# Capacitors are devices which can store electric charge. They have many applications in electronic circuits. They include:

Size: px
Start display at page:

Download "Capacitors are devices which can store electric charge. They have many applications in electronic circuits. They include:"

Transcription

1 CAPACITORS Capacitors are devices which can store electric charge They have many applications in electronic circuits They include: forming timing elements, waveform shaping, limiting current in AC circuits CHARGING AND DISCHARGING A CAPACITOR Capacitors are made up from two metal plates separated by a thin insulating layer The insulator is called the dielectric Electron flow Electron flow DC DC SUPPLY - SUPPLY Fig 1a Charging a capacitor Fig 1b Discharging a capacitor Consider an uncharged capacitor in the circuit shown in Fig 1a When the switch is moved to position 1, the positive terminal of the battery draws electrons off the top plate of the capacitor and transfers the same number to the bottom plate As a result, the top plate becomes positively charged and the bottom plate becomes negatively charged Lamp LP1 would glow while electrons are being transferred from one plate to the other The build up of charge on the plates develops a voltage across the capacitor Transfer of charge continues until the voltage across the capacitor is the same as the battery voltage The capacitor is then fully charged When the switch is moved to position 2 (Fig 1b), the capacitor provides a voltage across lamp LP2 Electrons on the bottom plate are attracted to the top plate through the filament of the lamp The lamp would glow brightly for a while then gradually dim as the voltage across the capacitor falls When all of the electrons have been transferred back to the top plate the capacitor is fully discharged The action can be repeated by moving the switch to position 1 then back to position 2 When used in this way the capacitor behaves like a small rechargeable battery 1

2 UNITS OF CAPACITANCE The value of a capacitor is governed by its ability to store charge The unit used for capacitance is the farad A capacitor has a capacity of 1 farad if the addition, or removal, of 1 coulomb of charge changes the voltage across it by 1V The farad (F) is a very large unit Capacitor values are usually given in microfarads (mf), nanofarads (nf) or picofarads (pf) 1µF = 1 F = 10-6 F 1,000,000 1nF = 1 F = 10-9 F 1µF = 1,000nF 1,000,000,000 1pF = 1 F = F 1µF =1,000,000pF 1,000,000,000,000 DIELECTRICS The insulator, or dielectric, between the plates of a capacitor is strained by the electric field formed by the charges The field draws electrons from their normal orbit, centred on the nucleus, towards the positive plate Electric dipoles are formed in the dielectric This has the effect of reducing the voltage across the capacitor The capacitor is now able to hold more charge at a certain voltage Various types of dielectrics are used in capacitors Each will have advantages and disadvantages The material selected will depend upon the application required for the capacitor It can be shown that in order to provide high capacitance, the area of the plate should be large and the separation small Rolling the plates into a spiral enables a large area to be fitted into a small volume Some insulating materials, eg mica, are not flexible enough for this technique to be used 2

3 CIRCUIT SYMBOLS There are two main types of capacitors, polarised and non-polarised Polarised capacitors are usually referred to as electrolytic capacitors Symbols used for the two types are shown below General symbol Electrolytic capacitor Fig 2 Symbols used for capacitors In the next Exercise you will be using electrolytic capacitors They are used because they provide a much larger capacity than non-polarised capacitors of the same physical size Considerable care is required when using electrolytic capacitors Their positive terminal must be nearer the positive supply rail than their negative terminal If electrolytic capacitors are connected the wrong way around they will heat up and probably explode IDENTIFYING THE LEADS ON ELECTROLYTIC CAPACITORS Polarity is always clearly marked on electrolytic capacitors The following diagrams illustrate some conventions in common use Ask your tutor for examples of axial and radial aluminium type Axial Radial Tantalum Fig 3 Polarity of electrolytic capacitors 3

4 TYPES AND SPECIFICATION A good Electronic Components catalogue will offer a wide range of capacitor types Technical specification will usually provide the following data: values available in the range tolerance working voltage leakage current physical size All of these must be considered when making your selection The working voltage is the maximum voltage that the capacitor can withstand before its dielectric breaks down Care must be taken to ensure that the working voltage is higher than any DC voltage that will be applied across the capacitor In AC circuits, it must be remembered that the maximum voltage applied on the capacitor is û2 times the RMS voltage Leakage current provides a value for the current that flows directly between the plates through the dielectric Its value depends upon the dielectric used and the voltage on the capacitor The following table provides information about types of capacitor that are often used in electronic circuits TYPE APPEARANCE PROPERTIES AND APPLICATIONS Polar Aluminium Electrolytic Available in range of values from 1µF - 50,000µF Tolerance about -10% to 50% Working voltage from about 6V to 400V available Size increases with working voltage value Main advantage is small size for capacitance provided Used for smoothing in power power supplies Not suitable for high frequency operation 4

5 TYPE APPEARANCE PROPERTIES AND APPLICATIONS Tantalum Available in range of values from about 01µF to 100µF Tolerance 20% Working voltage from about 6V to 35V available Smaller in size than aluminium type of same value Very easily damaged by reverse voltage Often used in timing circuits Polyester Available in range of values from about 001µF to 47µF Colour code often used to indicate value Tolerance 5% to 20% Working voltage from about 250V to 400V Disc Ceramic Available in range of values from about 22pF to 01µF Tolerance 10% to 50% Working voltage up to 10kV available Often used to remove high frequency noise signals in switching circuits Variable Capacitors Used in tuning stages of radio receivers Rotating the shaft varies area of overlap between plates This sets value of capacitance Air, or thin sheets of mica, used as dielectric Also available as trimmer capacitors for direct mounting onto printed circuit boards (PCB) Values available up to 500pF 5

6 COLOUR CODING ON POLYESTER CAPACITORS A five band colour code is often used to indicate the value, tolerance and working voltage of polyester capacitors The numbers associated with the colours in the value code are the same as for resistors } Band 1 Band 2 Value Code Band 3 Band 4 Tolerance Band 5 Working Voltage Fig 4 Capacitor colour code COLOR VALUE COLOR TOLERANCE Bands 1,2 & 3 Band 4 Black 0 Green ± 5% Brown 1 White ±10% Red 2 Orange 3 Yellow 4 Green 5 COLOR WORKING Blue 6 Band 5 VOLTAGE Violet 7 Grey 8 Red 250V DC White 9 Yellow 400V DC Value code is used in the same way as for resistors Bands 1 and 2 indicate the first two digits and band 3 indicates the number of 0 s Value of the capacitor is given in picofarads (pf) 6

7 EXAMPLE Yellow (4) Value = 47000pF = 0047µF Violet (7) Orange (3) Tolerance = ±10% White Red Working voltage = 250V DC PRINTED CODE Printed code is used in a similar way to that for resistors eg 4u7 is used to indicate a value of 47µF Ceramic disc capacitors often carry a 3-digit code to indicate their values in picofarads The first digits indicate the first two numbers and the third the number of zeros to be added eg 223 indicates 22000pF 7

8 USING CAPACITORS AS TIMING ELEMENTS We shall now investigate how the voltage across a capacitor varies with time as it is being charged and discharged from a constant voltage source A CHARGING A CAPACITOR FROM A CONSTANT VOLTAGE SOURCE V R V S V C Fig 5 Charging a capacitor Let us assume that the capacitor carries no initial charge When the switch is closed, there is no voltage across the capacitor and all of the supply voltage will appear across R In this case V R = V S The initial charging current is given by: I = V R = V S R R As time goes by, the voltage across the capacitor will increase, due to the build up of charge, and the voltage across the resistor will decrease When the voltage across the capacitor has reached a value V C, the charging current is given by: I = V R = V S - V C R R Since the charging current decreases, the rate of flow of charge on to the capacitor plates will decrease As a result, the rate at which the voltage increases across the capacitor will decrease A graph of voltage against time will be steep when the switch is closed and the slope will decrease as time goes by (Fig 6) It can be shown that the charging curve is an exponential curve and that the voltage across the capacitor and resistor at a time t are given by: V C = V S (1 - e -t/rc ) and V R = V S e -t/rc 8

9 You will not be expected to use these equations in any test If you would like to know how they are used, consult your tutor V S V C V S2 0 0 RC 2RC 3RC 4RC 5RC 069RC time Fig 6 Charging curve RC (R x C) is called the time constant of the circuit Remember the following points about an exponential charging curve: Voltage across capacitor reaches half way to the supply voltage, V S, in a time 069RC Voltage across capacitor reaches 063V S after a time RC Voltage across capacitor reaches 099V S after a time 5RC 9

10 B DISCHARGING A CAPACITOR THROUGH A RESISTOR Consider a capacitor being charged up from a voltage source V o 1 2 V o V o C R V C V o RC 2RC 3RC 4RC 5RC 069RC time Fig 7 Discharging a capacitor When the switch is moved over to position 2, the capacitor discharges through resistor R A voltage V o is applied across the resistor and the initial discharging current I is given by : I = V o R Voltage across the capacitor starts to fall at a rapid rate As charge flows off the capacitor, the voltage across the resistor is reduced The discharging current reduces and the slope of a graph of Vc against time would decreases It can be shown (proof provided on request) that: V C = V R = V o e -t/rc V o has been used in this case to serve as a reminder that it is the starting, or original, voltage across the capacitor The curve in Fig 7 is known as an exponential decay curve You should be able to show that: the voltage falls to V o /2 after a time 069RC the voltage across the capacitor is 037V o after a time RC the voltage across the capacitor is near zero after 5RC RC is the time constant of the circuit 10

### Capacitor Construction

Capacitor Construction Topics covered in this presentation: Capacitor Construction 1 of 13 Introduction to Capacitors A capacitor is a device that is able to store charge and acts like a temporary, rechargeable

### Electronics Capacitors

Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists

### (d) describe the action of a 555 monostable timer and then use the equation T = 1.1 RC, where T is the pulse duration

Chapter 1 - Timing Circuits GCSE Electronics Component 2: Application of Electronics Timing Circuits Learners should be able to: (a) describe how a RC network can produce a time delay (b) describe how

### Electro - Principles I

Electro - Principles I Capacitance The Capacitor What is it? Page 8-1 The capacitor is a device consisting essentially of two conducting surfaces separated by an insulating material. + Schematic Symbol

### Trade of Electrician Standards Based Apprenticeship Capacitance Phase 2 Module No. 2.1 Unit No COURSE NOTES

Trade of Electrician Standards Based Apprenticeship Capacitance Phase 2 Module No. 2.1 Unit No. 2.1.8 COURSE NOTES Certification & Standards Department Created by Gerry Ryan - Galway TC Revision 1 April

### DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 04. Capacitors

MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 04 Capacitors Roll. No: Checked by: Date: Grade: Object: To become familiar with Capacitors,

Capacitors and Inductors Resistor: a passive element which dissipates energy only Two important passive linear circuit elements: 1) Capacitor 2) Inductor Introduction Capacitor and inductor can store energy

### CIRCUIT ELEMENT: CAPACITOR

CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements -capable of generating electric energy from nonelectric energy

### Chapter 13. Capacitors

Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive

### CAPACITANCE. Figure 1(a). Figure 1(b).

Reading 11 Ron Bertrand VK2DQ http://www.radioelectronicschool.com CAPACITANCE In this reading we are going to talk about capacitance. I have to make a distinction here between capacitor and capacitance.

### EDEXCEL NATIONAL CERTIFICATE. UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2

EDEXCEL NATIONAL CERTIFICATE UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2 Electric fields and capacitors Electric fields: electrostatics, charge, electron movement in field, force on unit charge,

### Chapt ha e pt r e r 9 Capacitors

Chapter 9 Capacitors Basics of a Capacitor In its simplest form, a capacitor is an electrical device constructed of two parallel plates separated by an insulating material called the dielectric In the

### The Basic Capacitor. Dielectric. Conductors

Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability

### The Farad is a very big unit so the following subdivisions are used in

Passages in small print are for interest and need not be learnt for the R.A.E. Capacitance Consider two metal plates that are connected to a battery. The battery removes a few electrons from plate "A"

### ENGR 2405 Chapter 6. Capacitors And Inductors

ENGR 2405 Chapter 6 Capacitors And Inductors Overview This chapter will introduce two new linear circuit elements: The capacitor The inductor Unlike resistors, these elements do not dissipate energy They

### CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

D ircuits APAITANE APAITANE Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. EO 1.5 EO 1.6 EO 1.7 EO 1.8 EO 1.9 DESRIBE the construction of a

### Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf

1. Fig.1 shows two capacitors, A of capacitance 2µF, and B of capacitance 4µF, connected in parallel. Fig. 2 shows them connected in series. A two-way switch S can connect the capacitors either to a d.c.

### Experiment FT1: Measurement of Dielectric Constant

Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.

### The Basic Capacitor. Water Tower / Capacitor Analogy. "Partnering With Our Clients for Combined Success"

CAPACITOR BASICS I How s Work The Basic A capacitor is an electrical device which serves to store up electrical energy for release at a predetermined time. In its most basic form, it is comprised of three

### Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive

### shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

Chapter 25 Term 083 Q13. Each of the two 25-µF capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time? A)

### [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

### Lab 5 AC Concepts and Measurements II: Capacitors and RC Time-Constant

EE110 Laboratory Introduction to Engineering & Laboratory Experience Lab 5 AC Concepts and Measurements II: Capacitors and RC Time-Constant Capacitors Capacitors are devices that can store electric charge

### Chapter 26. Capacitance and Dielectrics

Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies energy-storing

### Practical 1 RC Circuits

Objectives Practical 1 Circuits 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

### farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).

p1 EE1050/60 Capacitors Lab University of Utah Electrical Engineering Department EE1050/1060 Capacitors A. Stolp, 10/4/99 rev 3/17/01 Objectives 1.) Observe charging and discharging of a capacitor. 2.)

### Parallel Plate Capacitor, cont. Parallel Plate Capacitor, final. Capacitance Isolated Sphere. Capacitance Parallel Plates, cont.

Chapter 6 Capacitance and Dielectrics Capacitors! Capacitors are devices that store electric charge! Examples of where capacitors are used include:! radio receivers (tune frequency)! filters in power supplies!

### Definition of Capacitance

Definition of Capacitance The capacitance, C, of a capacitor is defined as the ratio of the magnitude of the charge on either conductor to the potential difference between the conductors Q C = ΔV The SI

### Capacitors. Example 1

Physics 30AP Resistors and apacitors I apacitors A capacitor is a device for storing electrical charge that consists of two conducting objects placed near one another but not touching. A A typical capacitor

### Properties of Capacitors and its DC Behavior

LABORATORY Experiment 2 Properties of Capacitors and its DC Behavior 1. Objectives To investigate the /V characteristics of capacitor. To calculate the equivalent capacitance of capacitors connected in

### 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

### RADIO AMATEUR EXAM GENERAL CLASS

RAE-Lessons by 4S7VJ 1 CHAPTER- 2 RADIO AMATEUR EXAM GENERAL CLASS By 4S7VJ 2.1 Sine-wave If a magnet rotates near a coil, an alternating e.m.f. (a.c.) generates in the coil. This e.m.f. gradually increase

### Lecture 20. March 22/24 th, Capacitance (Part I) Chapter , Pages

Lecture 0 March /4 th, 005 Capacitance (Part I) Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 10.1-6, Pages 8-94 Assignment: Assignment #10 Due: March 31 st, 005 Preamble: Capacitance

### EXPERIMENT 5A RC Circuits

EXPERIMENT 5A Circuits Objectives 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

### Chapter 10 EMT1150 Introduction to Circuit Analysis

Chapter 10 EM1150 Introduction to Circuit Analysis Department of Computer Engineering echnology Fall 2018 Prof. Rumana Hassin Syed Chapter10 Capacitors Introduction to Capacitors he Electric Field Capacitance

### BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-3 ELECTRONIC DEVICES -II RESISTOR SERIES & PARALLEL

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-3 ELECTRONIC DEVICES -II RESISTOR SERIES & PARALLEL Hello everybody we are doing a course on basic electronics by the method of

### Capacitor investigations

Sensors: Loggers: Voltage Any EASYSENSE Capacitor investigations Logging time: EasyLog (20 s) Teacher s notes 01 Time constant for a capacitor - resistor circuit Theory The charging and discharging of

### Laboratory 1. Introduction - Resistor Codes, Breadboard, and Basic Measurements. Learn how to construct basic electrical circuits using a breadboard.

Lab 1 Laboratory 1 Introduction - Resistor Codes, Breadboard, and Basic Measurements Required Components: 3 1k resistors 1.1 Introduction and Objectives Welcome to the world of mechatronics. Your experiences

### Lab 4 CAPACITORS & RC CIRCUITS

67 Name Date Partners Lab 4 CAPACITORS & RC CIRCUITS OBJECTIVES OVERVIEW To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance of conducting parallel

### Chapter 26. Capacitance and Dielectrics

Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate

### Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. a) Parallel-plate capacitor connected to battery. (b) is a circuit

### first name (print) last name (print) brock id (ab17cd) (lab date)

(ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 1 Capacitance In this Experiment you will learn the relationship between the voltage and charge stored on a capacitor;

### UNIT G485 Module Capacitors PRACTICE QUESTIONS (4)

UNIT G485 Module 2 5.2.1 Capacitors PRACTICE QUESTIONS (4) 1 A 2200 µf capacitor is charged to a p.d. of 9.0 V and then discharged through a 100 kω resistor. (a) Calculate : (i) The initial charge stored

### Chapter 26. Capacitance and Dielectrics

Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate

### Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks:

Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks: What is Voltage anyway? Voltage... Is the energy (U, in

### LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that

### WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday.

WELCOME TO PERIOD 14 Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. PHYSICS 1103 PERIOD 14 What is an electric circuit? How

### Chapter 26. Capacitance and Dielectrics

Chapter 26 Capacitance and Dielectrics Circuits and Circuit Elements Electric circuits are the basis for the vast majority of the devices used in society. Circuit elements can be connected with wires to

### Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one

1 Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one would deliberately add to a circuit. Other times,

### MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis

Faculty of Engineering MEP 38: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Outline oltage and Current Ohm s Law Kirchoff s laws esistors Series and Parallel oltage Dividers

### Lab 5 - Capacitors and RC Circuits

Lab 5 Capacitors and RC Circuits L51 Name Date Partners Lab 5 Capacitors and RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance

### Capacitance and Dielectrics. Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68

Capacitance and Dielectrics Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68 Capacitors Capacitors are devices that store electric charge and energy Examples of where capacitors are used include: radio

### Lab 5 - Capacitors and RC Circuits

Lab 5 Capacitors and RC Circuits L51 Name Date Partners Lab 5 Capacitors and RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance

### IMPORTANT Read these directions carefully:

Physics 208: Electricity and Magnetism Common Exam 2, October 17 th 2016 Print your name neatly: First name: Last name: Sign your name: Please fill in your Student ID number (UIN): _ - - Your classroom

### ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

### RC, RL, and LCR Circuits

RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They

### UNIT 102-2: ELECTRIC POTENTIAL AND CAPACITANCE Approximate time two 100-minute sessions

Name St.No. Date(YY/MM/DD) / / Section UNIT 1022: ELECTRIC POTENTIAL AND CAPACITANCE Approximate time two 100minute sessions I get a real charge out of capacitors. P. W. Laws OBJECTIVES 1. To understand

### Lab #6 Ohm s Law. Please type your lab report for Lab #6 and subsequent labs.

Dr. Day, Fall 2004, Rev. 06/22/10 HEFW PH 262 Page 1 of 4 Lab #6 Ohm s Law Please type your lab report for Lab #6 and subsequent labs. Objectives: When you have completed this lab exercise you should be

### Control of Rectified Direct Current Using Low Series Capacitance

Control of Rectified Direct Current Using Low Series Capacitance Parantap Nandi, Department of Electrical Engineering Ideal Institute Of Engineering, Kalyani, West Bengal University of Technology, West

### Capacitance and Dielectrics

Slide 1 / 39 Capacitance and Dielectrics 2011 by Bryan Pflueger Capacitors Slide 2 / 39 A capacitor is any two conductors seperated by an insulator, such as air or another material. Each conductor has

### Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.

### Lab 5 CAPACITORS & RC CIRCUITS

L051 Name Date Partners Lab 5 CAPACITORS & RC CIRCUITS OBJECTIVES OVERVIEW To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance of conducting parallel

### University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about

### University Physics (PHY 2326)

Chapter 23 University Physics (PHY 2326) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors 3/26/2015

### Chapter 2: Capacitors And Dielectrics

hapter 2: apacitors And Dielectrics 2.1 apacitance and capacitors in series and parallel L.O 2.1.1 Define capacitance and use capacitance apacitor is a device that is capable of storing electric charges

### REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

REVSED HGHER PHYSCS REVSON BOOKLET ELECTRONS AND ENERGY Kinross High School Monitoring and measuring a.c. Alternating current: Mains supply a.c.; batteries/cells supply d.c. Electrons moving back and forth,

### The RC Time Constant

The RC Time Constant Objectives When a direct-current source of emf is suddenly placed in series with a capacitor and a resistor, there is current in the circuit for whatever time it takes to fully charge

### ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

### Capacitors GOAL. EQUIPMENT. CapacitorDecay.cmbl 1. Building a Capacitor

PHYSICS EXPERIMENTS 133 Capacitor 1 Capacitors GOAL. To measure capacitance with a digital multimeter. To make a simple capacitor. To determine and/or apply the rules for finding the equivalent capacitance

### The RC Circuit INTRODUCTION. Part 1: Capacitor Discharging Through a Resistor. Part 2: The Series RC Circuit and the Oscilloscope

The RC Circuit INTRODUCTION The goal in this lab is to observe the time-varying voltages in several simple circuits involving a capacitor and resistor. In the first part, you will use very simple tools

### General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is

apacitors and Dielectrics The ideas of energy storage in E-fields can be carried a step further by understanding the concept of "apacitance" onsider a sphere with a total charge, Q, and a radius, R From

### Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2

### ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors

### Chapter 2: Capacitor And Dielectrics

hapter 2: apacitor And Dielectrics In this chapter, we are going to discuss the different ways that a capacitor could be arranged in a circuit and how its capacitance could be increased. Overview apacitor

### Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

### Compiled and rearranged by Sajit Chandra Shakya

1 (a) Define capacitance. [May/June 2005] 1...[1] (b) (i) One use of a capacitor is for the storage of electrical energy. Briefly explain how a capacitor stores energy......[2] (ii) Calculate the change

### Energy Stored in Capacitors

Energy Stored in Capacitors U = 1 2 qv q = CV U = 1 2 CV 2 q 2 or U = 1 2 C 37 Energy Density in Capacitors (1) We define the, u, as the electric potential energy per unit volume Taking the ideal case

### CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING

PHYSICS A2 UNIT 4 SECTION 3: CAPACITANCE CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING # Question CAPACITORS 1 What is current? Current is the rate of flow of charge in a circuit

### Chapter 6. Answers to examination-style questions. Answers Marks Examiner s tips

(a) Taking natural logs on both sides of V = V o e t/c gives ln V = ln V o + ln (e t/cr ) As ln (e t/cr ) = t CR then ln V = ln V o t CR = a bt hence a = ln V o and b = CR (b) (i) t/s 20 240 270 300 mean.427.233.033

### No Brain Too Small PHYSICS

ELECTRICITY: DC CAPACITORS QUESTIONS CHARGING A CAPACITOR (2016;1) Eleanor sets up a circuit to investigate how capacitors operate. The circuit is shown below. The circuit includes a 2.20 x 10-6 F capacitor

### Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

### Question 1. Question 2. Question 3

Question 1 Switch S in in the figure is closed at time t = 0, to begin charging an initially uncharged capacitor of capacitance C = 18.2 μf through a resistor of resistance R = 22.3 Ω. At what time (in

### Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 Voltage-Current Measurements... 8 7.6

### Application of Physics II for. Final Exam

Application of Physics II for Final Exam Question 1 Four resistors are connected as shown in Figure. (A)Find the equivalent resistance between points a and c. (B)What is the current in each resistor if

### Physics 2B Notes - Capacitors Spring 2018

Definition of a Capacitor Special Case: Parallel Plate Capacitor Capacitors in Series or Parallel Capacitor Network Definition of a Capacitor Webassign Chapter 0: 8, 9, 3, 4, 5 A capacitor is a device

### Chapter 24. Capacitance and Dielectrics Lecture 1. Dr. Armen Kocharian

Chapter 24 Capacitance and Dielectrics Lecture 1 Dr. Armen Kocharian Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters

### EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.2 - CAPACITOR NETWORK NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is

### RC Circuits. Equipment: Capstone with 850 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 3 leads V C = 1

R ircuits Equipment: apstone with 850 interface, RL circuit board, 2 voltage sensors (no alligator clips), 3 leads 1 Introduction The 3 basic linear circuits elements are the resistor, the capacitor, and

### Some Important Electrical Units

Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogram-second

### Name Class Date. RC Circuit Lab

RC Circuit Lab Objectives: Students will be able to Use the ScienceWorkshop interface to investigate the relationship between the voltage remaining across a capacitor and the time taken for the discharge

### Experiment P43: RC Circuit (Power Amplifier, Voltage Sensor)

PASCO scientific Vol. 2 Physics Lab Manual: P43-1 Experiment P43: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P43 P43_RCCI.SWS EQUIPMENT NEEDED

### Capacitors. David Frazier and John Ingram

Capacitors David Frazier and John Ingram Introduction Used in most electronic devices Comes in a variety of sizes Basic Function The basic function of a capacitor is to store energy. Common usage include

### On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

1 (a) A charged capacitor is connected across the ends of a negative temperature coefficient (NTC) thermistor kept at a fixed temperature. The capacitor discharges through the thermistor. The potential

### Capacitance and capacitors. Dr. Loai Afana

apacitance and capacitors apacitors apacitors are devices that store energy in an electric field. apacitors are used in many every-day applications Heart defibrillators amera flash units apacitors are

### PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. A 400 μf capacitor is charged so that the voltage across its plates rises at a constant rate from 0 V to 4.0 V in 20 s. What current is being used to charge the capacitor?

### Capacitors. Chapter How capacitors work Inside a capacitor

Chapter 6 Capacitors In every device we have studied so far sources, resistors, diodes and transistors the relationship between voltage and current depends only on the present, independent of the past.

### Charging and discharging of a capacitor

5. Charging and discharging of a capacitor 5.1 Capacitors Figure 5.1: A system of charges, physically separated, has potential energy. The simplest example is that of two metal plates of large area carrying

### Summary Notes ALTERNATING CURRENT AND VOLTAGE

HIGHER CIRCUIT THEORY Wheatstone Bridge Circuit Any method of measuring resistance using an ammeter or voltmeter necessarily involves some error unless the resistances of the meters themselves are taken