On the continuity of the J-spectral factorization mapping

Size: px
Start display at page:

Download "On the continuity of the J-spectral factorization mapping"

Transcription

1 On the continuity of the J-spectral factorization mapping Orest V. Iftime University of Groningen Department of Mathematics and Computing Science PO Box 800, 9700 AV Groningen, The Netherlands Abstract The continuity of the mapping which associates a J-spectral factor to a spectral density is analyzed. For the class of essentially bounded functions on the imaginary axis that are bounded away from zero it is well nown that this mapping, even for the scalar case, is not continuous. In this paper three results concerning the continuity of the mapping which associates a J-spectral factor to a spectral density are provided for matrix-valued functions in the Wiener class. One of them is well nown, and the other two are extensions of theorems concerning the continuity of the spectral factorization mapping. KEYWORDS: Wiener class, J-spectral factorization, approximation, continuous dependence. 1 Introduction Roughly speaing, the J-spectral factorization problem is: Given a matrix-valued function Z defined on the imaginary axis, find a stable invertible matrix-valued function V with a stable inverse such that Z(s) = V T ( s)j p,q V (s) a.e. on the imaginary axis, where J p,q is a signature matrix. Such a V is nown as a J-spectral factor for Z. The J-spectral factorization problem naturally arises in control theory and it plays an important role in H -control, linear quadratic optimal control, Hanel norm approximation problem. Characterization of solution for control problems is sometimes given using the J- spectral factor(s). Consequently, it is important to provide computation algorithms for solving the J-spectral factorization problem. One would naturally thin about approximations of the J-spectral factor. This leads us to the question of whether or not the mapping which associates a J-spectral factor to the matrix-valued function to be factorized (spectral density) is continuous. An example (see [1]) shows that the spectral factorization mapping is not continuous in the -norm (see also [9]). In this paper three results concerning the continuity of the mapping which associates a J-spectral factor to a spectral density (J-spectral factorization mapping) are provided for matrix-valued functions in the Wiener class. The first result is well nown (see [3]) and states that the J-spectral factorization mapping depends continuously on the matrix-function to be factorized with respect to the 2-norm (the norm in L 2, the space of square integrable functions 1

2 on the imaginary axis). The other two results are extensions of theorems concerning the continuity of the mapping which associates a spectral factor to a spectral density (spectralfactorization mapping). One of them shows that the J-spectral factor depends continuously on the spectral density in the Wiener class topology. Moreover, if one assumes that the derivatives of the matrix-functions to be factorized exist and they are bounded in the 2-norm, the J-spectral factorization mapping is continuous in the -norm (the essential supremum norm on the imaginary axis). 2 Transfer function spaces The causal Wiener class (the class of stable transfer functions) is defined via their impulse responses. More precisely, let us consider the set A of functions f with the representation { fa (t) + f f(t) = 0 δ(t), t 0, 0, t < 0, where f 0 C (the set of complex numbers), 0 f a (t) dt <, and δ represents the delta distribution at zero. We define the causal Wiener class, denoted by Â, as the set of Laplace transform of functions in A. For a complex function f, we use the notation f to mean the following: f (s) = f( s) where by z we mean the complex conjugate of the complex number z. The Wiener class of transfer functions, denoted by Ŵ, is defined as { } Ŵ = g L (ir, C) g(i ) = g 1 (i ) + g 2 (i ), with g 1, g2 Â, where L is the space of functions bounded almost everywhere on the imaginary axis. The Wiener class is a decomposing Banach algebra continuously embedded in C(iR), the space of continuous functions on the imaginary axis with the sup-norm ( C(iR) Ŵ). Moreover, Â is a closed subalgebra of Ŵ, Â H (the set of stable functions in L ). For more information on the Wiener class we refer to [9] and the references therein (remar that we consider here only functions with no delayed impulses). We consider square matrix-functions over the Banach algebras L n n, H n n, Ŵ n n and Ân n, respectively, with an appropriate norm. 3 Continuity of the J-spectral factorization mapping Since the J-spectral factor is not unique (only up to a multiplication with a constant J-unitary matrix) we first describe more precisely what the mapping from the matrix-function to be factorized to the J-spectral factor is. For Z Ŵn n we define the operator T Z by T Z (X) := P (ZX) + Q(X), X Ŵn n, (1) where P is the continuous projection from Ŵn n onto Ân n and Q = I P. The following result is a particular case for Theorem 1.1, Clancey and Gohberg [3], page 35. Moreover the result in Corollary 1.1, page 37, gives explicit formulae for the inverse of T Z, provided that Z Ŵn n admits a J-spectral factorization. 2

3 Proposition If Z = Z Ŵn n admits a J-spectral factorization, then the operator T Z L(Ŵn n ) is invertible. The following proposition provides a formula for the J-spectral factor. For more details we refer to Clancey and Gohberg [3], Chapter II, Corollary 1.2., page 39, and Chapters III, Proposition 2.2., page 80. After a careful reading of the above mentioned proofs one can derive a theoretical algorithm for computing the J-spectral factor (an explicit K in the following proposition may be obtained). Proposition Let Z = Z Ŵn n be a matrix-valued function which admits a J-spectral factorization. Than the matrix-valued function V := KT 1 Z (I), (2) is a J-spectral factor for Z, for some invertible constant matrix K, and T Z is defined by (1). Suppose that Z = Z Ŵn n admits a J-spectral factorization. Necessary and sufficient conditions for existence of a J-spectral factorization are provided in [6]. Since the J-spectral factorization is not unique, one should specify exactly what the J-spectral factorization mapping is. Definition 3.1. We consider as the J-spectral factorization mapping the function which associate to a Z the J-spectral factor V given by (2). The following theorem shows that the J-spectral factorization mapping depends continuously on the matrix-function to be factorized with respect to the 2-norm. This theorem is an alternative formulation of a result in [3], page 205. Theorem 3.2. Assume that Z, Z Ŵn n, N, admit J-spectral factorizations and satisfy Z Z in the -norm as. Consider V, V the J-spectral factors associated to Z, Z, respectively, and assume that V V, V 1 V 1 L n n 2. Then V V and V 1 V 1 in the 2-norm as. More precisely, there exist constants c 1, c 2 > 0 such that V V 2 c 1 Z Z, and V 1 V 1 2 c 2 Z Z. A stronger continuity result for the J-spectral factorization mapping than the one stated in the above theorem is formulated below, and it is a generalization of the result obtained for (scalar) spectral factorization mapping in [7]. Theorem 3.3. Assume that Z, Z Ŵn n, N admit J-spectral factorizations and satisfy Z Z in the Ŵ-norm as. Consider V, V the J-spectral factors associated to Z, Z, respectively. Then V V and V 1 V 1 in the Ŵ-norm as. More precisely, there exist constants c 1, c 2 > 0 such that V V Ŵ c 1 Z Z Ŵ, and V 1 V 1 Ŵ c 2 Z Z Ŵ. Proof. From the definition of the J-spectral factor corresponding to the J-spectral mapping (see (2)) the first inequality is immediate. Since Z, Z Ŵn n, N admit J-spectral factorizations we now that the operators T Z and T Z are invertible over Ŵn n. Then the second inequality follows from an inversion theorem in Banach algebras [5, Chapter XXIX.4] combined with the first inequality. 3

4 As it was already said before, the scalar spectral factorization mapping is not continuous in the -norm. Let Z, Z Ŵn n, N admit J-spectral factorizations. In order to guarantee that the sequence of J-spectral factors corresponding to Z converges in the -norm to a J-spectral factor of the original matrix-function to be factorized, Z, besides the condition that Z Z in the -norm as, one needs to assume that the derivatives exist and are bounded in the 2-norm. Similar results on the continuity of the spectral factorization mapping can be found in [1, 9]. Theorem 3.4. Assume that Z, Z Ŵn n, N admit J-spectral factorizations and satisfy Z Z in the -norm as. Consider V, V the J-spectral factors associated to Z, Z, respectively, and assume that V V L2 n n, their derivative exists almost everywhere, V V L n n 2 and V V 2 < M. Then V V in the -norm as. More precisely, there is a constant c > 0 such that V V c Z Z V V 2. Proof. The J-spectral factors may be chosen to have the same constant value at infinity by suitably choice of the constant matrix which defines them. Then, for any ω, one can write [V (jω) V (jω)] [V (jω) V (jω)] = ω After derivation under the integral one can write the inequality σ([v (jω) V (jω)]) 2 ω d dα [V (jα) V (jα)] [V (jα) V (jα)] dα. σ( d dα [V (jα) V (jα)])σ([v (jα) V (jα)])dα. where σ(m) is the maximal singular value of M. Using Cauchy inequality and then taing supremum over all ω there exist a positive constant c such that V V c Z Z V V 2. Moreover, the inequality V V 2 c Z Z from Theorem 3.2 was also used. Remar that when the derivatives of the J-spectral factors exist almost everywhere then also the derivatives of the spectral densities should exist almost everywhere. 4 Conclusions The continuity of the mapping which associates a J-spectral factor to a spectral density for matrix-functions in the Wiener class was investigated. Two results, which are extensions of theorems concerning the continuity of the (scalar) spectral factorization mapping were presented. One of them shows continuous dependence in the Wiener class topology. The other one shows that the J-spectral factorization mapping is continuous in the -norm provided that the derivatives of the matrix-functions to be factorized exist and they are bounded in the 2-norm. The above results hold not only for the Wiener class but also for any decomposing Banach algebra ˆB of continuous functions on the imaginary axis. Since the set of rational functions (on ir { }) is dense in ˆB, one might use the above to provide a better understanding for problems that might occur when computing a rational approximate of a J-spectral factor. Acnowledgement: The author would lie to than Birgit Jacob from University of Dortmund for preliminary discussions. 4

5 References [1] B.D.O. Anderson. Continuity of the matrix spectral factorization operation. Applied Mathematics and Computation, Vol. 4, pp , [2] F.M. Callier and J. Winin. Spectral factorization and LQ-optimal regulation for multivariable distributed parameter systems. Int. J. Control, Vol. 52, pp , [3] K.F. Clancey and I. Gohberg. Factorization of Matrix Functions and Singular Integral Operators. Operator Theory: Advances and Applications, Vol. 3, Birhäuser Verlag, [4] R.F. Curtain and H.J. Zwart. An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New Yor, [5] I. Gohberg, S. Goldberg and M.A. Kaashoe. Classes of Linear Operators, Vol II. Operator Theory: Advances and Applications, Vol. 63, Birhäuser Verlag, [6] O.V. Iftime and H.J. Zwart. J-spectral factorization and equalizing vectors. Systems and Control Letters, Vol. 43, pp , [7] B. Jacob and J.R. Partington. On the boundedness and continuity of the spectral factorization mapping. SIAM Journal on Control and Optimization, Vol. 40(1), pp , [8] B. Jacob, J. Winin and H.J. Zwart. Does the spectral factor depend continuously on the spectral density?. Proceedings of the Mathematical Theory of Networ and Systems, Padova, Italy, [9] B. Jacob, J. Winin and H.J. Zwart. Continuity of the spectral factorization on a vertical strip. Systems and Control Letters, Vol. 37, pp , [10] S.R. Treil. A counterexample on continuous coprime factors. IEEE Transactions on Automatic Control, Vol. 39, pp ,

ON THE BOUNDEDNESS BEHAVIOR OF THE SPECTRAL FACTORIZATION IN THE WIENER ALGEBRA FOR FIR DATA

ON THE BOUNDEDNESS BEHAVIOR OF THE SPECTRAL FACTORIZATION IN THE WIENER ALGEBRA FOR FIR DATA ON THE BOUNDEDNESS BEHAVIOR OF THE SPECTRAL FACTORIZATION IN THE WIENER ALGEBRA FOR FIR DATA Holger Boche and Volker Pohl Technische Universität Berlin, Heinrich Hertz Chair for Mobile Communications Werner-von-Siemens

More information

Hilbert Spaces. Contents

Hilbert Spaces. Contents Hilbert Spaces Contents 1 Introducing Hilbert Spaces 1 1.1 Basic definitions........................... 1 1.2 Results about norms and inner products.............. 3 1.3 Banach and Hilbert spaces......................

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

adopt the usual symbols R and C in order to denote the set of real and complex numbers, respectively. The open and closed right half-planes of C are d

adopt the usual symbols R and C in order to denote the set of real and complex numbers, respectively. The open and closed right half-planes of C are d All unmixed solutions of the algebraic Riccati equation using Pick matrices H.L. Trentelman Research Institute for Mathematics and Computer Science P.O. Box 800 9700 AV Groningen The Netherlands h.l.trentelman@math.rug.nl

More information

The Tuning of Robust Controllers for Stable Systems in the CD-Algebra: The Case of Sinusoidal and Polynomial Signals

The Tuning of Robust Controllers for Stable Systems in the CD-Algebra: The Case of Sinusoidal and Polynomial Signals The Tuning of Robust Controllers for Stable Systems in the CD-Algebra: The Case of Sinusoidal and Polynomial Signals Timo Hämäläinen Seppo Pohjolainen Tampere University of Technology Department of Mathematics

More information

Classes of Linear Operators Vol. I

Classes of Linear Operators Vol. I Classes of Linear Operators Vol. I Israel Gohberg Seymour Goldberg Marinus A. Kaashoek Birkhäuser Verlag Basel Boston Berlin TABLE OF CONTENTS VOLUME I Preface Table of Contents of Volume I Table of Contents

More information

Problem set 5 solutions 1

Problem set 5 solutions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 24: MODEL REDUCTION Problem set 5 solutions Problem 5. For each of the stetements below, state

More information

A note on polar decomposition based Geršgorin-type sets

A note on polar decomposition based Geršgorin-type sets A note on polar decomposition based Geršgorin-type sets Laura Smithies smithies@math.ent.edu November 21, 2007 Dedicated to Richard S. Varga, on his 80-th birthday. Abstract: Let B C n n denote a finite-dimensional

More information

Dual Spaces. René van Hassel

Dual Spaces. René van Hassel Dual Spaces René van Hassel October 1, 2006 2 1 Spaces A little scheme of the relation between spaces in the Functional Analysis. FA spaces Vector space Topological Space Topological Metric Space Vector

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Optimal Hankel norm approximation for infinite-dimensional systems

Optimal Hankel norm approximation for infinite-dimensional systems Optimal Hankel norm approximation for infinite-dimensional systems A.J. Sasane and R.F. Curtain Department of Mathematics, University of Groningen, P.O.Box 800, 9700 AV Groningen, The Netherlands. {A.J.Sasane,R.F.Curtain}@math.rug.nl

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

Algebraic Properties of Riccati equations. Ruth Curtain University of Groningen, The Netherlands

Algebraic Properties of Riccati equations. Ruth Curtain University of Groningen, The Netherlands Algebraic Properties of Riccati equations Ruth Curtain University of Groningen, The Netherlands Special Recognition Peter Falb Jan Willems Tony Pritchard Hans Zwart Riccati equation Ṗ(t) + A(t) P(t) +

More information

Left invertible semigroups on Hilbert spaces.

Left invertible semigroups on Hilbert spaces. Left invertible semigroups on Hilbert spaces. Hans Zwart Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 75 AE

More information

Continuous Functions on Metric Spaces

Continuous Functions on Metric Spaces Continuous Functions on Metric Spaces Math 201A, Fall 2016 1 Continuous functions Definition 1. Let (X, d X ) and (Y, d Y ) be metric spaces. A function f : X Y is continuous at a X if for every ɛ > 0

More information

On Algebras Which Are Inductive Limits of Banach Spaces

On Algebras Which Are Inductive Limits of Banach Spaces Chapman University Chapman University Digital Commons Mathematics, Physics, and Computer Science Faculty Articles and Research Science and Technology Faculty Articles and Research 2015 On Algebras Which

More information

Absolute Values and Completions

Absolute Values and Completions Absolute Values and Completions B.Sury This article is in the nature of a survey of the theory of complete fields. It is not exhaustive but serves the purpose of familiarising the readers with the basic

More information

semigroups are consistent, we shall simply use the notation T (t). Assume further that U and Y are separable Hilbert spaces (the input and output spac

semigroups are consistent, we shall simply use the notation T (t). Assume further that U and Y are separable Hilbert spaces (the input and output spac CDC-REG467 Optimal Hankel norm approximation for the Pritchard-Salamon class of non-exponentially stable innite-dimensional systems A.J. Sasane and R.F. Curtain Department of Mathematics, University of

More information

16 1 Basic Facts from Functional Analysis and Banach Lattices

16 1 Basic Facts from Functional Analysis and Banach Lattices 16 1 Basic Facts from Functional Analysis and Banach Lattices 1.2.3 Banach Steinhaus Theorem Another fundamental theorem of functional analysis is the Banach Steinhaus theorem, or the Uniform Boundedness

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory Part V 7 Introduction: What are measures and why measurable sets Lebesgue Integration Theory Definition 7. (Preliminary). A measure on a set is a function :2 [ ] such that. () = 2. If { } = is a finite

More information

Some topics in analysis related to Banach algebras, 2

Some topics in analysis related to Banach algebras, 2 Some topics in analysis related to Banach algebras, 2 Stephen Semmes Rice University... Abstract Contents I Preliminaries 3 1 A few basic inequalities 3 2 q-semimetrics 4 3 q-absolute value functions 7

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

A max-plus based fundamental solution for a class of infinite dimensional Riccati equations

A max-plus based fundamental solution for a class of infinite dimensional Riccati equations A max-plus based fundamental solution for a class of infinite dimensional Riccati equations Peter M Dower and William M McEneaney Abstract A new fundamental solution for a specific class of infinite dimensional

More information

Krylov Techniques for Model Reduction of Second-Order Systems

Krylov Techniques for Model Reduction of Second-Order Systems Krylov Techniques for Model Reduction of Second-Order Systems A Vandendorpe and P Van Dooren February 4, 2004 Abstract The purpose of this paper is to present a Krylov technique for model reduction of

More information

An introduction to some aspects of functional analysis

An introduction to some aspects of functional analysis An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms

More information

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2

More information

Boundary gradient observability for semilinear parabolic systems: Sectorial approach

Boundary gradient observability for semilinear parabolic systems: Sectorial approach Math. Sci. Lett. 2, No.1, 45-54 (2013) 45 Mathematical Sciences Letters An International Journal @2013 NSP Natural Sciences Publishing Cor. Boundary gradient observability for semilinear parabolic systems:

More information

L2 gains and system approximation quality 1

L2 gains and system approximation quality 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 24: MODEL REDUCTION L2 gains and system approximation quality 1 This lecture discusses the utility

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Deposited on: 20 April 2010

Deposited on: 20 April 2010 Pott, S. (2007) A sufficient condition for the boundedness of operatorweighted martingale transforms and Hilbert transform. Studia Mathematica, 182 (2). pp. 99-111. SSN 0039-3223 http://eprints.gla.ac.uk/13047/

More information

Iterative Solution of a Matrix Riccati Equation Arising in Stochastic Control

Iterative Solution of a Matrix Riccati Equation Arising in Stochastic Control Iterative Solution of a Matrix Riccati Equation Arising in Stochastic Control Chun-Hua Guo Dedicated to Peter Lancaster on the occasion of his 70th birthday We consider iterative methods for finding the

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable Sequences

Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable Sequences Advances in Dynamical Systems and Applications ISSN 0973-532, Volume 6, Number, pp. 9 09 20 http://campus.mst.edu/adsa Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable

More information

Hankel Optimal Model Reduction 1

Hankel Optimal Model Reduction 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 2004: MODEL REDUCTION Hankel Optimal Model Reduction 1 This lecture covers both the theory and

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

5 Banach Algebras. 5.1 Invertibility and the Spectrum. Robert Oeckl FA NOTES 5 19/05/2010 1

5 Banach Algebras. 5.1 Invertibility and the Spectrum. Robert Oeckl FA NOTES 5 19/05/2010 1 Robert Oeckl FA NOTES 5 19/05/2010 1 5 Banach Algebras 5.1 Invertibility and the Spectrum Suppose X is a Banach space. Then we are often interested in (continuous) operators on this space, i.e, elements

More information

The Rademacher Cotype of Operators from l N

The Rademacher Cotype of Operators from l N The Rademacher Cotype of Operators from l N SJ Montgomery-Smith Department of Mathematics, University of Missouri, Columbia, MO 65 M Talagrand Department of Mathematics, The Ohio State University, 3 W

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

arxiv: v3 [math.oc] 1 Sep 2018

arxiv: v3 [math.oc] 1 Sep 2018 arxiv:177.148v3 [math.oc] 1 Sep 218 The converse of the passivity and small-gain theorems for input-output maps Sei Zhen Khong, Arjan van der Schaft Version: June 25, 218; accepted for publication in Automatica

More information

FRAMES AND TIME-FREQUENCY ANALYSIS

FRAMES AND TIME-FREQUENCY ANALYSIS FRAMES AND TIME-FREQUENCY ANALYSIS LECTURE 5: MODULATION SPACES AND APPLICATIONS Christopher Heil Georgia Tech heil@math.gatech.edu http://www.math.gatech.edu/ heil READING For background on Banach spaces,

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Research Article Mean Square Stability of Impulsive Stochastic Differential Systems

Research Article Mean Square Stability of Impulsive Stochastic Differential Systems International Differential Equations Volume 011, Article ID 613695, 13 pages doi:10.1155/011/613695 Research Article Mean Square Stability of Impulsive Stochastic Differential Systems Shujie Yang, Bao

More information

EVANESCENT SOLUTIONS FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS

EVANESCENT SOLUTIONS FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS EVANESCENT SOLUTIONS FOR LINEAR ORDINARY DIFFERENTIAL EQUATIONS Cezar Avramescu Abstract The problem of existence of the solutions for ordinary differential equations vanishing at ± is considered. AMS

More information

C* ALGEBRAS AND THEIR REPRESENTATIONS

C* ALGEBRAS AND THEIR REPRESENTATIONS C* ALGEBRAS AND THEIR REPRESENTATIONS ILIJAS FARAH The original version of this note was based on two talks given by Efren Ruiz at the Toronto Set Theory seminar in November 2005. This very tentative note

More information

The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications

The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications MAX PLANCK INSTITUTE Elgersburg Workshop Elgersburg February 11-14, 2013 The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications Timo Reis 1 Matthias Voigt 2 1 Department

More information

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions Economics 24 Fall 211 Problem Set 2 Suggested Solutions 1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit

More information

A Simple Derivation of Right Interactor for Tall Transfer Function Matrices and its Application to Inner-Outer Factorization Continuous-Time Case

A Simple Derivation of Right Interactor for Tall Transfer Function Matrices and its Application to Inner-Outer Factorization Continuous-Time Case A Simple Derivation of Right Interactor for Tall Transfer Function Matrices and its Application to Inner-Outer Factorization Continuous-Time Case ATARU KASE Osaka Institute of Technology Department of

More information

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Stability of an abstract wave equation with delay and a Kelvin Voigt damping Stability of an abstract wave equation with delay and a Kelvin Voigt damping University of Monastir/UPSAY/LMV-UVSQ Joint work with Serge Nicaise and Cristina Pignotti Outline 1 Problem The idea Stability

More information

Convergent Iterative Algorithms in the 2-inner Product Space R n

Convergent Iterative Algorithms in the 2-inner Product Space R n Int. J. Open Problems Compt. Math., Vol. 6, No. 4, December 2013 ISSN 1998-6262; Copyright c ICSRS Publication, 2013 www.i-csrs.org Convergent Iterative Algorithms in the 2-inner Product Space R n Iqbal

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES JOEL A. TROPP Abstract. We present an elementary proof that the spectral radius of a matrix A may be obtained using the formula ρ(a) lim

More information

Time-Varying Systems and Computations Lecture 3

Time-Varying Systems and Computations Lecture 3 Time-Varying Systems and Computations Lecture 3 Klaus Diepold November 202 Linear Time-Varying Systems State-Space System Model We aim to derive the matrix containing the time-varying impulse responses

More information

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Norms for Signals and Systems

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Norms for Signals and Systems . AERO 632: Design of Advance Flight Control System Norms for Signals and. Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Norms for Signals ...

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Infinite-dimensional Vector Spaces and Sequences

Infinite-dimensional Vector Spaces and Sequences 2 Infinite-dimensional Vector Spaces and Sequences After the introduction to frames in finite-dimensional vector spaces in Chapter 1, the rest of the book will deal with expansions in infinitedimensional

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: ADJOINTS IN HILBERT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: ADJOINTS IN HILBERT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: ADJOINTS IN HILBERT SPACES CHRISTOPHER HEIL 1. Adjoints in Hilbert Spaces Recall that the dot product on R n is given by x y = x T y, while the dot product on C n is

More information

CONTRACTIBILITY OF THE MAXIMAL IDEAL SPACE OF ALGEBRAS OF MEASURES IN A HALF-SPACE. CDAM Research Report LSE-CDAM

CONTRACTIBILITY OF THE MAXIMAL IDEAL SPACE OF ALGEBRAS OF MEASURES IN A HALF-SPACE. CDAM Research Report LSE-CDAM CONTRACTIBILITY OF THE MAXIMAL IDEAL SPACE OF ALGEBRAS OF MEASURES IN A HALF-SPACE AMOL SASANE Abstract. Let H [n] be the canonical half space in R n, that is, H [n] = {(t,..., t n) R n \ {} j, [t j and

More information

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s.

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s. 20 6. CONDITIONAL EXPECTATION Having discussed at length the limit theory for sums of independent random variables we will now move on to deal with dependent random variables. An important tool in this

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS

MATHEMATICAL ENGINEERING TECHNICAL REPORTS MATHEMATICAL ENGINEERING TECHNICAL REPORTS Combinatorial Relaxation Algorithm for the Entire Sequence of the Maximum Degree of Minors in Mixed Polynomial Matrices Shun SATO (Communicated by Taayasu MATSUO)

More information

EQUIVALENCE OF TOPOLOGIES AND BOREL FIELDS FOR COUNTABLY-HILBERT SPACES

EQUIVALENCE OF TOPOLOGIES AND BOREL FIELDS FOR COUNTABLY-HILBERT SPACES EQUIVALENCE OF TOPOLOGIES AND BOREL FIELDS FOR COUNTABLY-HILBERT SPACES JEREMY J. BECNEL Abstract. We examine the main topologies wea, strong, and inductive placed on the dual of a countably-normed space

More information

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform Integral Transforms Massoud Malek An integral transform maps an equation from its original domain into another domain, where it might be manipulated and solved much more easily than in the original domain.

More information

CHAPTER VIII HILBERT SPACES

CHAPTER VIII HILBERT SPACES CHAPTER VIII HILBERT SPACES DEFINITION Let X and Y be two complex vector spaces. A map T : X Y is called a conjugate-linear transformation if it is a reallinear transformation from X into Y, and if T (λx)

More information

A note on the σ-algebra of cylinder sets and all that

A note on the σ-algebra of cylinder sets and all that A note on the σ-algebra of cylinder sets and all that José Luis Silva CCM, Univ. da Madeira, P-9000 Funchal Madeira BiBoS, Univ. of Bielefeld, Germany (luis@dragoeiro.uma.pt) September 1999 Abstract In

More information

Infinite Matrices and Almost Convergence

Infinite Matrices and Almost Convergence Filomat 29:6 (205), 83 88 DOI 0.2298/FIL50683G Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Infinite Matrices and Almost Convergence

More information

Model Reduction for Unstable Systems

Model Reduction for Unstable Systems Model Reduction for Unstable Systems Klajdi Sinani Virginia Tech klajdi@vt.edu Advisor: Serkan Gugercin October 22, 2015 (VT) SIAM October 22, 2015 1 / 26 Overview 1 Introduction 2 Interpolatory Model

More information

Introduction. Chapter 1. Contents. EECS 600 Function Space Methods in System Theory Lecture Notes J. Fessler 1.1

Introduction. Chapter 1. Contents. EECS 600 Function Space Methods in System Theory Lecture Notes J. Fessler 1.1 Chapter 1 Introduction Contents Motivation........................................................ 1.2 Applications (of optimization).............................................. 1.2 Main principles.....................................................

More information

Changing coordinates to adapt to a map of constant rank

Changing coordinates to adapt to a map of constant rank Introduction to Submanifolds Most manifolds of interest appear as submanifolds of others e.g. of R n. For instance S 2 is a submanifold of R 3. It can be obtained in two ways: 1 as the image of a map into

More information

1 Continuity Classes C m (Ω)

1 Continuity Classes C m (Ω) 0.1 Norms 0.1 Norms A norm on a linear space X is a function : X R with the properties: Positive Definite: x 0 x X (nonnegative) x = 0 x = 0 (strictly positive) λx = λ x x X, λ C(homogeneous) x + y x +

More information

COMMON COMPLEMENTS OF TWO SUBSPACES OF A HILBERT SPACE

COMMON COMPLEMENTS OF TWO SUBSPACES OF A HILBERT SPACE COMMON COMPLEMENTS OF TWO SUBSPACES OF A HILBERT SPACE MICHAEL LAUZON AND SERGEI TREIL Abstract. In this paper we find a necessary and sufficient condition for two closed subspaces, X and Y, of a Hilbert

More information

Spectral theory for linear operators on L 1 or C(K) spaces

Spectral theory for linear operators on L 1 or C(K) spaces Spectral theory for linear operators on L 1 or C(K) spaces Ian Doust, Florence Lancien, and Gilles Lancien Abstract It is known that on a Hilbert space, the sum of a real scalar-type operator and a commuting

More information

OBSERVATION OPERATORS FOR EVOLUTIONARY INTEGRAL EQUATIONS

OBSERVATION OPERATORS FOR EVOLUTIONARY INTEGRAL EQUATIONS OBSERVATION OPERATORS FOR EVOLUTIONARY INTEGRAL EQUATIONS MICHAEL JUNG Abstract. We analyze admissibility and exactness of observation operators arising in control theory for Volterra integral equations.

More information

Topologies, ring norms and algebra norms on some algebras of continuous functions.

Topologies, ring norms and algebra norms on some algebras of continuous functions. Topologies, ring norms and algebra norms on some algebras of continuous functions. Javier Gómez-Pérez Javier Gómez-Pérez, Departamento de Matemáticas, Universidad de León, 24071 León, Spain. Corresponding

More information

Polynomial root separation examples

Polynomial root separation examples Journal of Symbolic Computation 4 (2006) 080 090 www.elsevier.com/locate/jsc Polynomial root separation examples Arnold Schönhage Institut für Informati III, Universität Bonn, Römerstr. 64, D-537 Bonn,

More information

Formal Groups. Niki Myrto Mavraki

Formal Groups. Niki Myrto Mavraki Formal Groups Niki Myrto Mavraki Contents 1. Introduction 1 2. Some preliminaries 2 3. Formal Groups (1 dimensional) 2 4. Groups associated to formal groups 9 5. The Invariant Differential 11 6. The Formal

More information

Hilbert space methods for quantum mechanics. S. Richard

Hilbert space methods for quantum mechanics. S. Richard Hilbert space methods for quantum mechanics S. Richard Spring Semester 2016 2 Contents 1 Hilbert space and bounded linear operators 5 1.1 Hilbert space................................ 5 1.2 Vector-valued

More information

SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS

SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS TSOGTGEREL GANTUMUR Abstract. After establishing discrete spectra for a large class of elliptic operators, we present some fundamental spectral properties

More information

QUATERNIONS AND ROTATIONS

QUATERNIONS AND ROTATIONS QUATERNIONS AND ROTATIONS SVANTE JANSON 1. Introduction The purpose of this note is to show some well-known relations between quaternions and the Lie groups SO(3) and SO(4) (rotations in R 3 and R 4 )

More information

FIXED POINT ITERATIONS

FIXED POINT ITERATIONS FIXED POINT ITERATIONS MARKUS GRASMAIR 1. Fixed Point Iteration for Non-linear Equations Our goal is the solution of an equation (1) F (x) = 0, where F : R n R n is a continuous vector valued mapping in

More information

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings Int. J. Nonlinear Anal. Appl. 7 (2016) No. 1, 295-300 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2015.341 On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

Normed Vector Spaces and Double Duals

Normed Vector Spaces and Double Duals Normed Vector Spaces and Double Duals Mathematics 481/525 In this note we look at a number of infinite-dimensional R-vector spaces that arise in analysis, and we consider their dual and double dual spaces

More information

November 18, 2013 ANALYTIC FUNCTIONAL CALCULUS

November 18, 2013 ANALYTIC FUNCTIONAL CALCULUS November 8, 203 ANALYTIC FUNCTIONAL CALCULUS RODICA D. COSTIN Contents. The spectral projection theorem. Functional calculus 2.. The spectral projection theorem for self-adjoint matrices 2.2. The spectral

More information

The Role of Exosystems in Output Regulation

The Role of Exosystems in Output Regulation 1 The Role of Exosystems in Output Regulation Lassi Paunonen In this paper we study the role of the exosystem in the theory of output regulation for linear infinite-dimensional systems. The main result

More information

ALGEBRAIC GEOMETRY CAUCHER BIRKAR

ALGEBRAIC GEOMETRY CAUCHER BIRKAR ALGEBRAIC GEOMETRY CAUCHER BIRKAR Contents 1. Introduction 1 2. Affine varieties 3 Exercises 10 3. Quasi-projective varieties. 12 Exercises 20 4. Dimension 21 5. Exercises 24 References 25 1. Introduction

More information

Nonlinear L 2 -gain analysis via a cascade

Nonlinear L 2 -gain analysis via a cascade 9th IEEE Conference on Decision and Control December -7, Hilton Atlanta Hotel, Atlanta, GA, USA Nonlinear L -gain analysis via a cascade Peter M Dower, Huan Zhang and Christopher M Kellett Abstract A nonlinear

More information

Algebras Generated by Invertible Elements

Algebras Generated by Invertible Elements Gen. Math. Notes, Vol. 21, No. 2, April 2014, pp.37-41 ISSN 2219-7184; Copyright c ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in Algebras Generated by Invertible Elements

More information

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 Jinglin Zhou Hong Wang, Donghua Zhou Department of Automation, Tsinghua University, Beijing 100084, P. R. China Control Systems Centre,

More information

Only Intervals Preserve the Invertibility of Arithmetic Operations

Only Intervals Preserve the Invertibility of Arithmetic Operations Only Intervals Preserve the Invertibility of Arithmetic Operations Olga Kosheleva 1 and Vladik Kreinovich 2 1 Department of Electrical and Computer Engineering 2 Department of Computer Science University

More information

Ronalda Benjamin. Definition A normed space X is complete if every Cauchy sequence in X converges in X.

Ronalda Benjamin. Definition A normed space X is complete if every Cauchy sequence in X converges in X. Group inverses in a Banach algebra Ronalda Benjamin Talk given in mathematics postgraduate seminar at Stellenbosch University on 27th February 2012 Abstract Let A be a Banach algebra. An element a A is

More information

CHAPTER II HILBERT SPACES

CHAPTER II HILBERT SPACES CHAPTER II HILBERT SPACES 2.1 Geometry of Hilbert Spaces Definition 2.1.1. Let X be a complex linear space. An inner product on X is a function, : X X C which satisfies the following axioms : 1. y, x =

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 2 November 6 November Deadline to hand in the homeworks: your exercise class on week 9 November 13 November Exercises (1) Let X be the following space of piecewise

More information

Characterization of half-radial matrices

Characterization of half-radial matrices Characterization of half-radial matrices Iveta Hnětynková, Petr Tichý Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 8, Czech Republic Abstract Numerical radius r(a) is the

More information

Lecture 4 Lebesgue spaces and inequalities

Lecture 4 Lebesgue spaces and inequalities Lecture 4: Lebesgue spaces and inequalities 1 of 10 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 4 Lebesgue spaces and inequalities Lebesgue spaces We have seen how

More information

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T 1 1 Linear Systems The goal of this chapter is to study linear systems of ordinary differential equations: ẋ = Ax, x(0) = x 0, (1) where x R n, A is an n n matrix and ẋ = dx ( dt = dx1 dt,..., dx ) T n.

More information

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication 7. Banach algebras Definition 7.1. A is called a Banach algebra (with unit) if: (1) A is a Banach space; (2) There is a multiplication A A A that has the following properties: (xy)z = x(yz), (x + y)z =

More information

Local strong convexity and local Lipschitz continuity of the gradient of convex functions

Local strong convexity and local Lipschitz continuity of the gradient of convex functions Local strong convexity and local Lipschitz continuity of the gradient of convex functions R. Goebel and R.T. Rockafellar May 23, 2007 Abstract. Given a pair of convex conjugate functions f and f, we investigate

More information