Lecture 7: Weak Duality

Size: px
Start display at page:

Download "Lecture 7: Weak Duality"

Transcription

1 EE 227A: Conve Optimization and Applications February 7, 2012 Lecture 7: Weak Duality Lecturer: Laurent El Ghaoui 7.1 Lagrange Dual problem Primal problem In this section, we consider a possibly non-conve optimization problem p := f 0 : f i 0, i = 1,, m, 7.1 where the functions f 0, f 1,..., f m We denote by D the domain of the problem which is the intersection of the domains of all the functions involved, and by X D its feasible set. We will refer to the above as the primal problem, and to the decision variable in that problem, as the primal variable. One purpose of Lagrange duality is to find a lower bound on a imization problem or an upper bounds for a maimization problem. Later, we will use duality tools to derive optimality conditions for conve problems Dual problem Lagrangian. To the problem we associate the Lagrangian L : R n R m R, with values L, λ := f 0 + λ i f i The variables λ R m, are called Lagrange multipliers. We observe that, for every feasible X, and every λ 0, f 0 is bounded below by L, λ: X, λ R m + : f 0 L, λ. 7.2 The Lagrangian can be used to epress the primal problem 7.1 as an unconstrained one. Precisely: p = L, λ, 7.3 ma λ 0, ν where we have used the fact that, for any vectors f R m, we have { 0 if f 0 ma λ 0 λt f = + otherwise. 7-1

2 Lagrange dual function. short the function We then define the Lagrange dual function dual function for gλ := L, λ. Note that, since g is the pointwise imum of affine functions L, is affine for every, it is concave. Note also that it may take the value. From the bound 7.2, by imizing over in the right-hand side, we obtain X, λ 0 : f 0 L, λ, = gλ, which, after imizing over the left-hand side, leads to the lower bound Lagrange dual problem. bound is p d, where λ R m +, ν R p : p gλ. The best lower bound that we can obtain using the above d = ma λ 0, ν gλ. We refer to the above problem as the dual problem, and to the vector λ R m as the dual variable. The dual problem involves the maimization of a concave function under conve sign constraints, so it is a conve problem. The dual problem always contains the implicit constraint λ dom g. We have obtained: Theorem 1 Weak duality. For the general possibly non-conve problem 7.1,weak duality holds: p d. Case with equality constraints. If equality constraints are present in the problem, we can represent them as two inequalities. It turns out that this leads to the same dual, as if we would directly use a single dual variable for each equality constraint, which is not restricted in sign. To see this, consider the problem We write the problem as p := f 0 : f i 0, i = 1,, m, h i = 0, i = 1,, p. p := f 0 : f i 0, i = 1,, m, h i 0, h i 0, i = 1,, p. Using a mulitplier ν ± i for the constraint ±h i 0, we write the associated Lagrangian as p p L, λ, ν +, ν = f 0 + λ i f i + ν + i h i + ν i h i = f 0 + λ i f i p ν i h i,

3 where ν := ν + ν does not have any sign constraints. Thus, inequality constraints in the original problem are associated with sign constraints on the corresponding multipliers, while the multipliers for the equality constraints are not eplicitly constrained Minima inequality Weak duality can also be obtained as a consequence of the following ima inequality, which is valid for any function φ of two vector variables, y, and any subsets X, Y: ma y Y X φ, y X ma y Y φ, y. 7.4 To prove this, start from, y : X φ, y ma φ, y Y y. and take the imum over X on the right-hand side, then the maimum over y Y on the left-hand side. Weak duality is indeed a direct consequence of the above. To see this, start from the unconstrained formulation 7.3, and apply the above inequality with φ = L the Lagrangian of the original problem, and y = λ the vector of Lagrange multipliers. Interpretation as a game. We can interpret the ima inequality result in the contet of a one-shot, zero-sum game. Assume that you have two players A and B, where A controls the decision variable, while B controls y. We assume that both players have full knowledge of the other player s decision, once it is made. The player A seeks to imize a payoff to player B L, y, while B seeks to maimize that payoff. The right-hand side in 7.4 is the optimal pay-off if the first player is required to play first. Obviously, the first player can do better by playing second, since then he or she knows the opponent s choice and can adapt to it. 7.2 Eamples Linear optimization problem Inequality form. Consider the LP in standard inequality form p = c T : A b, where A R m n, b R m, and the inequality in the constraint A b is interpreted component-wise. 7-3

4 The Lagrange function is and the corresponding dual function is The dual problem reads L, λ = c T + λ T A b gλ = L, λ = { b T λ if A T λ + c = 0 + otherwise. d = ma λ gλ = ma λ b T λ : λ 0, A T λ + c = 0. The dual problem is an LP in standard sign-constrained form, just as the primal problem was an LP in standard inequality form. Weak duality implies that c T + b T λ 0 for every, λ such that A b, A T λ = c. This property can be proven directly, by replacing c by A T λ in the left-hand side of the above inequality, and eploiting A b and λ 0. Standard form. We can also consider an LP in standard form: p = c T : A = b, 0. The equality constraints are associated with a dual variable ν that is not constrained in the dual problem. The Lagrange function is and the corresponding dual function is The dual problem reads L, λ, ν = c T λ T + ν T b A gλ = L, λ, ν = { b T ν if c = A T ν + λ + otherwise. d = ma λ 0, ν gλ, ν = ma ν b T ν : c A T ν. This is an LP in inequality form. 7-4

5 7.2.2 Minimum Euclidean distance problem Consider the problem of imizing the Euclidean distance to a given affine space: : A = b, 7.5 where A R p n, b R p. We assume that A is full row rank, or equivalently, AA T 0. The Lagrangian is and the Lagrange dual function is gν = L, ν = ν T A b, 1 L, ν = ν T A b. In this eample, the dual function can be computed analytically, using the optimality condition L, ν = + A T ν = 0. We obtain = A T ν, and The dual problem epresses as gν = 1 2 νt AA T ν b T ν. d = ma ν gν = ma ν 1 2 νt AA T ν b T ν. The dual problem can also be solved analytically, since it is unconstrained the domain of g is the entire space R p. We obtain ν = AA T 1 b, and We have thus obtained the bound p d. d = 1 2 bt AA T 1 b A non-conve boolean problem For a given matri W = W T 0, we consider the problem p = ma T W : 2 i 1, i = 1,..., n. Lagrange relaation. In this maimization problem, Lagrange duality will provide an upper bound on the problem. This is called a relaation, as we go above the true maimum, as if we d rela ignore constraints. 7-5

6 Lagrange dual. The Lagrangian writes L, λ = T W + n λ i 1 2 i = Tr D λ + T W D λ. where D λ := diagλ. To find the dual function, we need to maimize the Lagrangian with respect to the primal variable. We epress this problem as gλ = ma L, λ = t t :, t Tr D λ + T W D λ. The last inequality holds if and only if Dλ W 0 0 t Tr D λ 0. Hence the dual function is the optimal value of an SDP in one variable: Dλ W 0 gλ = t : 0. t 0 t Tr D λ We can solve this problem eplicitly: { Tr Dλ if D gλ = λ W otherwise. The dual problem involves imizing that is, getting the best upper bound the dual function over the variable λ 0: d = λ λ T 1 : diagλ W. The above is an SDP, in variable λ. Note that λ > 0 is automatically enforced by the PSD constraint. Geometric interpretation. The Lagrange relaation of the primal problem can be interpreted geometrically, as follows. For t > 0, λ > 0, consider the ellipsoids E t = { : T W t }, E λ = { : T D λ Tr D λ }. The primal problem amounts to find the smallest t 0 for which the ellipsoid E t contains the ball B := { : 1}. Note that for every λ > 0, E λ contains the ball B. To find an upper bound on the problem, we can find the smallest t for which there eist λ > 0 such that E t E λ. The latter condition is precisely diagλ W, t Tr D λ. 7-6

7 Figure 7.1. Geometric interpretation of dual problem in the boolean quadratic problem. In 2D the relaation turns out to be eact. 7.3 More on non-conve quadratic optimization The Boolean problem eaed previously is part of a general class of non-conve quadratic problems of the form p := ma q 0 : q i 0, i = 1,..., m, 7.6 where R n is the decision variable, and q i s are quadratic functions, of the form Lagrange relaation. have q i := T Q i + 2q T i + p i, i = 1,..., m, The idea is that if, for a given m-vector λ 0, and scalar t, we : q 0 λ i q i + t, then for every that is feasible for 7.6, the sum in the above is non-positive. Hence, q 0 t, so that t is an upper bound on our problem. The condition above is easy to check, as it involves a single quadratic function: indeed, it is equivalent to the LMI in t, λ: Q0 q 0 q T 0 r 0 Qi λ i q T i q i r i t. 7.7 Hence, the best upper bound that we can achieve using this approach is the SDP t,λ t : 7.7, λ

8 The S-lemma. This mysterious name corresponds to a special case of non-conve quadratic optimization, where there is only a single constraint. Refer to appendi B of [BV] for more details. The problem bears the form ma q 0 : q 1 0, where both q 0, q 1 are arbitrary quadratic functions. The S-lemma states that if there eist a point R n such that q 1 < 0, then the Lagrange relaation is eact. The latter has the form of an SDP: t,λ t : Q0 q 0 q T 0 r 0 Q1 q λ 1 q1 T r t, λ This shows in particular that the apparently non-conve problem of finding the direction of maimal variance for a given covariance matri Σ is actually conve. Lagrange relaation for the problem ma : 2 =1 T Σ yields the dual problem check this! t t : ti Σ. From the S-lemma, the bound is eact. The S-lemma has many other applications. Eercises Figure 7.2. Localization problem with three range measurements in two dimensions. 7-8

9 1. Anchor localization. We are given anchor positions i R 3, and associated distances from these anchor points to an unknown object, R i, i = 1,..., m. The problem is to estimate a position of the object, and associated measure of uncertainty around the estimated point. Geometrically, the measurements imply that the object is located at the intersection of the m spheres of centers i and radiuses R i, i = 1,..., m. The main problem is to provide one point in the intersection located at some kind of center, and also a measure of the size of the intersection. In this problem, we seek to compute an outer spherical approimation to the intersection, that is, a sphere of center 0 and radius R 0, of imal volume, such that it contains the intersection. a First show how to find a point in the intersection, or detere it is empty, via SOCP. To simplify, and without loss of generality, we assume from now on that 0 is inside the intersection. This means that the vector z with components z i := R 2 i T i i, i = 1,..., m, is non-negative componentwise. b A first approach, which works well only in moderate dimensions 2D or 3D, simply entails gridding the boundary of the intersection. In 2D, we can parametrize the boundary eplicitly, as a curve, using an angular parameter. For each angular direction θ [0, 2π], we can easily find the point that is located on the boundary of the intersection, in the direction given by θ: we simply maimize t such that the point t cos θ, t sin θ is inside everyone of the spheres. There is an eplicit formula for the maimal value. One we have computed N points on the boundary, k, k = 1,..., N, we simply solve the SOCP 0,R 0 R 0 : R 0 0 k 2, k = 1,..., N. Compare the results with a uniform gridding of 13 and 63 points. Use the data X = 1, 2, 3 =, R T = R 1, R 2, R 3 = c Show that the optimal imum-volume spherical approimation can be obtained by solving R 2 0 = 0 ma { : i 2 2 R 2 i, i = 1,..., m }. d Using Lagrange relaation, show that an upper bound on the optimal radius can be obtained as F 0, y, with F 0, y := y i Ri 2 + ma y i i ,y 7-9

10 e Show that T y T z + Xy m if m F 0, y = y i 1 y i > 1, T y T z if m y i = 1, 0 = Xy, + otherwise. f Solve the problem via CVX, and compare your approimation with the gridding approach. 2. Reachable sets for discrete-time dynamical systems. Consider the discrete-time linear system t + 1 = At + Bpt, t = 0, 1, 2,... where A R n n and B R n np. We assume that the initial condition 0 is zero, while the signal p is considered to be noise, and is only known to be norm-bounded, precisely pt 2 1 for ever t 0. The goal of reachability analysis is to come up with bounds on the state at a certain time T. We seek a imum-volume sphere S that is guaranteed to contain T, irrespective of the values of the perturbation signal pt within its bounds. By applying the recursion, we can epress T as a linear combination of p0,..., pt 1: T 1 T = A t Bpt = Lp, t=0 where p = p0,..., pt 1, and L := [L0,..., LT 1], with Lt := A t B. a Show that a sufficient condition for S to contain the state vector at time T is T 1 λ 0 : p = p0,..., pt 1, p T L T Lp R0 2 + λtpt T pt 1. b Show how to compute the best approimation based on the condition above, via SDP. t=0 7-10

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Lecture 14: Optimality Conditions for Conic Problems

Lecture 14: Optimality Conditions for Conic Problems EE 227A: Conve Optimization and Applications March 6, 2012 Lecture 14: Optimality Conditions for Conic Problems Lecturer: Laurent El Ghaoui Reading assignment: 5.5 of BV. 14.1 Optimality for Conic Problems

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

Introduction to Machine Learning Spring 2018 Note Duality. 1.1 Primal and Dual Problem

Introduction to Machine Learning Spring 2018 Note Duality. 1.1 Primal and Dual Problem CS 189 Introduction to Machine Learning Spring 2018 Note 22 1 Duality As we have seen in our discussion of kernels, ridge regression can be viewed in two ways: (1) an optimization problem over the weights

More information

Duality Uses and Correspondences. Ryan Tibshirani Convex Optimization

Duality Uses and Correspondences. Ryan Tibshirani Convex Optimization Duality Uses and Correspondences Ryan Tibshirani Conve Optimization 10-725 Recall that for the problem Last time: KKT conditions subject to f() h i () 0, i = 1,... m l j () = 0, j = 1,... r the KKT conditions

More information

9. Interpretations, Lifting, SOS and Moments

9. Interpretations, Lifting, SOS and Moments 9-1 Interpretations, Lifting, SOS and Moments P. Parrilo and S. Lall, CDC 2003 2003.12.07.04 9. Interpretations, Lifting, SOS and Moments Polynomial nonnegativity Sum of squares (SOS) decomposition Eample

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

LECTURE 7. Least Squares and Variants. Optimization Models EE 127 / EE 227AT. Outline. Least Squares. Notes. Notes. Notes. Notes.

LECTURE 7. Least Squares and Variants. Optimization Models EE 127 / EE 227AT. Outline. Least Squares. Notes. Notes. Notes. Notes. Optimization Models EE 127 / EE 227AT Laurent El Ghaoui EECS department UC Berkeley Spring 2015 Sp 15 1 / 23 LECTURE 7 Least Squares and Variants If others would but reflect on mathematical truths as deeply

More information

ECE Optimization for wireless networks Final. minimize f o (x) s.t. Ax = b,

ECE Optimization for wireless networks Final. minimize f o (x) s.t. Ax = b, ECE 788 - Optimization for wireless networks Final Please provide clear and complete answers. PART I: Questions - Q.. Discuss an iterative algorithm that converges to the solution of the problem minimize

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Operations Research Letters

Operations Research Letters Operations Research Letters 37 (2009) 1 6 Contents lists available at ScienceDirect Operations Research Letters journal homepage: www.elsevier.com/locate/orl Duality in robust optimization: Primal worst

More information

1 Robust optimization

1 Robust optimization ORF 523 Lecture 16 Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Any typos should be emailed to a a a@princeton.edu. In this lecture, we give a brief introduction to robust optimization

More information

Lecture 4: September 12

Lecture 4: September 12 10-725/36-725: Conve Optimization Fall 2016 Lecture 4: September 12 Lecturer: Ryan Tibshirani Scribes: Jay Hennig, Yifeng Tao, Sriram Vasudevan Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY

STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY UNIVERSITY OF MARYLAND: ECON 600 1. Some Eamples 1 A general problem that arises countless times in economics takes the form: (Verbally):

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko

More information

Lagrangian Duality and Convex Optimization

Lagrangian Duality and Convex Optimization Lagrangian Duality and Convex Optimization David Rosenberg New York University February 11, 2015 David Rosenberg (New York University) DS-GA 1003 February 11, 2015 1 / 24 Introduction Why Convex Optimization?

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

EE/AA 578, Univ of Washington, Fall Duality

EE/AA 578, Univ of Washington, Fall Duality 7. Duality EE/AA 578, Univ of Washington, Fall 2016 Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

Convex Optimization Problems. Prof. Daniel P. Palomar

Convex Optimization Problems. Prof. Daniel P. Palomar Conve Optimization Problems Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST,

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information

Convex Optimization. 4. Convex Optimization Problems. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University

Convex Optimization. 4. Convex Optimization Problems. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University Conve Optimization 4. Conve Optimization Problems Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2017 Autumn Semester SJTU Ying Cui 1 / 58 Outline Optimization problems

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Midterm 1 Solutions. 1. (2 points) Show that the Frobenius norm of a matrix A depends only on its singular values. Precisely, show that

Midterm 1 Solutions. 1. (2 points) Show that the Frobenius norm of a matrix A depends only on its singular values. Precisely, show that EE127A L. El Ghaoui YOUR NAME HERE: SOLUTIONS YOUR SID HERE: 42 3/27/9 Midterm 1 Solutions The eam is open notes, but access to the Internet is not allowed. The maimum grade is 2. When asked to prove something,

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

subject to (x 2)(x 4) u,

subject to (x 2)(x 4) u, Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

The Kuhn-Tucker and Envelope Theorems

The Kuhn-Tucker and Envelope Theorems The Kuhn-Tucker and Envelope Theorems Peter Ireland EC720.01 - Math for Economists Boston College, Department of Economics Fall 2010 The Kuhn-Tucker and envelope theorems can be used to characterize the

More information

Convex Optimization Overview (cnt d)

Convex Optimization Overview (cnt d) Conve Optimization Overview (cnt d) Chuong B. Do November 29, 2009 During last week s section, we began our study of conve optimization, the study of mathematical optimization problems of the form, minimize

More information

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017 Solution to EE 67 Mid-erm Exam, Fall 207 November 2, 207 EE 67 Solution to Mid-erm Exam - Page 2 of 2 November 2, 207 (4 points) Convex sets (a) (2 points) Consider the set { } a R k p(0) =, p(t) for t

More information

Tutorial on Convex Optimization for Engineers Part II

Tutorial on Convex Optimization for Engineers Part II Tutorial on Convex Optimization for Engineers Part II M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag.

1. Sets A set is any collection of elements. Examples: - the set of even numbers between zero and the set of colors on the national flag. San Francisco State University Math Review Notes Michael Bar Sets A set is any collection of elements Eamples: a A {,,4,6,8,} - the set of even numbers between zero and b B { red, white, bule} - the set

More information

Robust-to-Dynamics Linear Programming

Robust-to-Dynamics Linear Programming Robust-to-Dynamics Linear Programg Amir Ali Ahmad and Oktay Günlük Abstract We consider a class of robust optimization problems that we call robust-to-dynamics optimization (RDO) The input to an RDO problem

More information

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1,

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1, 4 Duality 4.1 Numerical perturbation analysis example. Consider the quadratic program with variables x 1, x 2, and parameters u 1, u 2. minimize x 2 1 +2x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x

More information

Lecture 23: November 19

Lecture 23: November 19 10-725/36-725: Conve Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 23: November 19 Scribes: Charvi Rastogi, George Stoica, Shuo Li Charvi Rastogi: 23.1-23.4.2, George Stoica: 23.4.3-23.8, Shuo

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course otes for EE7C (Spring 018): Conve Optimization and Approimation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Ma Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

Lagrangian Duality for Dummies

Lagrangian Duality for Dummies Lagrangian Duality for Dummies David Knowles November 13, 2010 We want to solve the following optimisation problem: f 0 () (1) such that f i () 0 i 1,..., m (2) For now we do not need to assume conveity.

More information

Convexity II: Optimization Basics

Convexity II: Optimization Basics Conveity II: Optimization Basics Lecturer: Ryan Tibshirani Conve Optimization 10-725/36-725 See supplements for reviews of basic multivariate calculus basic linear algebra Last time: conve sets and functions

More information

Today: Linear Programming (con t.)

Today: Linear Programming (con t.) Today: Linear Programming (con t.) COSC 581, Algorithms April 10, 2014 Many of these slides are adapted from several online sources Reading Assignments Today s class: Chapter 29.4 Reading assignment for

More information

EE364a Review Session 5

EE364a Review Session 5 EE364a Review Session 5 EE364a Review announcements: homeworks 1 and 2 graded homework 4 solutions (check solution to additional problem 1) scpd phone-in office hours: tuesdays 6-7pm (650-723-1156) 1 Complementary

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information

Constrained optimization

Constrained optimization Constrained optimization DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Compressed sensing Convex constrained

More information

Review of Optimization Basics

Review of Optimization Basics Review of Optimization Basics. Introduction Electricity markets throughout the US are said to have a two-settlement structure. The reason for this is that the structure includes two different markets:

More information

Homework Set #6 - Solutions

Homework Set #6 - Solutions EE 15 - Applications of Convex Optimization in Signal Processing and Communications Dr Andre Tkacenko JPL Third Term 11-1 Homework Set #6 - Solutions 1 a The feasible set is the interval [ 4] The unique

More information

Learning the Kernel Matrix with Semidefinite Programming

Learning the Kernel Matrix with Semidefinite Programming Journal of Machine Learning Research 5 (2004) 27-72 Submitted 10/02; Revised 8/03; Published 1/04 Learning the Kernel Matrix with Semidefinite Programg Gert R.G. Lanckriet Department of Electrical Engineering

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem:

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem: HT05: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford Convex Optimization and slides based on Arthur Gretton s Advanced Topics in Machine Learning course

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Computation of the Joint Spectral Radius with Optimization Techniques

Computation of the Joint Spectral Radius with Optimization Techniques Computation of the Joint Spectral Radius with Optimization Techniques Amir Ali Ahmadi Goldstine Fellow, IBM Watson Research Center Joint work with: Raphaël Jungers (UC Louvain) Pablo A. Parrilo (MIT) R.

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Sparse Optimization Lecture: Basic Sparse Optimization Models

Sparse Optimization Lecture: Basic Sparse Optimization Models Sparse Optimization Lecture: Basic Sparse Optimization Models Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know basic l 1, l 2,1, and nuclear-norm

More information

ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016

ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016 ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016 When in doubt on the accuracy of these notes, please cross check with the instructor

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Introduction to Alternating Direction Method of Multipliers

Introduction to Alternating Direction Method of Multipliers Introduction to Alternating Direction Method of Multipliers Yale Chang Machine Learning Group Meeting September 29, 2016 Yale Chang (Machine Learning Group Meeting) Introduction to Alternating Direction

More information

Lecture 3: Semidefinite Programming

Lecture 3: Semidefinite Programming Lecture 3: Semidefinite Programming Lecture Outline Part I: Semidefinite programming, examples, canonical form, and duality Part II: Strong Duality Failure Examples Part III: Conditions for strong duality

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

15-780: LinearProgramming

15-780: LinearProgramming 15-780: LinearProgramming J. Zico Kolter February 1-3, 2016 1 Outline Introduction Some linear algebra review Linear programming Simplex algorithm Duality and dual simplex 2 Outline Introduction Some linear

More information

Learning the Kernel Matrix with Semi-Definite Programming

Learning the Kernel Matrix with Semi-Definite Programming Learning the Kernel Matrix with Semi-Definite Programg Gert R.G. Lanckriet gert@cs.berkeley.edu Department of Electrical Engineering and Computer Science University of California, Berkeley, CA 94720, USA

More information

Math 273a: Optimization Lagrange Duality

Math 273a: Optimization Lagrange Duality Math 273a: Optimization Lagrange Duality Instructor: Wotao Yin Department of Mathematics, UCLA Winter 2015 online discussions on piazza.com Gradient descent / forward Euler assume function f is proper

More information

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights Linear Discriminant Functions and Support Vector Machines Linear, threshold units CSE19, Winter 11 Biometrics CSE 19 Lecture 11 1 X i : inputs W i : weights θ : threshold 3 4 5 1 6 7 Courtesy of University

More information

Lecture 16: October 22

Lecture 16: October 22 0-725/36-725: Conve Optimization Fall 208 Lecturer: Ryan Tibshirani Lecture 6: October 22 Scribes: Nic Dalmasso, Alan Mishler, Benja LeRoy Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Lecture 23: Conditional Gradient Method

Lecture 23: Conditional Gradient Method 10-725/36-725: Conve Optimization Spring 2015 Lecture 23: Conditional Gradient Method Lecturer: Ryan Tibshirani Scribes: Shichao Yang,Diyi Yang,Zhanpeng Fang Note: LaTeX template courtesy of UC Berkeley

More information

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as Chapter 8 Geometric problems 8.1 Projection on a set The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as dist(x 0,C) = inf{ x 0 x x C}. The infimum here is always achieved.

More information

Likelihood Bounds for Constrained Estimation with Uncertainty

Likelihood Bounds for Constrained Estimation with Uncertainty Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 5 Seville, Spain, December -5, 5 WeC4. Likelihood Bounds for Constrained Estimation with Uncertainty

More information

Minimax Problems. Daniel P. Palomar. Hong Kong University of Science and Technolgy (HKUST)

Minimax Problems. Daniel P. Palomar. Hong Kong University of Science and Technolgy (HKUST) Mini Problems Daniel P. Palomar Hong Kong University of Science and Technolgy (HKUST) ELEC547 - Convex Optimization Fall 2009-10, HKUST, Hong Kong Outline of Lecture Introduction Matrix games Bilinear

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009 UC Berkeley Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 5 Fall 2009 Reading: Boyd and Vandenberghe, Chapter 5 Solution 5.1 Note that

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

Optimization Methods: Optimization using Calculus - Equality constraints 1. Module 2 Lecture Notes 4

Optimization Methods: Optimization using Calculus - Equality constraints 1. Module 2 Lecture Notes 4 Optimization Methods: Optimization using Calculus - Equality constraints Module Lecture Notes 4 Optimization of Functions of Multiple Variables subect to Equality Constraints Introduction In the previous

More information

Duality. Geoff Gordon & Ryan Tibshirani Optimization /

Duality. Geoff Gordon & Ryan Tibshirani Optimization / Duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Duality in linear programs Suppose we want to find lower bound on the optimal value in our convex problem, B min x C f(x) E.g., consider

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

Part IB Optimisation

Part IB Optimisation Part IB Optimisation Theorems Based on lectures by F. A. Fischer Notes taken by Dexter Chua Easter 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Inner approximations of the region of attraction for polynomial dynamical systems

Inner approximations of the region of attraction for polynomial dynamical systems Inner approimations of the region of attraction for polynomial dynamical systems Milan Korda, Didier Henrion 2,3,4, Colin N. Jones October, 22 Abstract hal-74798, version - Oct 22 In a previous work we

More information

Lecture Notes 3: Duality

Lecture Notes 3: Duality Algorithmic Methods 1/11/21 Professor: Yossi Azar Lecture Notes 3: Duality Scribe:Moran Bar-Gat 1 Introduction In this lecture we will present the dual concept, Farkas s Lema and their relation to the

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Lecture 24 November 27

Lecture 24 November 27 EE 381V: Large Scale Optimization Fall 01 Lecture 4 November 7 Lecturer: Caramanis & Sanghavi Scribe: Jahshan Bhatti and Ken Pesyna 4.1 Mirror Descent Earlier, we motivated mirror descent as a way to improve

More information

Lecture 7: Convex Optimizations

Lecture 7: Convex Optimizations Lecture 7: Convex Optimizations Radu Balan, David Levermore March 29, 2018 Convex Sets. Convex Functions A set S R n is called a convex set if for any points x, y S the line segment [x, y] := {tx + (1

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Midterm Solutions. EE127A L. El Ghaoui 3/19/11

Midterm Solutions. EE127A L. El Ghaoui 3/19/11 EE27A L. El Ghaoui 3/9/ Midterm Solutions. (6 points Find the projection z of the vector = (2, on the line that passes through 0 = (, 2 and with direction given by the vector u = (,. Solution: The line

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

10701 Recitation 5 Duality and SVM. Ahmed Hefny

10701 Recitation 5 Duality and SVM. Ahmed Hefny 10701 Recitation 5 Duality and SVM Ahmed Hefny Outline Langrangian and Duality The Lagrangian Duality Eamples Support Vector Machines Primal Formulation Dual Formulation Soft Margin and Hinge Loss Lagrangian

More information

Computational Optimization. Constrained Optimization Part 2

Computational Optimization. Constrained Optimization Part 2 Computational Optimization Constrained Optimization Part Optimality Conditions Unconstrained Case X* is global min Conve f X* is local min SOSC f ( *) = SONC Easiest Problem Linear equality constraints

More information

The Kuhn-Tucker and Envelope Theorems

The Kuhn-Tucker and Envelope Theorems The Kuhn-Tucker and Envelope Theorems Peter Ireland ECON 77200 - Math for Economists Boston College, Department of Economics Fall 207 The Kuhn-Tucker and envelope theorems can be used to characterize the

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information