAS, 27. C. P. Robert, M. A. Beaumont, J. Marin and J. Cornuet, Adaptivity for ABC algorithms: the ABC-PMC scheme, arxiv, 28. R.D. Wilkinson (University of Sheffield) Approximate Bayesian Computation PASCAL 28 9 / 9

Tutorial on ABC Algorithms

Tutorial on ABC Algorithms Tutorial on ABC Algorithms Dr Chris Drovandi Queensland University of Technology, Australia c.drovandi@qut.edu.au July 3, 2014 Notation Model parameter θ with prior π(θ) Likelihood is f(ý θ) with observed

More information

Approximate Bayesian computation (ABC) gives exact results under the assumption of. model error

Approximate Bayesian computation (ABC) gives exact results under the assumption of. model error arxiv:0811.3355v2 [stat.co] 23 Apr 2013 Approximate Bayesian computation (ABC) gives exact results under the assumption of model error Richard D. Wilkinson School of Mathematical Sciences, University of

More information

Approximate Bayesian computation: methods and applications for complex systems

Approximate Bayesian computation: methods and applications for complex systems Approximate Bayesian computation: methods and applications for complex systems Mark A. Beaumont, School of Biological Sciences, The University of Bristol, Bristol, UK 11 November 2015 Structure of Talk

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Sarah Filippi Department of Statistics University of Oxford 09/02/2016 Parameter inference in a signalling pathway A RAS Receptor Growth factor Cell membrane Phosphorylation

More information

Proceedings of the 2012 Winter Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

Proceedings of the 2012 Winter Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds. Proceedings of the 2012 Winter Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds. OPTIMAL PARALLELIZATION OF A SEQUENTIAL APPROXIMATE BAYESIAN COMPUTATION

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Fitting the Bartlett-Lewis rainfall model using Approximate Bayesian Computation

Fitting the Bartlett-Lewis rainfall model using Approximate Bayesian Computation 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 Fitting the Bartlett-Lewis rainfall model using Approximate Bayesian

More information

An introduction to Approximate Bayesian Computation methods

An introduction to Approximate Bayesian Computation methods An introduction to Approximate Bayesian Computation methods M.E. Castellanos maria.castellanos@urjc.es (from several works with S. Cabras, E. Ruli and O. Ratmann) Valencia, January 28, 2015 Valencia Bayesian

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17 MCMC for big data Geir Storvik BigInsight lunch - May 2 2018 Geir Storvik MCMC for big data BigInsight lunch - May 2 2018 1 / 17 Outline Why ordinary MCMC is not scalable Different approaches for making

More information

Approximate Bayesian computation (ABC) and the challenge of big simulation

Approximate Bayesian computation (ABC) and the challenge of big simulation Approximate Bayesian computation (ABC) and the challenge of big simulation Richard Wilkinson School of Mathematical Sciences University of Nottingham September 3, 2014 Computer experiments Rohrlich (1991):

More information

Accelerating ABC methods using Gaussian processes

Accelerating ABC methods using Gaussian processes Richard D. Wilkinson School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom Abstract Approximate Bayesian computation (ABC) methods are used to approximate posterior

More information

Bayesian inference and model selection for stochastic epidemics and other coupled hidden Markov models

Bayesian inference and model selection for stochastic epidemics and other coupled hidden Markov models Bayesian inference and model selection for stochastic epidemics and other coupled hidden Markov models (with special attention to epidemics of Escherichia coli O157:H7 in cattle) Simon Spencer 3rd May

More information

an introduction to bayesian inference

an introduction to bayesian inference with an application to network analysis http://jakehofman.com january 13, 2010 motivation would like models that: provide predictive and explanatory power are complex enough to describe observed phenomena

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

arxiv: v1 [stat.me] 30 Sep 2009

arxiv: v1 [stat.me] 30 Sep 2009 Model choice versus model criticism arxiv:0909.5673v1 [stat.me] 30 Sep 2009 Christian P. Robert 1,2, Kerrie Mengersen 3, and Carla Chen 3 1 Université Paris Dauphine, 2 CREST-INSEE, Paris, France, and

More information

Approximate Bayesian computation (ABC) NIPS Tutorial

Approximate Bayesian computation (ABC) NIPS Tutorial Approximate Bayesian computation (ABC) NIPS Tutorial Richard Wilkinson r.d.wilkinson@nottingham.ac.uk School of Mathematical Sciences University of Nottingham December 5 2013 Computer experiments Rohrlich

More information

Adaptive Monte Carlo methods

Adaptive Monte Carlo methods Adaptive Monte Carlo methods Jean-Michel Marin Projet Select, INRIA Futurs, Université Paris-Sud joint with Randal Douc (École Polytechnique), Arnaud Guillin (Université de Marseille) and Christian Robert

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Reducing The Computational Cost of Bayesian Indoor Positioning Systems

Reducing The Computational Cost of Bayesian Indoor Positioning Systems Reducing The Computational Cost of Bayesian Indoor Positioning Systems Konstantinos Kleisouris, Richard P. Martin Computer Science Department Rutgers University WINLAB Research Review May 15 th, 2006 Motivation

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Calibrating computer simulators using ABC: An example from evolutionary biology

Calibrating computer simulators using ABC: An example from evolutionary biology Calibrating computer simulators using ABC: An example from evolutionary biology Richard Wilkinson School of Mathematical Sciences University of Nottingham Exeter - March 2 Talk Plan Brief intro to computer

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Bayesian Methods in Multilevel Regression

Bayesian Methods in Multilevel Regression Bayesian Methods in Multilevel Regression Joop Hox MuLOG, 15 september 2000 mcmc What is Statistics?! Statistics is about uncertainty To err is human, to forgive divine, but to include errors in your design

More information

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007 Bayesian inference Fredrik Ronquist and Peter Beerli October 3, 2007 1 Introduction The last few decades has seen a growing interest in Bayesian inference, an alternative approach to statistical inference.

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

One Pseudo-Sample is Enough in Approximate Bayesian Computation MCMC

One Pseudo-Sample is Enough in Approximate Bayesian Computation MCMC Biometrika (?), 99, 1, pp. 1 10 Printed in Great Britain Submitted to Biometrika One Pseudo-Sample is Enough in Approximate Bayesian Computation MCMC BY LUKE BORNN, NATESH PILLAI Department of Statistics,

More information

Computer Practical: Metropolis-Hastings-based MCMC

Computer Practical: Metropolis-Hastings-based MCMC Computer Practical: Metropolis-Hastings-based MCMC Andrea Arnold and Franz Hamilton North Carolina State University July 30, 2016 A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, 2016 1 / 19 Markov

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

Theory of Stochastic Processes 8. Markov chain Monte Carlo

Theory of Stochastic Processes 8. Markov chain Monte Carlo Theory of Stochastic Processes 8. Markov chain Monte Carlo Tomonari Sei sei@mist.i.u-tokyo.ac.jp Department of Mathematical Informatics, University of Tokyo June 8, 2017 http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

A Bayesian Approach to Phylogenetics

A Bayesian Approach to Phylogenetics A Bayesian Approach to Phylogenetics Niklas Wahlberg Based largely on slides by Paul Lewis (www.eeb.uconn.edu) An Introduction to Bayesian Phylogenetics Bayesian inference in general Markov chain Monte

More information

Tutorial on Approximate Bayesian Computation

Tutorial on Approximate Bayesian Computation Tutorial on Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology 16 May 2016

More information

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch.

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch. Sampling Methods Oliver Schulte - CMP 419/726 Bishop PRML Ch. 11 Recall Inference or General Graphs Junction tree algorithm is an exact inference method for arbitrary graphs A particular tree structure

More information

Notes on pseudo-marginal methods, variational Bayes and ABC

Notes on pseudo-marginal methods, variational Bayes and ABC Notes on pseudo-marginal methods, variational Bayes and ABC Christian Andersson Naesseth October 3, 2016 The Pseudo-Marginal Framework Assume we are interested in sampling from the posterior distribution

More information

CONDITIONING ON PARAMETER POINT ESTIMATES IN APPROXIMATE BAYESIAN COMPUTATION

CONDITIONING ON PARAMETER POINT ESTIMATES IN APPROXIMATE BAYESIAN COMPUTATION CONDITIONING ON PARAMETER POINT ESTIMATES IN APPROXIMATE BAYESIAN COMPUTATION by Emilie Haon Lasportes Florence Carpentier Olivier Martin Etienne K. Klein Samuel Soubeyrand Research Report No. 45 July

More information

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model UNIVERSITY OF TEXAS AT SAN ANTONIO Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model Liang Jing April 2010 1 1 ABSTRACT In this paper, common MCMC algorithms are introduced

More information

Multimodal Nested Sampling

Multimodal Nested Sampling Multimodal Nested Sampling Farhan Feroz Astrophysics Group, Cavendish Lab, Cambridge Inverse Problems & Cosmology Most obvious example: standard CMB data analysis pipeline But many others: object detection,

More information

Bayesian inference & Markov chain Monte Carlo. Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder

Bayesian inference & Markov chain Monte Carlo. Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder Bayesian inference & Markov chain Monte Carlo Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder Note 2: Paul Lewis has written nice software for demonstrating Markov

More information

Nested Sampling. Brendon J. Brewer. brewer/ Department of Statistics The University of Auckland

Nested Sampling. Brendon J. Brewer.   brewer/ Department of Statistics The University of Auckland Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ is a Monte Carlo method (not necessarily MCMC) that was introduced by John Skilling in 2004. It is very popular

More information

Monte Carlo Inference Methods

Monte Carlo Inference Methods Monte Carlo Inference Methods Iain Murray University of Edinburgh http://iainmurray.net Monte Carlo and Insomnia Enrico Fermi (1901 1954) took great delight in astonishing his colleagues with his remarkably

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

ComputationalToolsforComparing AsymmetricGARCHModelsviaBayes Factors. RicardoS.Ehlers

ComputationalToolsforComparing AsymmetricGARCHModelsviaBayes Factors. RicardoS.Ehlers ComputationalToolsforComparing AsymmetricGARCHModelsviaBayes Factors RicardoS.Ehlers Laboratório de Estatística e Geoinformação- UFPR http://leg.ufpr.br/ ehlers ehlers@leg.ufpr.br II Workshop on Statistical

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo 1 Motivation 1.1 Bayesian Learning Markov Chain Monte Carlo Yale Chang In Bayesian learning, given data X, we make assumptions on the generative process of X by introducing hidden variables Z: p(z): prior

More information

Introduction to Markov Chain Monte Carlo & Gibbs Sampling

Introduction to Markov Chain Monte Carlo & Gibbs Sampling Introduction to Markov Chain Monte Carlo & Gibbs Sampling Prof. Nicholas Zabaras Sibley School of Mechanical and Aerospace Engineering 101 Frank H. T. Rhodes Hall Ithaca, NY 14853-3801 Email: zabaras@cornell.edu

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Markov chain Monte Carlo Lecture 9

Markov chain Monte Carlo Lecture 9 Markov chain Monte Carlo Lecture 9 David Sontag New York University Slides adapted from Eric Xing and Qirong Ho (CMU) Limitations of Monte Carlo Direct (unconditional) sampling Hard to get rare events

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies 1 What is phylogeny? Essay written for the course in Markov Chains 2004 Torbjörn Karfunkel Phylogeny is the evolutionary development

More information

Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation

Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation COMPSTAT 2010 Revised version; August 13, 2010 Michael G.B. Blum 1 Laboratoire TIMC-IMAG, CNRS, UJF Grenoble

More information

MCMC and likelihood-free methods

MCMC and likelihood-free methods MCMC and likelihood-free methods Christian P. Robert Université Paris-Dauphine, IUF, & CREST Université de Besançon, November 22, 2012 MCMC and likelihood-free methods Computational issues in Bayesian

More information

Sampling Methods (11/30/04)

Sampling Methods (11/30/04) CS281A/Stat241A: Statistical Learning Theory Sampling Methods (11/30/04) Lecturer: Michael I. Jordan Scribe: Jaspal S. Sandhu 1 Gibbs Sampling Figure 1: Undirected and directed graphs, respectively, with

More information

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Konstantin Zuev Institute for Risk and Uncertainty University of Liverpool http://www.liv.ac.uk/risk-and-uncertainty/staff/k-zuev/

More information

Hmms with variable dimension structures and extensions

Hmms with variable dimension structures and extensions Hmm days/enst/january 21, 2002 1 Hmms with variable dimension structures and extensions Christian P. Robert Université Paris Dauphine www.ceremade.dauphine.fr/ xian Hmm days/enst/january 21, 2002 2 1 Estimating

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 13-28 February 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Limitations of Gibbs sampling. Metropolis-Hastings algorithm. Proof

More information

Multi-level Approximate Bayesian Computation

Multi-level Approximate Bayesian Computation Multi-level Approximate Bayesian Computation Christopher Lester 20 November 2018 arxiv:1811.08866v1 [q-bio.qm] 21 Nov 2018 1 Introduction Well-designed mechanistic models can provide insights into biological

More information

Monte Carlo Methods for Computation and Optimization (048715)

Monte Carlo Methods for Computation and Optimization (048715) Technion Department of Electrical Engineering Monte Carlo Methods for Computation and Optimization (048715) Lecture Notes Prof. Nahum Shimkin Spring 2015 i PREFACE These lecture notes are intended for

More information

New Insights into History Matching via Sequential Monte Carlo

New Insights into History Matching via Sequential Monte Carlo New Insights into History Matching via Sequential Monte Carlo Associate Professor Chris Drovandi School of Mathematical Sciences ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

A modelling approach to ABC

A modelling approach to ABC A modelling approach to ABC Richard Wilkinson School of Mathematical Sciences University of Nottingham r.d.wilkinson@nottingham.ac.uk Leeds - September 22 Talk Plan Introduction - the need for simulation

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Bayesian Inference. Chapter 1. Introduction and basic concepts

Bayesian Inference. Chapter 1. Introduction and basic concepts Bayesian Inference Chapter 1. Introduction and basic concepts M. Concepción Ausín Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master

More information

A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation

A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation Theodore Kypraios 1, Peter Neal 2, Dennis Prangle 3 June 15, 2016 1 University of Nottingham,

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Approximate Bayesian Computation for Astrostatistics

Approximate Bayesian Computation for Astrostatistics Approximate Bayesian Computation for Astrostatistics Jessi Cisewski Department of Statistics Yale University October 24, 2016 SAMSI Undergraduate Workshop Our goals Introduction to Bayesian methods Likelihoods,

More information

Markov chain Monte Carlo methods for visual tracking

Markov chain Monte Carlo methods for visual tracking Markov chain Monte Carlo methods for visual tracking Ray Luo rluo@cory.eecs.berkeley.edu Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720

More information

A Review of Pseudo-Marginal Markov Chain Monte Carlo

A Review of Pseudo-Marginal Markov Chain Monte Carlo A Review of Pseudo-Marginal Markov Chain Monte Carlo Discussed by: Yizhe Zhang October 21, 2016 Outline 1 Overview 2 Paper review 3 experiment 4 conclusion Motivation & overview Notation: θ denotes the

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Session 3A: Markov chain Monte Carlo (MCMC)

Session 3A: Markov chain Monte Carlo (MCMC) Session 3A: Markov chain Monte Carlo (MCMC) John Geweke Bayesian Econometrics and its Applications August 15, 2012 ohn Geweke Bayesian Econometrics and its Session Applications 3A: Markov () chain Monte

More information

Example: Ground Motion Attenuation

Example: Ground Motion Attenuation Example: Ground Motion Attenuation Problem: Predict the probability distribution for Peak Ground Acceleration (PGA), the level of ground shaking caused by an earthquake Earthquake records are used to update

More information

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University Phylogenetics: Bayesian Phylogenetic Analysis COMP 571 - Spring 2015 Luay Nakhleh, Rice University Bayes Rule P(X = x Y = y) = P(X = x, Y = y) P(Y = y) = P(X = x)p(y = y X = x) P x P(X = x 0 )P(Y = y X

More information

[MCEN 5228]: Project report: Markov Chain Monte Carlo method with Approximate Bayesian Computation

[MCEN 5228]: Project report: Markov Chain Monte Carlo method with Approximate Bayesian Computation [MCEN 228]: Project report: Markov Chain Monte Carlo method with Approximate Bayesian Computation Olga Doronina December 2, 217 Contents 1 Introduction 1 2 Background 2 2.1 Autonomic Closure (AC)...........................................

More information

Fundamentals and Recent Developments in Approximate Bayesian Computation

Fundamentals and Recent Developments in Approximate Bayesian Computation Syst. Biol. 66(1):e66 e82, 2017 The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of

More information

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013 Eco517 Fall 2013 C. Sims MCMC October 8, 2013 c 2013 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained

More information

Approximate Bayesian computation for the parameters of PRISM programs

Approximate Bayesian computation for the parameters of PRISM programs Approximate Bayesian computation for the parameters of PRISM programs James Cussens Department of Computer Science & York Centre for Complex Systems Analysis University of York Heslington, York, YO10 5DD,

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Markov chain Monte Carlo (MCMC) Gibbs and Metropolis Hastings Slice sampling Practical details Iain Murray http://iainmurray.net/ Reminder Need to sample large, non-standard distributions:

More information

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem?

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem? Who was Bayes? Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 The Reverand Thomas Bayes was born in London in 1702. He was the

More information

Doing Bayesian Integrals

Doing Bayesian Integrals ASTR509-13 Doing Bayesian Integrals The Reverend Thomas Bayes (c.1702 1761) Philosopher, theologian, mathematician Presbyterian (non-conformist) minister Tunbridge Wells, UK Elected FRS, perhaps due to

More information

Bayesian Phylogenetics

Bayesian Phylogenetics Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 Bayesian Phylogenetics 1 / 27 Who was Bayes? The Reverand Thomas Bayes was born

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling

Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling 1 / 27 Statistical Machine Learning Lecture 8: Markov Chain Monte Carlo Sampling Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 27 Monte Carlo Integration The big question : Evaluate E p(z) [f(z)]

More information

Data Analysis and Uncertainty Part 2: Estimation

Data Analysis and Uncertainty Part 2: Estimation Data Analysis and Uncertainty Part 2: Estimation Instructor: Sargur N. University at Buffalo The State University of New York srihari@cedar.buffalo.edu 1 Topics in Estimation 1. Estimation 2. Desirable

More information

State Space and Hidden Markov Models

State Space and Hidden Markov Models State Space and Hidden Markov Models Kunsch H.R. State Space and Hidden Markov Models. ETH- Zurich Zurich; Aliaksandr Hubin Oslo 2014 Contents 1. Introduction 2. Markov Chains 3. Hidden Markov and State

More information