Control Systems I. Lecture 1: Introduction. Suggested Readings: Åström & Murray Ch. 1, Guzzella Ch. 1. Emilio Frazzoli

Size: px
Start display at page:

Download "Control Systems I. Lecture 1: Introduction. Suggested Readings: Åström & Murray Ch. 1, Guzzella Ch. 1. Emilio Frazzoli"

Transcription

1 Control Systems I Lecture 1: Introduction Suggested Readings: Åström & Murray Ch. 1, Guzzella Ch. 1 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 22, 2017 E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

2 The hidden technology [Karl Åström] Widely used Very successful Seldom talked about Except when disaster strikes E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

3 E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

4 Outline 1 Overview 2 Logistics 3 Signals and Systems E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

5 Course Objectives 1/3 The course addresses dynamic control systems, i.e., systems that evolve over time, have inputs and outputs. We have three main objectives: Modeling: learn how to represent a dynamic control system in a way that it can be treated effectively using mathematical tools. Analysis: understand the basic characteristics of a system (e.g., stability, controllability, observability), and how the input affects the output. Synthesis: figure out how to change a system in such a way that it behaves in a desirable way. E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

6 Course Objectives 2/3 In particular, we will concentrate on systems that can be modeled by Ordinary Differential Equations (ODEs), and that satisfy certain linearity and time-invariance conditions. In this course, we will focus on systems with a single input and a single output (SISO). This will allow us to use classical control tools that are very powerful and easy to use (i.e., mostly graphical), and which are really laying the foundation of any followup work on more challenging control problems. We will analyze the response of these systems to inputs and initial conditions: for example, stability and performance issues will be addressed. It is of particular interest to analyze systems obtained as interconnections (e.g., feedback) of two or more other systems. We will learn how to design (control) systems that ensure desirable properties (e.g., stability, performance) of the interconnection with a given dynamic system. E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

7 Your new best friend E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

8 E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

9 Course Objectives 3/3 A large part of the course will require us to work in the Laplace and in the frequency domain and complex numbers, rather than something physical like time and real numbers. This requires a big leap of faith, making the learning curve quite steep for many students. We will make every effort to emphasize the connection between the physical world (and real numbers) and the Laplace/frequency domain (and complex numbers).... if all else fails... E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

10 E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

11 Outline 1 Overview 2 Logistics 3 Signals and Systems E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

12 Course Information Instructor Prof. Emilio Frazzoli Room ML K 32.1 Lead TA Julian Zilly <jzilly@ethz.ch>, Room ML K 42.3 Admin Assistant Ms. Annina Fattor < >, Room ML K32.2 Lectures F 10-12, Room HG F 5, 7. Exercises F 13-15, Various rooms (arranged by groups, refer to Julian). Prof. Office hours TBA. E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

13 Reading material Lecture and exercise notes will be posted on the course web site. A nice introductory book on feedback control, available online for free: Feedback Systems: An Introduction for Scientists and Engineers Karl J. Åström and Richard M. Murray Online discussion forum: sign up with your ETH account for L: Control Systems I as a student. Detailed instructions on the course homepage: E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

14 Another suggested (not required) textbook Von Herr Prof. Dr. E. Frazzoli empfohlen Titel Analysis and Synthesis ISBN Autor Lino Guzzella Studentenpreis CHF Preis Normal CHF Erhältlich in den Filialen: ETH Store Polyterrasse Offen Mo-Fr 9-18 Uhr ETH Store Hönggerberg Offen Mo-Fr 8-18 Uhr Sa Uhr Online bestellen: E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

15 Tentative schedule # Date Topic 1 Sept. 22 Introduction, Signals and Systems 2 Sept. 29 Modeling, Linearization 3 Oct. 6 Analysis 1: Time response, Stability 4 Oct. 13 Analysis 2: Diagonalization, Modal coordinates 5 Oct. 20 Transfer functions 1: Definition and properties 6 Oct. 27 Transfer functions 2: Poles and Zeros 7 Nov. 3 Analysis of feedback systems: internal stability, root locus 8 Nov. 10 Frequency response 9 Nov. 17 Analysis of feedback systems 2: the Nyquist condition 10 Nov. 24 Specifications for feedback systems 11 Dec. 1 Loop Shaping 12 Dec. 8 PID control 13 Dec. 15 Implementation issues 14 Dec. 22 Robustness E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

16 Today s learning objectives After today s lecture, you should be able to: Understand control systems in terms of input and output signals. Name examples and describe what states, input and output of a system is Describe the benefits of using control systems to another student Know how to classify signals/systems as linear/nonlinear, causal/acausal, time invariant/variant, memoryless (static) / dynamic Distinguish and calculate different interconnections of systems Distinguish between MIMO and SISO E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

17 Outline 1 Overview 2 Logistics 3 Signals and Systems E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

18 Signals Signals: maps from a set T to a set W. Time axis T, for us this will be the real line, i.e., T = R. One could also consider, e.g., the set of natural numbers (discrete-time systems). Signal space W: for us this will be the real line too, W = R. One could also consider vector-valued signals, for which W = R n for some fixed integer n. y(t) y[k] t k E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

19 Systems: Input-Output models 1/2 In this course, we will consider a system a map between signals, i.e., something that transforms some input signal into some output signal. It is convenient to define an input signal (typically this is the signal that can be manipulated by the designer), and an output signal (which captures how the system performs a certain task). Other signals that are of interest include disturbances and noise. Both are exogenous inputs, but are different in terms of sources and characteristics. More on this later in the course. E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

20 Systems: Input-Output models 2/2 An input-output model is a map Σ from an input signal u : t u(t) to an output signal y : t y(t), that is, y = Σu, u Σ y y(t) = (Σu)(t), t T. Block diagram representation E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

21 Your new best friend, revisited E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

22 Memoryless (or static) systems An input-output system Σ is memoryless (or static) if there exists a function S : W W such that, for all t T, y(t) = (Σu)(t) = S(u(t)). Examples: y(t) = 3u(t), y(t) = sin(u(t) 2 ). Not a static system: y(t) = t u(τ) dτ. This system (an integrator) remembers everything that happened in the past. E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

23 Time invariance Let the time-shift operator σ τ be defined as follows, for any signal u: (σ τ u)(t) = u(t τ), t T. An input-output system Σ is time-invariant if it commutes with the time-shift operator, i.e., if Σσ τ u = σ τ Σu = σ τ y τ T. Examples: a b E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

24 Linearity An input-output system Σ is linear if, for all input signals u a, u b, and scalars α, β R, Σ(αu a + βu b ) = α(σu a ) + β(σu b ) = αy a + βy b. The key property of linearity is superposition. In other words, if I know that if I apply u a I get y a, and if I apply u b I get y b, then I also know that if I apply u a + u b, I get y a + y b. E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

25 Causality An input-output system Σ is causal if, for any t T, the output at time t depends only on the values of the input on (, t]. In other words, define the truncation operator P as { u(t) for t T (P T u)(t) = 0 for t > T. Then an input-output system Σ is causal if P T ΣP T = P T Σ, T T. An input-output system Σ is strictly causal if, for any t T, the output at time t depends only on the values of the input on (, t). E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

26 Scope of the course In this course, we will consider only LTI SISO systems Single Input, Single Output (i.e., W = R) Linear Time invariant Causal. This is a very restrictive class; in fact, most systems are NOT LTI. On the other hand, many systems are approximated very well by LTI models. This is a key idea. As long as we are mindful of the errors induced by the LTI approximation, the methods discussed in the class are very powerful. Indeed, most control systems in operation are designed according to the principles that will be covered in the course. E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

27 Interconnections Control/dynamical systems can be interconnected in various ways: u Σ 1 Σ 2 Serial interconnection: y Σ = Σ 2 Σ 1 u Σ 1 y Parallel interconnection: Σ = Σ 1 + Σ 2 Σ 2 (Negative) Feedback interconnection: u Σ 1 y Σ = (I + Σ 2 Σ 1 ) 1 Σ 1 Σ 2 E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

28 Control objectives Stabilization: make sure the system does not blow up. Regulation: Maintain a desired operating point in spite of disturbances Tracking: follow the reference trajectory as closely as possible. E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

29 Basic control architectures r F u P y Feed-forward r e C u P y Feedback F r e C u P y Two degrees of freedom E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

30 benefits/dangers of feedback Feed-forward control relies on a precise knowledge of the plant, and does not change its dynamics. Feedback control allows one to Stabilize an unstable system; Handle uncertainties in the system; Reject external disturbances. However, feedback can introduce instability, even in an otherwise stable system! feed sensor noise into the system. Two degrees of freedom (feedforward + feedback) allow better transient behavior, e.g., can yield good tracking of rapidly-changing reference inputs. E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

31 Today s learning objectives After today s lecture, you should be able to: Understand control systems in terms of input and output signals. Name examples and describe what states, input and output of a system is Describe the benefits of using control systems to another student Know how to classify signals/systems as linear/nonlinear, causal/acausal, time invariant/variant, memoryless (static) / dynamic Distinguish and calculate different interconnections of systems Distinguish between MIMO and SISO E. Frazzoli (ETH) Lecture 1: Control Systems I 09/22/ / 31

Control Systems I. Lecture 1: Introduction. Suggested Readings: Åström & Murray Ch. 1. Jacopo Tani

Control Systems I. Lecture 1: Introduction. Suggested Readings: Åström & Murray Ch. 1. Jacopo Tani Control Systems I Lecture 1: Introduction Suggested Readings: Åström & Murray Ch. 1 Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 21, 2018 J. Tani, E. Frazzoli (ETH)

More information

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani Control Systems I Lecture 2: Modeling and Linearization Suggested Readings: Åström & Murray Ch. 2-3 Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 28, 2018 J. Tani, E.

More information

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch. 2-3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 29, 2017 E. Frazzoli

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

Control Systems I. Lecture 9: The Nyquist condition

Control Systems I. Lecture 9: The Nyquist condition Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Guzzella 9.1-3, Emilio Frazzoli

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Guzzella 9.1-3, Emilio Frazzoli Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Guzzella 9.1-3, 13.3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 3, 2017 E. Frazzoli (ETH)

More information

Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017

More information

Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

More information

Control Systems I. Lecture 9: The Nyquist condition

Control Systems I. Lecture 9: The Nyquist condition Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Classify a transfer function to see which order or ramp it can follow and with which expected error. Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

More information

Copyright. SRS, U DuE, rof. Söffker. Course Control Theory WiSe 2014/15

Copyright. SRS, U DuE, rof. Söffker. Course Control Theory WiSe 2014/15 Course Theory WiSe 2014/15 Room: SG 135 Time: Fr 3.00 6.30 pm (lecture and exercise) Practical exercise: 2nd part of semester Assistants: Xi Nowak, M.Sc.; WEB: http://www.uni-due.de/srs Manuscript Note

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

Exam. 135 minutes + 15 minutes reading time

Exam. 135 minutes + 15 minutes reading time Exam January 23, 27 Control Systems I (5-59-L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages

More information

Design Methods for Control Systems

Design Methods for Control Systems Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland based on script from: Prof. Dr. Lino Guzzella 1/33 Outline 1

More information

Lecture 1: Feedback Control Loop

Lecture 1: Feedback Control Loop Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information

Analysis and Synthesis of Single-Input Single-Output Control Systems

Analysis and Synthesis of Single-Input Single-Output Control Systems Lino Guzzella Analysis and Synthesis of Single-Input Single-Output Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

A brief introduction to robust H control

A brief introduction to robust H control A brief introduction to robust H control Jean-Marc Biannic System Control and Flight Dynamics Department ONERA, Toulouse. http://www.onera.fr/staff/jean-marc-biannic/ http://jm.biannic.free.fr/ European

More information

(Refer Slide Time: 1:42)

(Refer Slide Time: 1:42) Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 21 Basic Principles of Feedback Control (Contd..) Friends, let me get started

More information

Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Goal: understand the difference between open-loop and closed-loop (feedback)

More information

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 7 Interconnected

More information

Plan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Plan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control Plan of the Lecture Review: stability; Routh Hurwitz criterion Today s topic:

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Overview of the Seminar Topic

Overview of the Seminar Topic Overview of the Seminar Topic Simo Särkkä Laboratory of Computational Engineering Helsinki University of Technology September 17, 2007 Contents 1 What is Control Theory? 2 History

More information

Modeling and Control Overview

Modeling and Control Overview Modeling and Control Overview D R. T A R E K A. T U T U N J I A D V A N C E D C O N T R O L S Y S T E M S M E C H A T R O N I C S E N G I N E E R I N G D E P A R T M E N T P H I L A D E L P H I A U N I

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Lecture plan: Control Systems II, IDSC, 2017

Lecture plan: Control Systems II, IDSC, 2017 Control Systems II MAVT, IDSC, Lecture 8 28/04/2017 G. Ducard Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:

More information

Advanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Advanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano Advanced Aerospace Control Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano ICT for control systems engineering School of Industrial and Information Engineering Aeronautical Engineering

More information

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control

More information

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

More information

16.30 Estimation and Control of Aerospace Systems

16.30 Estimation and Control of Aerospace Systems 16.30 Estimation and Control of Aerospace Systems Topic 5 addendum: Signals and Systems Aeronautics and Astronautics Massachusetts Institute of Technology Fall 2010 (MIT) Topic 5 addendum: Signals, Systems

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #36 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, April 4, 2003 3. Cascade Control Next we turn to an

More information

Introduction to Model Order Reduction

Introduction to Model Order Reduction Introduction to Model Order Reduction Lecture 1: Introduction and overview Henrik Sandberg Kin Cheong Sou Automatic Control Lab, KTH ACCESS Specialized Course Graduate level Ht 2010, period 1 1 Overview

More information

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers

More information

CHEE 319 Process Dynamics and Control

CHEE 319 Process Dynamics and Control CHEE 319 Process Dynamics and Control Winter 2012 Instructor: M.Guay TAs: S. Dougherty, D. Park and E. Moshksar 1 Organization Instructor: Dr. Martin Guay Office: Dupuis 406 Phone: 533-2788 Email: guaym@chee.queensu.ca

More information

Chapter 2 Review of Linear and Nonlinear Controller Designs

Chapter 2 Review of Linear and Nonlinear Controller Designs Chapter 2 Review of Linear and Nonlinear Controller Designs This Chapter reviews several flight controller designs for unmanned rotorcraft. 1 Flight control systems have been proposed and tested on a wide

More information

CDS 101/110a: Lecture 10-1 Robust Performance

CDS 101/110a: Lecture 10-1 Robust Performance CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Closed-loop system 2/1/2016. Generally MIMO case. Two-degrees-of-freedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become

Closed-loop system 2/1/2016. Generally MIMO case. Two-degrees-of-freedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become Closed-loop system enerally MIMO case Two-degrees-of-freedom (2 DOF) control structure (2 DOF structure) 2 The closed loop equations become solving for z gives where is the closed loop transfer function

More information

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang CBE507 LECTURE III Controller Design Using State-space Methods Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University Korea University III -1 Overview States What

More information

Iterative Learning Control Analysis and Design I

Iterative Learning Control Analysis and Design I Iterative Learning Control Analysis and Design I Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK etar@ecs.soton.ac.uk http://www.ecs.soton.ac.uk/ Contents Basics Representations

More information

ME 132, Dynamic Systems and Feedback. Class Notes. Spring Instructor: Prof. A Packard

ME 132, Dynamic Systems and Feedback. Class Notes. Spring Instructor: Prof. A Packard ME 132, Dynamic Systems and Feedback Class Notes by Andrew Packard, Kameshwar Poolla & Roberto Horowitz Spring 2005 Instructor: Prof. A Packard Department of Mechanical Engineering University of California

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #1 Monday, January 6, 2003 Instructor: Dr. Ian C. Bruce Room CRL-229, Ext. 26984 ibruce@mail.ece.mcmaster.ca Office Hours: TBA Teaching Assistants:

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

More information

CDS 101: Lecture 4.1 Linear Systems

CDS 101: Lecture 4.1 Linear Systems CDS : Lecture 4. Linear Systems Richard M. Murray 8 October 4 Goals: Describe linear system models: properties, eamples, and tools Characterize stability and performance of linear systems in terms of eigenvalues

More information

Exam. 135 minutes, 15 minutes reading time

Exam. 135 minutes, 15 minutes reading time Exam August 15, 2017 Control Systems I (151-0591-00L) Prof Emilio Frazzoli Exam Exam Duration: 135 minutes, 15 minutes reading time Number of Problems: 44 Number of Points: 52 Permitted aids: Important:

More information

2 Classification of Continuous-Time Systems

2 Classification of Continuous-Time Systems Continuous-Time Signals and Systems 1 Preliminaries Notation for a continuous-time signal: x(t) Notation: If x is the input to a system T and y the corresponding output, then we use one of the following

More information

AE 200 Engineering Analysis and Control of Aerospace Systems

AE 200 Engineering Analysis and Control of Aerospace Systems Instructor Info Credit Class Days / Time Office Location: ENG 272C Office Hours: Monday 4:00pm 6:30pm Email: kamran.turkoglu@sjsu.edu 3 units Tuesday, 6:00pm 8:45pm Classroom CL 222 Prerequisites TA: Contact

More information

CABRILLO COLLEGE : Fall 2008

CABRILLO COLLEGE : Fall 2008 Instructor: Nicole Crane Office #620 ph. 479-5094 e-mail: nicrane@cabrillo.edu www.cabrillo.edu/~ncrane CABRILLO COLLEGE : Fall 2008 BIOLOGY 1C: Plant Biology and Ecological Principles Textbooks: 1) Biology,

More information

CHEM 102 Fall 2012 GENERAL CHEMISTRY

CHEM 102 Fall 2012 GENERAL CHEMISTRY CHEM 102 Fall 2012 GENERAL CHEMISTRY California State University, Northridge Lecture: Instructor: Dr. Thomas Minehan Office: Science 2314 Office hours: TR, 12:00-1:00 pm Phone: (818) 677-3315 E.mail: thomas.minehan@csun.edu

More information

Introduction to Computer Control Systems

Introduction to Computer Control Systems Introduction to Computer Control Systems Lecture 1: Introduction Dave Zachariah Div. Systems and Control, Dept. Information Technology, Uppsala University October 28, 2014 (UU/Info Technology/SysCon) Intro.

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 7: State-space Models Readings: DDV, Chapters 7,8 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology February 25, 2011 E. Frazzoli

More information

CDS 101/110a: Lecture 1.1 Introduction to Feedback & Control. CDS 101/110 Course Sequence

CDS 101/110a: Lecture 1.1 Introduction to Feedback & Control. CDS 101/110 Course Sequence CDS 101/110a: Lecture 1.1 Introduction to Feedback & Control Richard M. Murray 28 September 2015 Goals: Give an overview of CDS 101/110: course structure & administration Define feedback systems and learn

More information

ECE 516: System Control Engineering

ECE 516: System Control Engineering ECE 516: System Control Engineering This course focuses on the analysis and design of systems control. This course will introduce time-domain systems dynamic control fundamentals and their design issues

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09-Dec-13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

(Continued on next page)

(Continued on next page) (Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic

More information

EE361: Signals and System II

EE361: Signals and System II Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE361: Signals and System II Introduction http://www.ee.unlv.edu/~b1morris/ee361/ 2 Class Website http://www.ee.unlv.edu/~b1morris/ee361/ This

More information

COSMOS: Making Robots and Making Robots Intelligent Lecture 6: Introduction to feedback control

COSMOS: Making Robots and Making Robots Intelligent Lecture 6: Introduction to feedback control CONTENTS 1 INTRODUCTION: THE MAGIC OF FEEDBACK COSMOS: Making Robots and Making Robots Intelligent Lecture 6: Introduction to feedback control Jorge Cortés and William B. Dunbar March 7, 26 Abstract In

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

Linear Control Systems General Informations. Guillaume Drion Academic year

Linear Control Systems General Informations. Guillaume Drion Academic year Linear Control Systems General Informations Guillaume Drion Academic year 2017-2018 1 SYST0003 - General informations Website: http://sites.google.com/site/gdrion25/teaching/syst0003 Contacts: Guillaume

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #24 Wednesday, March 10, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Remedies We next turn to the question

More information

Physics 141 Course Information

Physics 141 Course Information Physics 141 Course Information General Physics I - Mechanics Spring 2009 Instructors: Office Hours: Textbook: Online Homework: Disclaimer: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Adrian Barkan

More information

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics.

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics. KING FAHD UNIVERSITY Department of Aerospace Engineering AE540: Flight Dynamics and Control I Instructor Dr. Ayman Hamdy Kassem What is flight dynamics? Is the study of aircraft motion and its characteristics.

More information

Lecture 4: Analysis of MIMO Systems

Lecture 4: Analysis of MIMO Systems Lecture 4: Analysis of MIMO Systems Norms The concept of norm will be extremely useful for evaluating signals and systems quantitatively during this course In the following, we will present vector norms

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 Unit Outline Introduction to the course: Course goals, assessment, etc... What is Control Theory A bit of jargon,

More information

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust

More information

State Space Control D R. T A R E K A. T U T U N J I

State Space Control D R. T A R E K A. T U T U N J I State Space Control D R. T A R E K A. T U T U N J I A D V A N C E D C O N T R O L S Y S T E M S M E C H A T R O N I C S E N G I N E E R I N G D E P A R T M E N T P H I L A D E L P H I A U N I V E R S I

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

Linear Algebra. Instructor: Justin Ryan

Linear Algebra. Instructor: Justin Ryan Linear Algebra Instructor: Justin Ryan ryan@math.wichita.edu Department of Mathematics, Statistics, and Physics Wichita State University Wichita, Kansas Summer 2014 DRAFT 3 June 2014 Preface These lecture

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

Robust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization

Robust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization A.2 Sensitivity and Feedback Performance A.3

More information

CDS 101/110a: Lecture 10-2 Control Systems Implementation

CDS 101/110a: Lecture 10-2 Control Systems Implementation CDS 101/110a: Lecture 10-2 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory - Classical control -

More information

Physics 141 Course Information

Physics 141 Course Information Physics 141 Course Information General Physics I - Mechanics Spring 2008 Instructors: Office Hours: Textbook: Online Homework: Disclaimer: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Charles

More information

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform ME45: Control Systems Lecture 2 Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Transfer function Models for systems electrical mechanical electromechanical Block

More information

NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach

NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach P.A. (Rama) Ramamoorthy Electrical & Computer Engineering and Comp. Science Dept., M.L. 30, University

More information

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

More information

Control Systems Lab - SC4070 Control techniques

Control Systems Lab - SC4070 Control techniques Control Systems Lab - SC4070 Control techniques Dr. Manuel Mazo Jr. Delft Center for Systems and Control (TU Delft) m.mazo@tudelft.nl Tel.:015-2788131 TU Delft, February 16, 2015 (slides modified from

More information

Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 29. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice EL2520 Control Theory and Practice Lecture 8: Linear quadratic control Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden Linear quadratic control Allows to compute the controller

More information

1 Loop Control. 1.1 Open-loop. ISS0065 Control Instrumentation

1 Loop Control. 1.1 Open-loop. ISS0065 Control Instrumentation Lecture 4 ISS0065 Control Instrumentation 1 Loop Control System has a continuous signal (analog) basic notions: open-loop control, close-loop control. 1.1 Open-loop Open-loop / avatud süsteem / открытая

More information

Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013

Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 Today s Objectives ENGR 105: Feedback Control Design Winter 2013 Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 1. introduce the MATLAB Control System Toolbox

More information

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

More information

CABRILLO COLLEGE : Spring 2012

CABRILLO COLLEGE : Spring 2012 CABRILLO COLLEGE : Spring 2012 BIOLOGY 1C: Plant Biology and Ecological Principles Instructor: Nicole Crane Office #620 Office hours: MW 2:40-4:00, Thursday 12:40-1:40 ph. 479-5094 e-mail: nicrane@cabrillo.edu

More information

CDS 110b: Lecture 2-1 Linear Quadratic Regulators

CDS 110b: Lecture 2-1 Linear Quadratic Regulators CDS 110b: Lecture 2-1 Linear Quadratic Regulators Richard M. Murray 11 January 2006 Goals: Derive the linear quadratic regulator and demonstrate its use Reading: Friedland, Chapter 9 (different derivation,

More information

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster. Lecture 6 Chapter 8: Robust Stability and Performance Analysis for MIMO Systems Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 6 p. 1/73 6.1 General

More information

EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo)

EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo) Contents EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo) 1 Introduction 1 1.1 Discovery learning in the Controls Teaching Laboratory.............. 1 1.2 A Laboratory Notebook...............................

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems -Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 12: I/O Stability Readings: DDV, Chapters 15, 16 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology March 14, 2011 E. Frazzoli

More information