A MARCHING IN SPACE AND TIME (MAST) SOLVER OF THE SHALLOW WATER EQUATIONS

Size: px
Start display at page:

Download "A MARCHING IN SPACE AND TIME (MAST) SOLVER OF THE SHALLOW WATER EQUATIONS"

Transcription

1 XXX Convgno di Idraulica Cosruzioni Idraulich - IDRA 6 Masr Class: Modlli numrici di corrni luviali su ondo isso ondo mobil A MARCING IN SPACE AND TIME () SOLVER OF TE SALLOW WATER EQUATIONS Cosanza Aricò Diarimno di Inggnria Idraulica d Alicazioni Ambinali, Univrsià di Palrmo Palrmo (IT) mail arico@idra.unia.i Kywords: shallow war, unsady low, numrical mhods, Eulrian mhods, racional im-s mhods, low rouing. SOMMARIO Nl rsn lavoro si rsna una nuova modologia r la soluzion numrica dll uazioni coml D D dl Sain Vnan. Ad ogni asso moral, il sisma di uazioni dirnziali all driva arziali (PDEs) ch govrnano il rocsso vin suddiviso, alicando una modologia dl asso moral razionao, in un sisma di rdizion conviva in un sisma di corrzion diusiva. Il sisma di rdizion vin a sua vola suddiviso in un sisma di rdizion conviva in un sisma di corrzion conviva, sulla bas dl valor di una unzion onzial arossimao. S il camo di moo amm un onzial scalar sao, la as di corrzion conviva scomar la soluzion dl sisma di corrzion conviva è la sssa dl sisma di rdizion conviva. I du sismi di rdizion corrzion conviva vngono risoli alicando la modologia (Marching in Sac and Tim). risolv r ogni lmno di calcolo un sisma di du (nl caso D) o r (nl caso D) uazioni dirnziali all driva oali (ODEs), usando r la discrizzazion moral una cnica a asso moral variabil, razion dl asso moral sclo. L cll di calcolo vngono ordina risol in bas a valori dlla unzion onzial arossimao dcrscni, duran la as di rdizion, crscni duran la as di corrzion. Il sisma di corrzion diusiva si risolv con una cnica imlicia, risolvndo un sisma linar bn condizionao, la cui maric ha l dimnsioni dll cll di calcolo, risula sarsa, simmrica dinia osiiva. Il modllo rooso ha mosrao incondizionaa sabilià riso al numro di Couran (CFL), non richid un raamno scial di rmini sorgni il coso comuazional risula roorzional al numro dgli lmni di calcolo. Sono sai condoi divrsi s numrici i risulai dl modllo sono sai conronai sia con soluzioni analiich, sia con dai srimnali, sia con alr soluzioni numrich orni da alri modlli. ABSTRACT A nw aroach is rsnd or h numrical soluion o h coml D and D Sain-Vnan uaions. A ach im s, h govrning sysm o Parial Dirnial Euaions (PDEs) is sli, using a racional im s mhodology, ino a convciv rdicion sysm and a diusiv corrcion sysm. Convciv rdicion sysm is urhr sli ino a convciv rdicion and a convciv corrcion sysm, according o a sciid aroimad onial. I a scalar ac onial o h low ild iss, corrcion vanishs and h soluion o h convciv corrcion sysm is h sam soluion o h rdicion sysm. A MArching in Sac and Tim () chniu is usd or h soluion o h wo sysms. solvs a sysm o wo (in h D cas) or hr (in h D cas) Ordinary Dirnial Euaions (ODEs) in ach comuaional cll, using or h im discrizaion a sl-adusing racion o h original im s. Th comuaional clls ar ordrd and solvd according o h dcrasing valu o h onial in h convciv rdicion s and o h incrasing valu o h sam onial in h convciv corrcion s. Th diusiv corrcion sysm is solvd using an imlici schm, ha lads o h soluion o a larg linar sysm, wih h sam ordr o h cll numbr, bu sars, symmric and wll condiiond. Th numrical modl shows uncondiional sabiliy wih rgard o h Couran numbr 7

2 Cosanza Aricò (CFL), ruirs no scial ramn o h sourc rms and a comuaional or almos roorional o h cll numbr. Svral ss hav bn carrid ou using analyical soluions, rimnal daa and numrical soluion givn by ohr numrical rocdurs roosd in liraur. INTRODUCTION Sain-Vnan (SV) uaions (or shallow war uaions) ar commonly alid or h simulaion o unsady shallow war lows (D Sain Vnan, 87). Boh lici and imlici numrical mhods hav bn nsivly usd or h comuaion o hir numrical soluion. Evn hough imlici schms ar sabl or CFL numbrs grar han, hy lad o h soluion o larg non linar algbraic sysms, and h comuaional or grows vry uicly along wih h numbr o lmns. Imlici Prissman schms show also ohr limiaions, scially or simulaions o ranscriical lows (Mslh al., 997). For hs rasons, mos o h algorihms rcnly roosd by h Auhors all in h class o lici mhods. Svral Godunov-y schms hav bn roosd or h non viscous orm o h SV uaions, whr sourc rm in h momnum uaion is zro (Alcrudo and Garcìa-Navarro, 99; Mingham and Causon, 998). A racional im s rocdur (Toro, 997) can b alid or h soluion o h shallow war uaions using Godunov-y schms whn sourc rms canno b nglcd. Th corrsonding non-homognous orm o h govrning uaions is solvd in wo sunial ss. During h irs s, h homognous roblm (wihou h sourc rm) is solvd. In h scond s, a s o ODEs sysms including sourc rms ar solvd sunially, on ar h ohr. A similar aroach is siml, bu on roducs oor soluions, scially in saionary or uasi-saionary cass (LVu, 998). In ac, whn h local im drivaiv o h low variabls is ngligibl, h saial drivaiv o h lu rms should acly balanc h sourc rm. Fracional s aroach in his cas can ail, sinc h soluion o h homognous roblm may lad o larg changs in h indndn variabls, which ar diicul o corrc by solving h ordinary dirnial uaions during h scond s. In h las dcad many Auhors hav dvlod Godunov-y schms or h soluion o balanc laws, including sourc rms. Th main ocus o hs schms is h balanc bwn h numrical lu and h sourc rm, whn h sam numrical discrizaion is alid. Brmudz and Vazuz-Cndon (994), using a hr-oins uwind schm wih s saial aroimaion ordr and uwind discrizaion o boh lu and sourc rms, inroducd h diniion o consrvaion rory. This rory is h accuracy rovidd by a numrical schm in h soluion o h sady-sa roblm rrsning war a rs (consan oal had and zro low ra in all h domain). I h consrvaiv rory is no saisid, acly or aroimaly, h roagaion o unhysical oscillaion is dcd also in non-saionary roblms. In h ar o Brmudz and Vazuz-Cndon (994) sourc rm is givn only by h boom slo in hydrosaic condiion. Vazuz-Cndon (999) ndd h diniion o consrvaion rory o h cas o uniorm low in rcangular scions. ubbard and Garcìa- Navarro () rovd his consrvaion rory or h nd ordr MUSCL schm wih lu limir. Uwinding h sourc rm is comuaionally nsiv, bcaus sourc rm has o b rocd on an ignvcors basis. LVu (998) dvlod an aroach whr h sourc rm is mbddd ino h wav-roagaion algorihm, avoiding h racional s inconvnin mniond bor. Th Auhor dind a Rimann roblm insid h cll o balanc h sourc rm and h lu gradin; h mhod rsrvs sady and uasi-sady low condiions. Saring rom h wor o Brmudz and Vazuz-Cndon (994), Vuovic and Soa () and Zic al. (4) dvlod an arly vrsion o h highr ordr schms (ENO and WENO), whr numrical lu rms acly balanc h sourc rms. Th main limiaion o hs numrical mhods roosd or balanc laws is ha hy hav bn dvlod or sciic orm o h sourc rms and miss gnraliy. Zhou al. () inroducd h surac gradin mhod (SGM) or h accura ramn o h bd slo rms in h shallow wars uaions. Th Auhors roosd a Godunov-y schm whr, in conras o convnional daa rconsrucion mhods basd on h consrvaiv variabls, h war surac lvl is chosn as h basis or daa rconsrucion. Th consrvaiv variabls ar accuraly 8

3 Th Schm or Shallow War Euaions rconsrucd by a nd ordr schm a cll inracs and h numrical lus ar comud by a Rimann solvr. Ingraion in im is rormd by mans o a rdicor and a corrcor s. Mor rcnly, h SGM has bn usd by h sam Auhors (Zhou al., ) o dal wih bd oograhy wih vrical ss. Th mhod is rrrd o as h surac gradin mhod or ss (SGMS). Boh SGM and SGMS roduc accura soluion ovr srucurd mshs. All hs mhods hav bn roosd or srucurd mshs and ar rsricd in hir abiliy o i irrgular and/or curvilinar boundaris. A oular aroach or h ramn o irrgular boundaris is h us o boundary-id grids which ma h boundary conour a coordina surac (ausr al., 985; Yang and su, 99). Th low uaions ar ransormd rom Carsian o curvilinar coordinas and hn aroimad using ini dirncs. A grid can b gnrad iraivly by mans o an lliic solvr (Thomson al., 974) or dircly by an algbraic chniu such as ransini inrolaion (Gordon al., 97). Th comliy o low and momnum uaions wrin in h ransormd coordinas incrass and discrizaion o h mrics ransormaion drivaivs could roduc nw aroimaion rrors. Alrnaivly o h boundary-id grids, Causon al. () ndd h Carsian cu cll aroach (Brgr al., 995; D Zuw and Powll, 99) o a Godunov-y schm basd on a MUSCL rconsrucion and suiabl aroima Rimann solvr. In h Carsian cu cll aroach, boundary conours ar cu ou o a bacground Carsian msh and clls arially or comlly cu ar signd ou or scial ramn in h comuaion o h gradins and rconsrucion o h low daa (Causon al., ). Sinc a cu cll may urn ou o b arbirarily small, numrical sabiliy ruirmns may orc a vry small im s. To ovrcom his roblm, a cll mrging chniu is imlmnd (Chiang al., 99). Th basic ida is o combin svral nighbouring clls oghr so ha inracs bwn mrgd clls ar ignord and wavs ravl in a nw combind largr cll wihou rducing h global im s. Th rmaindr o h low clls ar rad in a sraighorward mannr. Succssivly, Zhou al. (4) alid h Carsian cu cll aroach o h SGM and SGMS mhods. Triangular msh is gnrally h simls and mos convnin mhod or covring a D domain. An advanag o using riangular mshs is hir abiliy o gnra grids on arbirary gomris and o incras h numbr o clls in high-gradin rgions or in rgions o aricular inrs in h low ild. Rcnly, svral numrical schms hav bn roosd o solv h shallow war uaions ovr unsrucurd mshs. Anasasiou and Chan (997) dvlod a D dh ingrad nd ordr Godunovy schm, basd on a cll-cnrd ini volum uwind ormulaion. Th Ro s lu uncion is usd or h valuaion o h inviscid lus a cll inracs, solving a Rimann roblm in h dircion normal o h cll inrac. Th viscous rms ar comud using a nd ordr accura ini volum ormulaion. Tim ingraion is don according o a nd ordr razoidal imlici schm. ubbard (999) roosd a nd ordr MUSCL schm ovr unsrucurd mshs. Th Auhor solvs h homognous orm o h shallow war uaions and alis h Ro s aroima Rimann solvr a cll inracs or h lu simaion. Th Auhor uss a nd ordr Rung-Kua im sing or im ingraion. Jiwn and Ruun () alid a comosi ini volum ormulaion or h soluion o h homognous SV uaions. Th Auhors combin a La-Wndro and a La-Fridrich schm ino a muli-s comosi schm. Th La-Wndro schm is highly disrsiv and roducs unhysical oscillaions; on h oosi, h La-Fridrich schm is characrizd by numrical diusion. Th comosi schm combins hs wo mhods in a s-by-s schm o loi hir mris and rmov hir dicincis. Yoon and Kang (4) roos a nd ordr ini volum schm ovr unsrucurd riangular msh. Th Auhors aly h LL aroima Rimann solvr or lu simaion a h cll boundaris. To circumvn numrical insabiliis, h Auhors sli h sourc rm in h ricion and h boom slo comonns alying an oraor sliing chniu. Tim ingraion is mad by a rd ordr TVD- Rung-Kua mhod (Shu and Oshr, 988). In hs Godunov-y schms im s siz is limid by h Couran-Fridrichs-Lvy (CFL) condiion. In h rsn ar w urhr dvlod h rcn algorihm or h soluion o h D and D SV uaions. has bn alrady dvlod or h soluion o h siml convciv ransor 9

4 Cosanza Aricò roblm (Bascià and Tucciarlli, 4; Aricò and Tucciarlli, 6), h D and D shallow war roblm wih irroaional low ild (Tucciarlli and Trmini, ; Noo and Tucciarlli, 7), as wll as in h D shallow war roblm wih a mono-orind low (Tucciarlli, ). Th mhodology is no rsricd by h CFL condiion in h choic o h im s and, vn i h soluion o a larg linar sysm is ruird or ach im s, h corrsonding comuaional cos is ngligibl and h oal comuaional cos is almos roorional o h cll numbr. Th govrning uaion sysm is sli irs in a convciv comonn and in a diusiv comonn. Th convciv sysm is solvd alying a MArching in Sac and Tim () rocdur, whr h convciv lus ar solvd using an Eulrian aroach and h comuaional clls ar ruird o b ordrd and solvd according o a dcrasing scalar onial valu. Th corrcion s comus h diusiv corrciv lus by mans o h soluion o a larg linar sysm, ha has h ordr o h cll numbr, bu is sars, symmric and wll condiiond. Th onial is dind as a scalar whos gradin is oosi o h lu dircion. Bcaus h low ild comud solving h SV uaions has no a scalar onial, an aroimad onial has o b usd, along wih a scond corrcion s ha is aimd o comu h roaional lus. This aroimad onial is dind according o h low dircion insid ach lmn a h bginning o ach im s. In h ollowing o h ar, h alicaion o h numrical rocdur o h D cas will b shown irs and hn o h D cas. TE PROCEDURE IN TE CASE OF D MONO-ORIENTED FLOW Th D SV uaions in a channl wih non-rismaic scion can b wrin in h ollowing orm (igur ) (s or aml Abbo and Minns, 99): h n g g R 4 / S whr is h low dircion, is h im, g is h graviaional acclraion, h is h war dh, is h z low cross scion, is h sram low ra, S is h boom bd slo ( S whr z is h boom lvaion wih rsc o a rrnc lvl), R is h hydraulic radius and n is h Manning ricion coicin. E. () can also b wrin in h ollowing orm: g n g R whr is h oal war lvl, h z. Th unnown variabls in E. () and () ar h war cross scion (h) and h low ra. 4 / () () ()

5 Th Schm or Shallow War Euaions T h h (h) z z z Figur. Diniion sch Assum h ollowing gnral sysm o balanc uaions: ( U) U F B( U ) whr U is h unnowns vcor, F(U) is h numrical lu-vcor rm and B(U) is h sourc rm. Using a racional im s sragy, w s: F ( ) ( ) ( U) F ( U) F( U) F ( U), B( U) B ( U) B( U) B ( U) (4) (5) whr F (U) and B (U) ar suiabl numrical lu-vcor and sourc rms, urhr dind. Ar ingraion in im, sysm (4) can b sli in h wo ollowing sysms: / U U F d B d (6,a) U U / F d F B d B (6,b) whr F and B ar h man valus o h lu and h sourc rms as comud in h rdicion s. W call sysms (6,a)-(6,b) rscivly rdicion and corrcion sysm. U / and U ar h unnown variabls comud a h nd o rscivly h rdicion and h corrcion s. Obsrv ha, summing E. (6,a) and (6,b) h ingral o h original sysm (4) is ormally obaind. Th numrical corrcd soluion will b clos o h soluion o his on as ar as h dirnc bwn h lu and h sourc rms is ihr small or im-indndn. Th advanag o using ormulaion (6) insad o (4) is ha, wih a suiabl choic o h rdicion rms F (U) and B (U), ach o h wo sysms (6,a)-(6,b) can b much asir o solv han h original sysm (4). For h SV uaions soluion, w s: U, (7,a) U F, gn F gμ, B, B g S (7,b) 4 / R F, F, B, gn (7,c) R B g 4 / whr M is h momnum o h cross scion wih rsc o is o widh. Th oal had gradin in h B rm is comud a im lvl and is consan along h im s. For sa o simliciy,

6 Cosanza Aricò assum a mono-orind osiiv vlociy and a cll numraion incrasing rom o N in h downsram dircion (,,, N). Th argumn o h ingral rdicion sysm (6,a) is givn by: B (8) ha dirs rom h original on only in h im lvl o h oal had gradin includd in h sourc rm B. Th argumn o h ingral corrcion sysm (6,b) is: / R gn S g gm 4 B F F (9) Obsrv ha h dirnc bwn h lu gradin and h sourc rm gos o zro, in sysm (9), along wih h im disanc wih rsc o h iniial im lvl. This imlis ha boh h unnown changs and h rlaiv rrors go o zro along wih h im s siz. In sysm (9) w assum h dirnc bwn h gradin o h momnum lu and h gradin o h man valu o h corrsonding rm comud in h rdicion s F o b ngligibl. According o his hyohsis, ar siml maniulaions, sysms (8) and (9) can b wrin in uasilinar mari orm (Tucciarlli, ): B F B 4 / R gn S g A U A U () whr h Jacobians o sysms () ar rscivly: gh, A A () T h and T is h cross scion o widh. I is asy o show ha A ignvalus ar λ λ v, whr v is h vrically avragd low vlociy. Obsrv ha h soluion o sysm (8) is uivaln o h soluion o a singl non-linar convcion uaion, uncion o h had gradin a im lvl. A

7 Th Schm or Shallow War Euaions ignvalus ar λ h g, λ h g λ. This imlis ha in h corrcion sysm convciv lus ar missing. For hs rasons w call h rdicion and h corrcion sysms rscivly convciv rdicion sysm and diusiv corrcion sysm. Din B (U ) h rdicion sourc rms comud as uncion o h unnowns U (, ) in cll and F (U, U ) h rdicion lu bwn cll and. W ado a irs ordr saial aroimaion o h unnown variabls insid h clls. Ar ingraion in sac and im, E. () can b wrin as: ) convciv rdicion sysm: ( ) d /,,, N (,a) ( ),, / d d d B U,,, N (,b) ) diusiv corrcion sysm: ( ) ( ) ( ) /, F, F d U U U U (,a) ( ) d R gn S g d M M g /,, / 4 B (,b) whr M, is h cross scion momnum a h inrac bwn clls and.. Soluion o h convciv rdicion sysm Convciv rdicion sysm is solvd using a MArching in Sac and Tim () rocdur. Bcaus o h sign o h ignvalus o h Jacobian A, i is ossibl o solv ach E. () i a olynomial aroimaion o h volum and h momnum lus nring rom h usram cll is always nown. This condiion can b guarand i h low dircion has a consan orinaion or, mor gnrally, i a scalar onial iss. In his cas, i is always ossibl o ordr and solv sunially h clls on ar h ohr. In h cas o mono-orind low, assuming a cll ind incrasing in h downsram dircion, E. () can b solvd as a sandard ODEs sysm, ingrad rom im o im, ha is: () d d, φ (4,a) () 4 g R g n d d, /, ξ (4,b) In E. (4), h rms φ -, () and ξ -, () ar a olynomial (nown) aroimaion o rscivly h volum and h momnum lu nring cll rom cll -. To solv E. (4) a Rung-Kua mhod, wih sl-adaing im s, is alid (Nag Library Manual, 5). Ar h ODEs in cll ar solvd, olynomial aroimaions ruird in cll can b comud as aroimaion o h volum and h

8 Cosanza Aricò momnum lus laving cll along im s. Th basic ida o h numrical chniu is o comu h soluion, wihin a givn im s, by marching in sac along h lu dircion hrough all h comuaional domain. Th mass and momnum lus nring h irs cll ar givn by h usram boundary condiions, as br sciid in a ollowing scion. Obsrv ha i is ossibl o solv sunially h ODEs sysms, wihou any rsricion on h siz o h im s, bcaus h characrisic lin o h roblm (8) is orind according o h vlociy dircion and h vlociy sign has bn assumd o b consan. This is uivaln, ar soluion o cll rom im o im, o ransla h boundary condiion (hic sgmn in igur ) a h inrac bwn cll and, o g h iniial valu o h characrisic curv carrying on h soluion o cll and so on hrough all h comuaional domain. Bcaus o his, h mhod can b classiid, ohr han marching in im, also marching in sac. marching in sac cll cll marching in im i Figur. Th cor o h marching in sac and im rocdur.. Polynomial im aroimaion A rd ordr aroimaing in im olynomial has bn chosn or h nring volum and momnum lus. Th corrsonding coicins ar obaind by sing h iniial, h inal and h avrag valus o h olynomials uals o h comud ons. This imlis: φ, /, φ φ φ (5,a),,, φ, φ, φ,, (5,b) ξ, m,,,,, /, ξ ξ ξ m (6,a) whr ξ, ξ, ξ, m, (6,b) m, / (7) Th avrag laving volum lu, is comud by alying h cll mass balanc, ha is: 4

9 Th Schm or Shallow War Euaions, / ( ), (8). Du o h non-linariy o h momnum balanc uaion, h avrag valu o h laving momnum lu m, is comud via numrical im ingraion o h valus comud by E. (7). Th soluion a h Gauss oins is obaind by a C inrolaion o h soluion valus roducd by h Rung-Kua mhod usd or h soluion o h ODEs sysm... Toal had gradin comuaion In h convciv rdicion sysm h oal had gradin o cll a h inrac wih cll downsram along h low dircion a h bginning o ach im s is comud as:,, N- (9) In h las lmn, according o h hyohsis o consan saial had gradin along h im s, i is assumd h had chang o b ual o h usram lmn on. From his assumion h ollowing rlaionshis hold: / / ( h N ) ( h ) / / / N N N, N N () whr / N is h downsram boundary lu rdicd a h nd o h im s... Small war dhs comuaion Th ricion and h momnum lu rms simaion, in h momnum balanc uaion, is subc o larg rrors whn war dh is clos o zro. This uncrainy acs h rsul sabiliy mainly in h dcrasing ar o h hydrograh, bcaus h small war dh valus nd o rmain and urhr rduc or a larg comuaional im. To dal wih his wll-nown roblm, h ollowing rocdur has bn alid. A minimum war dh valu h m, ngligibl or racical alicaions, is irs slcd. Call m h corrsonding cross scion. W assum h Manning rlaionshi and h momnum lu diniion o hold only or h > h m. In h ohr cas, hs wo rms ar rlacd wih h ollowing iciious ons (s also igur ): n n P 4 / R 4 / m 5 / m ( ) ( ) m m ( ) ( ) whr P in E. () is h wd rimr and uncion () in E. () and () is givn rscivly by: m m () () ( ) () 5 / 5

10 Cosanza Aricò ( ) (4) Whn h local war dh dros blow h minimum valu, bcaus o h rducion o h nw rsisanc rms wih rsc o h ral ons, h war dh dros uicly o h zro valu a h * im. A his oin h ODEs sysm ingraion is l and h small war volum nring h cll during h rmaining - * im is sord in h sam cll o mainain h mass balanc. m () ( ) ( ) m m Figur. Funcion aroimaion or small war dhs. Soluion o h diusiv corrcion sysm Diusiv corrcion sysm () is urhr simliid and linarizd, using a ully imlici ini dirnc discrizaion. Th rsuling sysm is: ( [ ] / / / / T ),,, N (5,a) 4 4 g R g n g R gn / / / (5,b) whr h cross scion im drivaiv discrizaion has bn rlacd in E. (,a) wih a uncion o h oal had im drivaiv discrizaion. E. (5,b) can b wrin in h ollowing orm: dis dis / (6) whr / 4 / / R gn g dis. Mrging E. (6) in E. (5,a) w g: 6

11 Th Schm or Shallow War Euaions T / ( ds ds ) ( ds ds / / /,,,, ds, dis, ds ),,, N (7,a), dis (7,b). Using h oal had gradin discrizaion givn in E. (9), E. (7) ar changd ino a sysm o linar uaions, wih a symmric, osiiv dind and wll-condiiond mari. Ar sysm (7) is solvd in h unnowns, h low ras can b comud by mans o E. (6).. Boundary condiions Boundary condiions assumd in convciv rdicion and diusiv corrcion ss ar rord in abl. h n h c ar rscivly h boundary (nown) war dh and h criical war dh corrsonding o h low ra b in h las cll o h domain. Th Froud numbr o h downsram, laving lu is comud using h domain low ra and war dh valus, h Froud numbr o h usram lu is comud using h rnal low ra and war dh valus. In h convciv rdicion sysm boh h incoming volum and momnum lus ar assignd a h usram cll. I h incoming lu is sub-criical, h momnum lu is comud as uncion o h war dh in h usram cll comud a h nd o h rvious im s. In h cas o surcriical downsram low, soluion o h diusiv roblm (7) is obaind by sing zro diusiv lu o h downsram boundary (cas n., 5 and 6 o abl ). This is uivaln o s: / b b (8,a) In h cass and 4 o abl, a war dh corrsonding o h nown valu is assignd: h b hn (8,b) In h hird cas o abl, a criical low ra corrsonding o h comud war dh is inally assignd: b gh (8,c) / b b cas n. Flu Fr. numbr h n /h c Boundary condiions laving No bound. cond. laving h n laving < < Criical war dh 4 laving < h n 5 incoming n h n 6 incoming < n Tabl. Boundary condiions EXTENSION OF TE PROCEDURE TO TE COMPLETE D DYNAMIC SALLOW WATER EQUATIONS In h mos gnral cas o D or D low, h vlociy dircion and orinaion is no nown. I h low ild has a scalar onial, li in h cas o diusiv modls (Noo and Tucciarlli, ), h 7

12 Cosanza Aricò low dircion is, a im, oosi o h gradin o h onial comud a h sam im and i is ossibl o ordr and solv h lmns according o h hir onial dcrasing valu. In h mos gnral cas, i is sill ossibl o nd h rocdur adding a urhr convciv corrcion s and using an auiliary scalar uncion, calld aroimad onial, urhr dind. Call,b h lu bwn cll and on o h wo conncd clls (b - or b ), an osiiv or ngaiv i h lu is rscivly laving or nring cll and v, b h vlociy o h corrsonding aricls, ha is:,b ( b ), v,b, i ( b ) > h,b ( b), b Obsrv ha, according o h rvious rul, condiion Assum ha a scalar valu ϕ and ( b ) > ( b) (9,a) b v,b ohrwis (9,b) hb, b b, b always holds., calld aroimad onial, is assignd o ach comuaional cll a h bginning o ach im lvl. Th chosn volum and momnum lu comuaion ruls can guaran h isnc o a onial uncion ha is ac a h bginning o h im s. This aroimad onial can b ound by sing arbirarily is valu ϕ in h irs cll and by assigning o h ohr clls h ollowing valus: ϕ ϕ i <, ϕ ϕ i or,,n (), Evn i h low ras ar consisn wih h onial gradin a h bginning o h im s, hy can chang sign along h soluion o h convciv rdicion sysm (8). For his rason, h soluion o a nw convciv corrcion sysm is now ruird. Sysm ()-() can b solvd by mans o h sunial soluion o h ollowing hr PDEs sysms: ) convciv rdicion sysm: ma ma (,sign( gradϕ ) (,sign( gradϕ ) g ) convciv corrcion sysm: min min ) diusiv corrcion sysm: (,sign( gradϕ ), (,sign( gradϕ ) gn R 4 / () () 8

13 Th Schm or Shallow War Euaions M g / g / S n 4 / R g / n 4 / R / In E. (), as in h cas o mono-orind low, w hav assumd h dirnc bwn h gradin o h momnum lu and h gradin o h man valu o h sam rms comud in h convciv rdicion and convciv corrcion ss o b ngligibl. In E. ()-() h argumn o h uncion sign( ) is minus h roduc o h gradin ims h low ra and h uncion is ual o or - i h argumn sign is rscivly osiiv or ngaiv, is h ind o h nown im lvl and variabls wih ind ⅔ ar assumd nown in sysm () rom h rvious soluion o sysms ()-(). Obsrv ha sourc rms ar nglcd in sysm (), sinc h roaional comonns o h lus ar assumd o b small wih rsc o h irroaional ons. Sysms () is ual o sysm (8) i h valu o uncion sign( ) is ual o. In h ohr cas, sysm () dgnras in h ODEs sysm: d d d, g 4 / d gn R I h valu o uncion sign( ) is ual o sysm () dgnras in h sady-sa condiion: d d, d d Ar ingraion in sac and im, sysms ()-() can b wrin as: ) convciv rdicion sysm: (4) (5) () / ( ),d, d (6,a) / ( ),v, d, v, d ( ) whr,b,b ) convciv corrcion sysm: ma min (,, ), i ϕ ϕ b (, ), i ϕ < ϕ, b B U d (6,b) (6,c) / / c c ( ),d, d / / c c ( ),v,d, v, d (7,a) (7,b) 9

14 Cosanza Aricò whr c,b c,b min ma (,,b ), i ϕ ϕ b (, ), i ϕ < ϕ,b b (7,c) ) diusiv corrcion sysm: / c c ( ) d d ( ),,,,,, (8,a) gn (8,b) R / ( ) g( M, M, ) d g S d B 4 / whr,, c, ar h man valus o h volum lu bwn clls and, as comud in h convcion rdicion and corrcion ss. Obsrv ha in E. (6) sricly ngaiv (nring) lus ar always coming rom clls wih highr onial and sricly osiiv (laving) lus ar always moving o clls wih lowr onial and vicvrsa in h convciv corrcion sysm (7). This allows o solv irs h convciv rdicion s moving rom clls wih highr o clls wih lowr onial and h convciv corrcion s moving rom clls wih lowr o clls wih highr onial. Th sum o sysms (6), (7) and (8) is an aroimaion o h ingral o h original sysm ()- (), and his aroimaion is as good as h dirnc bwn h lus and h sourc rms in h corrcion sysms is ihr small or im-indndn.. Soluion o h convciv rdicion and convciv corrcion sysms A s ordr saial aroimaion o h unnown variabls (h) and is assumd insid ach cll, as in h soluion o h convciv rdicion roblm shown in scion. According o his aroimaion, as wll as o h sady-sa assumion o h saial oal had gradin, ach sysm (6)-(7) can b viwd as an ODEs sysm. Convciv rdicion sysm (6) can b wrin as: d d d d whr d d () δ () ( δ ) φ ( δ ) φ δ,,,, (9,a) () v () ( δ ) ξ δ () v () ( δ ) ξ ( U ) δ,,,,,, B ( ) Convciv corrcion sysm (7) can b wrin as: δ sign (4) c c c c c c () δ () ( δ ) φ ( δ ) φ c c δ,,,, (4,a) (9,b) d d c c c c c c () v () ( δ ) ξ δ () v () ( δ ) ξ c c,,,,,, δ (4,b) 4

15 Th Schm or Shallow War Euaions whr ( ) c c sign δ (4) Sysms (9) can b solvd sunially in ach comuaional cll, as rviously sn or h cas o mono-orind low, moving rom h highr o h lowr aroimad onial. Ar soluion o all sysms (9), sysms (4) can b solvd sunially moving vicvrsa rom h lowr o h highr aroimad onials. O cours i an ac scalar onial iss and i is nown, h convciv corrcion sysm rducs o h idniy: ( ) ( ) / / h h, (4) / / In h convciv rdicion sysm, h izomric gradin o cll a h inrac wih cll b downsram along h low dircion a h bginning o ach im s can b comud as in E. (9). Th olynomial im aroimaion o h laving volum and momnum lus ar h nring valus or h n lmn in boh convciv rdicion and corrcion sysms. Ths olynomials can b simad as uncion o h (h) and valus comud during h running im s, as alrady sn or h cas o mono-orind low.. Soluion o h diusiv corrcion sysm Diusiv corrcion sysm () is urhr simliid and linarizd as rviously laind or h cas o mono-orind low, o g h ollowing ully imlici discrizaion: /, /,,, / / T,,, N (44,a) 4 4 g R gn g R gn / / / (44,b) Th rror du o h linarizaion o E. () gos o zro along wih h siz o h im s, as wll as h dirnc bwn h rdicd and h corrcd lus and war lvls. Th man valu o h nown war lu o E. (,a), as wll as o h sourc rm o E. (,b) hav bn aroimad in E. (44) a im lvl ⅔, ha rrsns h bs nown im lvl simaion or h vcor variabls U. E. (44,b) can b wrin in h orm: dis dis / / (45) whr / 4 / / R gn g dis. Mrging E. (45) in E. (9) and hs ons in E. (44,a), w g: 4

16 Cosanza Aricò whr ds, b / dis T ( ) ( / ds ds ds ds / ) /,, /,, T, b i ; ds, b dis b b, b < i (47),,,N Ar discrizaion o h oal had gradin as givn by E. (9), E. (46) orm a linar algbraic sysm, wih a mari ha is symmric, osiiv dind and vry wll condiiond. Th low ra unnowns, a im lvl, can b comud by mans o E. (45).. Boundary condiions Boundary condiions ar h sam summarizd in scion.. An aroimad onial gradin consisn wih h lu sign a im is assumd a h wo boundaris o h domain; his imlis ha zro nring volum and momnum lus ar assignd a boh boundary clls or h soluion o convciv corrcion sysms (7). Boundary condiions o h diusiv roblm (4) can b obaind by E. (8), changing E. (8,a) and (8,c) rscivly wih: (46) b / b, b gh / b b (48) 4 D NUMERICAL TESTS 4. Dam-bra wih ini downsram war dh In his s h channl is ricionlss, horizonal, ininily larg and m long. Bor is locad a m, wih a war dh ual o m in h usram ar o h channl and a war dh ual o m in h downsram on. Numrical rsuls hav bn comard wih h analyical ons obaind by Sor (957), in rms o war dhs and low vlociis. Numrical soluion is comud a im 9.9 s, using a cll siz m and a im s siz. s. Th maimum valu o h CFL numbr is aroimaly.5. A comarison o h rsuls obaind using dirn lici numrical modls can b ound in Zoou and Robrs (999). Th Auhors comard h L norms o rrors o war dh and low vlociy dind as: L h, nu,, N, h,, N h h,, N v,, N v L, v (49) v whr sub-inds and nu indica rscivly h ac soluion and h numrical rsuls. Th modl rovids L,h. - and L,v 7.6 -, whr h bs norm rovidd by h s saial aroimaion ordr mhods is.4 - or h war dhs and or h vlociis. Th wors raning in h vlociy simaion can b laind by h us o h low ra insad o h low vlociy as unnown, as don in som o h ohr mhods. In igur 4 h comarison bwn analyical and numrical rsuls is shown, whr s. s sands or., nu, 4

17 Th Schm or Shallow War Euaions I w assum h comuaional cos o b roorional o h numbr o lmns ims h im ss numbr, i is ossibl o mainain h sam comuaional cos by halving h lmn siz and doubling h im s siz. In his cas, vn wih a maimum CFL numbr ual o., a br rormanc is obaind or h norm o boh h had and h vlociy rror (L,h and L,v ). Also or his cas, comarison wih h analyical soluion is shown in igur 4. Obsrv also ha or boh comuaional mshs no nroy glichs aar in h numrical soluions. Ths disconinuiis lagu svral numrical soluions, also obaind wih numrical mhods wih saial aroimaion ordr grar han on (Zoou and Robrs, ). [m] [m] ac soluion s. s m s. s 5 m v [m/s] ac soluion s. s m s. s 5 m [m] Figur 4. Dam-bra wih ini downsram war dh. War lvls and low vlociis 4. Sady low ovr a bum wih hydraulic um A sady-sa ranscriical low ovr a bum, wih a smooh ransiion ollowd by a hydraulic um is simulad. Th channl is ininily larg, horizonal, ricionlss, 5 m long. Boundary condiions ar givn by: h (, ).8 m (, ). m / s Iniial condiion is givn by a consan war lvl ovr h channl, ual o. m, and bd roil is givn by: ( ) (5)..5 i 8 z ( ) (5) ohrwis Th s has bn carrid on using.5 m and. s, wih a maimum CFL numbr ual o.6. In igur 5 h comud war lvl and low ras ar comard wih h corrsonding analyical soluion ar iraions (T s). Obsrv ha h hydraulic um is caurd in w clls and ha no oscillaions occur in h war surac and, mos imoran, in h low ra roil along h bum. Incrasing h comuaional im, low ra valu nds asymoically o h saionary valu.8 cm/s in all h domain. For h sam s, w also rovid in igur 6 a comarison o h convrgnc hisory o h roosd schm wih rsc o h SGM mhod by Zhou al. () and o h wll-balancd high ordr WENO schm by Vuovic and Soa (). Th global rlaiv rror R is dind as (s Zhou al., ): R i,n n i n i n i (5) 4

18 Cosanza Aricò whr n i is h war dh in h i h cll comud a im lvl n h and ind n- indicas h corrsonding war dh comud a h rvious im lvl. Dsi h saial aroimaion ordr, schm convrgs much asr han h ohr wo highr ordr schms. Obsrv, in igur 6, h rlaiv low rrors obaind in h sam s by h algorihm. In his n i cas in E. (5) is h low ra comud in h cll i., z [m] [m] bd lvl ac soluion [cm/s] low ra ac soluion [m] Figur 5. War surac and low ra roils ovr h bum or ranscriical low ar s R (h ).E.E-.E-.E-.E-4.E-5.E-6 SGM WENO R ( ).E.E-.E-.E-5.E-7.E-9.E-.E-.E n. iraions.e n. iraions Figur 6. Global rlaiv rror o war dhs and low ras or s LVu s s roblm (998) In h LVu s roblm (LVu, 998) a non-saionary low rovidd by wo dam-bras roagas in oosi dircions; whil h usram moving ron asss ovr a horizonal rivr bd, h downsram moving ron roagas ovr a bum. Bd roil is givn by: z ( ) ( cos( π (.5) ) ).5 i.4.6 ohrwis Channl is assumd ricionlss and ininily wid. Th iniial condiions ar: v (, ) m/s h, (, ) h z( ) z( ) i.. ohrwis whr h is h high o h uls ual o. m. In igur 7 comud war lvls and low ras ar shown a im. s, using. m and (5) (54) 44

19 Th Schm or Shallow War Euaions. s. Th maimum CFL numbr is.55. Obsrv h disconinuiis in boh war lvl and low ra roils and also h corrsonding rrors wih rsc o h rrnc soluion, comud using a valu o h CFL numbr ual o.58 and a numbr o lmns ims highr. Th rror dnds on h arial rlcion, du o h bum, o h downsram ravlling wav in h usram dircion and on h corrsonding raid invrsion o h low dircion. Th low invrsion is no ollowd, in h momnum uaion o h convciv rdicion s, by h oal had gradin invrsion. This rror is wll corrcd by h diusiv corrcion s, unlss h diusiv corrcion s dos no rduc h local chang o h unnown variabls. This is avoidd i h convciv chang can cross svral lmns, du o a CFL numbr much largr han on. Obsrv, in acs, ha rining h msh using a numbr o lmns ims highr oscillaions disaar. Similar disconinuiis in h numrical soluions hav bn obsrvd also by LVu (998) and by ohr Auhors (Vuovic S. and Soa, ; Zic al., 4). [m] r. soluion [m] [cm/s].4. r. soluion [m] Figur 7. War lvl and low ra or LVu s s roblm a. s 4.4 Erimnal dam-bra in a rismaic channl Som rimnal wors carrid ou by h U. S. Army Cors o Enginrs (USACE, 96) hav bn usd o comar h modl rsuls wih rimnal daa. Th rimns hav bn rormd in a m long,. wid rcangular channl lind wih lasic-coad lywood. Th boom slo is.5 %, h dam has bn lacd in h middl o h channl ( 6 m), and h war dh immdialy bor h dam is ual o.5 m. Two sris o rimns hav bn carrid ou using boh smooh and rough suracs, wih n Manning ricion coicin ual o.9 s/m / and.5 s/m / rscivly. Iniial condiions ar givn by:. 5 i 6m h, v i > 6m ( ) m/s and ar shown in igur 8. A h downsram nd o h channl zro war dh is assumd as boundary condiion. In h modl run.765 m and.5 s aramrs hav bn usd. In igurs 9,a-,b h war dhs a abscissas.5 m, 6 m and 85.4 m ar lod vrsus im agains h corrsonding masurd valus. Numrical rsuls givn by a nd ordr MUSCL schm (Zhang al., ) ar also shown. Th maimum CFL numbr is aroimaly.874 or n.9 s/m / and.8 or n.5 s/m /. In igur h masurd and comud war lvls a im s or h n Manning coicin ual o.9 s/m / ar shown. Comarison wih rimnal daa is good and h maching is similar o h on obaind by h nd ordr aroimaion schm. (55) 45

20 Cosanza Aricò dam h m 6 m m Figur 8. Iniial condiion or h rimnal dam bra s.. h [m].5..5 m masurd MUSCL h [m] m masurd MUSCL [s] [s] Figur 9,a. War dhs a.5 m, n.5 s/m / Figur 9,b. War dhs a 6 m, n.5 s/m / h [m] m masurd MUSCL h [m] m masurd MUSCL [s] [s] Figur,a. War dhs a.5 m, n.9 s/m / Figur,b. War dhs a 85.4 m, n.9 s/m / 46

21 Th Schm or Shallow War Euaions.7.6 [m].5.4. masurd [m] Figur. War lvl a s, n.9 s/m / 5 TE APPROAC IN TE D CASE 5. Ingral orm o h SV uaions Th D SV uaions can b wrin as: h uh vh y (56) uh ( u h) ( uvh) y ( uh) ( vh) h z n u gh gh h 7 / (57) vh y ( v h) ( uh) ( vh) h z n v uvh gh gh y y h 7 / whr and y ar h saial coordinas, u and v ar h and y vlociy comonns, is h im, g is h graviaional acclraion, h is h war dh, z is h ground lvl and n is h Manning ricion coicin. Th unnowns in sysm (56)-(58) ar h war dh h and h wo low ras comonns r uni widh uh and vh. Assum a riangular msh and a irs ordr aroimaion o h variabls h, uh and vh insid ach lmn. Ingraion in sac o E. (56), (57) and (58), as wll as alicaion o h Grn s horm rovids: (58) h F, (59), uh M, R (6), 47

22 Cosanza Aricò whr is h lmn ara, vh y y M, R (6), F, is h volum lu hrough h h sid o lmn, and ar M, y M, h and y comonns o h momnum lus along h h sid o lmn and h sourc rms y R, R ar dind as: ( uh) ( uh) ( vh) n R g h (6), 7 / h R y ( vh) ( uh) ( vh) n g h 7 / y h whr and h ar rscivly h lmn war lvl and war dh. (6) 5. Fracional im s dcomosiion φ Assum a scalar valu, calld aroimad onial and urhr sciid, o b nown a h bginning o ach im s in ach comuaional lmn. Th volum and momnum lus hrough ach sid ar dind as uncion o h lu o h sciic low ra comonns o boh h lmns and sharing h givn sid. Th volum lu hrough h h sid o lmn is ual o: FL, ( uh) ( y y ) ( vh) ( ) (64) whr is h nod o lmn ollowing nod in counr-cloc wis dircion. Th volum lu is dind as: F FL,, FL, > FL, > FL, m i and (65,a) F, FL,m ohrwis (65,b) y, F, FL, M, F,u M F, v, i (66,a) y M, F,u M, F, v, ohrwis (66,b) whr is h ind o h lmn sharing is m h sid wih h h sid o lmn. Obsrv ha condiion F holds or all h inrnal sids. I is h osiiv (laving) lu o a boundary F,, m F, sid, h condiion F, FL, holds. Ar ingraion in im, rdicion s o sysm (59)-(6) is dind as: h / h F, d (67), 48

23 Th Schm or Shallow War Euaions / ( uh) ( uh) M, d R d (68), whr: / ( vh) ( vh) y y M,d R d (69), ( uh) ( uh) ( vh) n R g h (7,a) 7 / h and ( vh) ( uh) ( vh) y n R g h (7,b) 7 / y h y F ma(, F ), M F u, M F v i φ φ (7,a),,,,,,, (, F ) y F min, M F u, M F v i φ < φ (7,b),,, Th irs corrcion sysm is dind as: c, h / h / ( uh) ( uh) / ( vh) ( vh) (, F ), / / /,, c F, d (7), c M, d (7),, M cy, d c c cy c F ma M F u, M F v i φ < φ (75,a) c, (, F ),,, c c cy c F min M F u, M F v i φ φ (75,b), Th scond corrcion sysm is dind as: h h /,, F,,, d,, c ( F, ), F, (74) (76) 49

24 Cosanza Aricò whr F,, c / ( uh) ( uh) R d R (87) / ( vh) ( vh) y y y R d R (78) F,, R, R ar h man (in im) lu and sourc rm valus, as comud in h rdicion and in h irs corrcion s. In E. (77)-(78) w nglc h dirnc bwn h man (in im) convciv inria rms and h sam man valus comud rom h soluion o h rdicion lus h irs corrcion sysms. This is uivaln o assum, in h scond corrcion sysm: M,d M,,,, y y M,d M,,,, M M c, cy, (79,a) (79,b) This imlis ha convciv lus ar missing in E (86)-(88) and w call h rdicion sysm convciv rdicion sysm and h irs and h scond corrcion sysms rscivly convciv and diusiv corrcion sysms. Iniial condiions o h convciv corrcion sysm ar h inal valus o h convciv rdicion sysm and iniial valus o h diusiv corrcion sysm ar h inal valus o h convciv corrcion sysm. Saial izomric gradin is assumd consan in im in all h sysms. Obsrv ha summing all h rms o E. (67)-(88) h ingrals o E. (59)-(6) ar ormally ound again. 5. Soluion o h convciv rdicion and h convciv corrcion sysms A irs ordr saial aroimaion is alid o h unnown variabls h, uh and vh. Obsrv ha, according o h lu diniions givn in E. (7) and (75), h lu ingrals rom lmn o lmn in h convciv rdicion s ar only uncion o h lmn unnowns i φ φ and ar only uncion o h lmn unnowns i φ < φ. In h convciv corrcion s h oosi holds. This allows o solv ach sysm as a sunc o small ODEs sysms, on or ach comuaional cll, ar ordring h clls according o h hir scalar onial. Th rioriy is givn o h clls wih highr onial in h convciv rdicion s and o h clls wih lowr onial in h convciv corrcion s. In h rdicion cas, h ODEs sysm is: d ( uh) ( ) d, dh F, () (8) d, ( M () R () ), (8) 5

25 Th Schm or Shallow War Euaions d ( vh) ( ) d, y y ( M () R () ), (8) Call ou (in) h ind o any sid shard wih any lmn such ha φ in h convciv rdicion s ( φ < φ in h convciv corrcion s). Ar h singl sysm o lmn is solvd along h im s, h man valus o h lus laving hrough ach sid ou hav o b simad. Th man valu o h laving volum lu F, ou can b simad by ariioning h oal man laving lu, obaind rom h mass balanc in h lmn and ual o: ou F,ou in F,in h / h Obsrv ha h man valus o h nring lus F, in ar nown rom h soluion o h lmns wih highr scalar onial. Pariion can b don adoing or ach lmn sid a wigh ual h arihmic man bwn h iniial and h inal lu valus, ha is: F, () F, ( ) () F ( ), ( ) F,ou,ou ou ou F whr is also h ind o any sid shard wih an lmn wih lowr onial. Givn h iniial, h man and h inal valus, a arabolic volum lu im aroimaion in ach sid is inally comud and usd o sima h nring lus in h conncd lmns wih lowr aroimad onial. Consrvaion o h man valus can b asily rovd o guaran h local and global mass consrvaion. Th man laving momnum lus ingraion, hy can b comud as: M, y M M, () F, ( ) () F ( ), ( ) F,ou,ou ou ou F F,ou φ (8) (84),, can also b simad in a similar way. Ar Du o h non-linariy o h momnum balanc uaions, h man valu o h oal laving momnum lu a h r.h.s. o E. (85) has o b numrically simad rom h singl im valus. In h codd algorihm, h laving momnum lus in hr Gauss oins, slcd in h im inrval hav bn comud using a C inrolaion o h soluion valus roducd by h Rung-Kua mhod adod or h soluion o h ODEs sysm. A arabolic momnum lu simaion is inally carrid ou or ach lmn sid using h iniial, h inal and h man valu. A similar rocdur is carrid ou or h soluion o h convciv corrcion sysm, wrin as: d, M,ou (85) dh c F, () (86) d ( uh) ( ) d, () c M, (87) 5

26 Cosanza Aricò d ( vh) ( ) d, () y M, (88) Obsrv ha h sourc rms hav bn oally allocad in h convciv rdicion s. This simliis h soluion o h roblm and is comuaionally inciv du o h small siz o h corrciv lus, sough ar wih a good choic o h aroimad onial uncion. 5.4 Th aroimad scalar onial Fracional s mhodology rovids accura rsuls only i h soluion o h convciv rdicion s is clos o h corrcd on; ohrwis, h comuaion o h saial gradins a dirn im lvls can srongly ac h soluion. In our cas, o minimiz h variabl chang in h convciv corrcion s, i is imoran o choos an aroimad onial wih a gradin lu oosi in sign, as much as ossibl, o h war lu along h lmn sids. I an ac onial iss and his condiion is always aaind, convciv corrcion sysm vanishs in h ollowing idniis: h / / / / / / ( uh) ( uh), ( vh) ( vh) h, (89) W s o minimiz, a h nown im lvl, h ollowing uncional: (,( uh) ( y y ) ( vh) ( ) F min (9), whr is again h ind o any sid shard by an lmn such ha: φ φ (9) Th bs s o scalar onials, ha minimizs uncion (9) subc o consrains (9), is h soluion o a global minimum sarch, comuaionally vry nsiv. Eclln rsuls can also b ound mor asily by rorming a local sarch, i a good saring oin is chosn. This oin is h onial s corrsonding o numrically simad gradins as oosi as ossibl o h vlociy gradins ims h war dh. In a D sac, i can b viwd as h s o onials ha ar as clos as ossibl o h lans maching h onial valu a h riangl cnr, wih a gradin oosi o h vlociy gradin ims h war dh (s igur ). Th uncional comonn corrsonding o h sid o ach lmn is wighd wih h absolu valu o h lu and o all h lmn comonns a naly rm rlad o h chang wih rsc o h rvious valu is addd, o inally g: min N ( F' ) [ ( φ φ ( )( uh) ( y y )( vh) ) FL, α( φ φ ) ] whr, y ar h coordinas o h cnr o lmn, and α is a small osiiv numbr. Th roosd uncional is conv and h minimum can b ound by sing o zro h arial drivaivs wih rsc o all h lmn aroimad onial. Th rsuling linar sysm is sars, symmric, osiiv dini and wll condiiond. Th naly rm in h suar bracs is aimd o avoid in h linar sysm zro diagonal rms whn h sciic low ra comonns a im ar ual o zro. Incrasing h naly rm, a onial disribuion mor similar o h rvious on comud a im is obaind. To obain a comromis bwn comuaional icincy and h aroimad onial ualiy, h coicin α o h naly rm can b normalizd wih rsc o h diagonal rm o h corrsonding original uaion, wih a lowr boundary givn by h machin rcision. Ar h minimum o F is ound, h aroimad onials can b urhr rind wih a local sarch, iraivly adusing h lmn onial valus unil a local minimum o h uncional F is ound. (9) 5

27 Th Schm or Shallow War Euaions φ ( uh) ( ) ( vh) ( y y φ φ ) m Figur. Linar aroimaion o h aroimad onial around a cnral valu 5.5 Comuaion o h gradins or h convciv sysms War lvl gradin is usually simad, in h cas o riangular msh and irs ordr aroimaion, by alying Grn s horm a h D ingral o h war lvl ovr h lmn (s or aml Anasasiou and Chan, 997; Pui al., 99). This simaion is accura only i rgular mshs ar usd. In h cas o unsrucurd, auomaically gnrad mshs, i is acd by larg rrors and hrognous gradins ar obaind also in h cas o a linar variaion o h war lvl insid h domain. A mos robus chniu has bn dvlod, similar o h algorihm roosd by ubbard (999). Th gradin is comud as a wighd avrag bwn on or wo vcors, ach on corrsonding o a vr o h riangl. Each h vcor is comud assuming a linar variaion o h war lvl insid a nw riangl, dind by h cnr o lmn and h cnrs o h wo surrounding lmns sharing h h nod. Zro wigh is givn o h h vcor corrsonding o a ngaiv scalar roducs bwn h lmn vlociy and h dircion o h lin conncing h cnr o lmn wih is h vr. Each vcor is h gradin o h linar uncion maching h war lvls in h cnr o lmn and in h cnr o lmns, m sharing vr wih riangl (s igur ). Th inal gradin is givn by: ma (, n n ) uv (, n n ) uv (9) ma whr n n uv is h scalar roduc bwn h cnr-vr and h vlociy dircions. I lmn has an dg on h imrvious boundary, is vlociy is aralll o h boundary and on o h hr condiions ruird o comu h gradin corrsonding o h downsram vr is missing. This condiion is rlacd by h ualiy o h cd oal izomric gradin dircion and h imrvious dg dircion. 5

28 Cosanza Aricò (u, v) B C O A Figur. Comuaion o h saial war lvl gradin 5.6 Boundary condiions or h convciv rdicion sysm A h bginning o ach im ss, lmns wih on boundary sid ar slcd. Th Froud numbr r, o h lu r uni lngh is comud as: r FL,, / L, h g FL, i, b b ( y y ) h v ( ) b b h u r, / L h, g i FL, < whr L, is h lngh o h h sid o lmn. Boundary condiions o h rdicion roblm (67)- (69) dnd on h lu sign and on h Froud numbr r,. On o h ollowing cass can b slcd: ) Flu hrough h boundary sid is nring h domain. In his cas h ollowing ualiis hold: b BF BM BF, BM,, b F BF, M BM, M BM, h, b u b BF h b,,, b b ( y y ) h v ( ),, BF b u u, M y, BF, v b ( y y ) h v ( ), u, BM y, BF, v y,, y, (95) r i, (96) i r, > (97) whr h, u and v ar h assignd boundary war dhs and vlociy comonns; ) Flu hrough h boundary sid is laving h domain. In his cas war dh gradin is no nown and convciv rdicion sysm is rlacd, or lmn, wih h hyohsis o nglcing h low ra and momnum local changs in h sam lmns. This is uivaln o say ha h laving volum and momnum lus ar ual o h nring ons. From h rvious hyohsis, w obain: (94) 54

29 Th Schm or Shallow War Euaions M ( ),in / h h, u / in in F,in (), v / wih h sam manings sciid or E. (65)-(66). ) Flu hrough h boundary sid is zro (imrvious boundary). In his cas h ollowing condiions hold: in in M F y,in,in ( ) () (98) F, (99), n, whr is h war lvl gradin and n is h uni vcor normal o h imrvious sid., W assum h scalar onial immdialy ousid h boundary sids o b consisn wih h lu sign. This imlis h volum and momnum lus o b zro in h convciv corrcion s, ha is: F c, c cy, M, M,, () 5.7 Soluion o h convciv ss wih small war dh Insabiliis occur in h soluion o h convciv ss whn iniial war dh valus ar ngaiv, and convrgnc is vry slow whn osiiv, bu vry small valus ar comud in h ail o h roagaing wav. Small ngaiv war dhs can b comud by h diusiv sysm in h rcding im s, whn h rsul o h convciv ss is a vry small osiiv valu. Th ollowing rocdur is ollowd in ordr o avoid hs inconvnincs and o mainain h local mass consrvaion rory. A vry small minimum war dh h min is chosn ( m) and boh h momnum lu and h ricion rms ar comud, or h < h min, as h irs ordr ansion around h min, ha is: R R M y, ( uh) ( uh) ( vh) ( vh) ( uh) ( vh) ( uh) ( uh) ( vh) n 7 n g h ( h ) 7 / hmin / hmin hmin ( vh) ( uh) ( vh) n 7 n g h ( h ) 7 / hmin / y hmin hmin ( uh) ( h h ) ( uh) ( vh) min ( h h ) ( vh) min () y F, min F,, M, F, min F, () h h h h min This chang allows a as soluion o h roblm or small, bu osiiv war dh valus. Whn a ail occurs, soluion convrgs anyway o ngaiv valus. To avoid his, a conrol is s in h ODEs solvr in ordr o rurn h im valu corrsonding o a zro war dh valu. Whn h solvr sos bor h nd o h im s, h rmaining war volum nring h cll is l in h sam cll assuming zro laving lu ar h rurn im. Whn h iniial war dh h (or min in h convciv corrcion s) is ngaiv, wo ossibiliis occur. Call Vol h volum corrsonding o h cll ara and o h oosi o h ngaiv iniial war dh. I h nring volum V in F, in is smallr han Vol, incras hn Vol, s h h / h, assum a zro laving lu, and mov o h n cll. I Vin is grar, rduc h man nring volum and momnum lus according o h Vol / in 55

30 Cosanza Aricò valu and solv h ODEs sysm. 5.8 Soluion o h diusiv corrcion sysm Diusiv corrcion sysm (76)-(78) is simliid by changing h ingral man valus wih h ully imlici im discrizaion and linarizing h sourc rms. This rovids a diusiv c, ha gos o zro along wih h siz o h sourc rms and h diusiv lus. This siz is roorional o h im s, as can b obsrvd in E. (77)-(78). According o hs hyohss, diusiv corrcion sysm (76)-(78) is uivaln o h ollowing ully imlici im discrizaion: / ( uh) ( vh) y () / ( uh) ( uh) g n ( uh) ( uh) ( vh) gh / gh / ( uh) ( uh) ( vh) 7 / / ( h ) g n / 7 / ( h ) / / (4) / ( vh) ( vh) g n ( vh) ( uh) ( vh) gh / ha is: y gh / ( vh) ( uh) ( vh) 7 / / ( h ) y g n / 7 / ( h ) / / ( uh) lm cos ( uh) / (5) (6) whr: y / ( vh) lm cos ( vh) (7) y / / g( h ) 7 / / ( h ) g n ( uh) ( vh) (8,a) lm / and cos y lm, cos lm (8,b) y whr h variabls wih ind ⅔ ar nown rom h soluion o h convciv corrcion sysm. 56

31 Th Schm or Shallow War Euaions Mrging E. (6)-(8) in E. (), h ollowing rlaionshi is obaind: / whr diusiv lus ar discrizd as:, F δ F (9),, lm L, cos F, y ( y y ) cos ( ), lm L, cos y ( y y ) cos ( ),, i () FL,, i < () FL, δ i h h and h nods o lmn ar shard by h lmns and (inrnal sid), δ i no (boundary sid). Ar comuaion o h nw war lvls b comud wih E. (6)-(8) using h nw convciv gradins ( laind in scion Boundary condiions o h diusiv corrcion sysm I r, >, zro diusiv lu is assignd, ha is F,. I r,,, h low ras r uni widh can, ) comud as y wo ossibiliis is. I h assignd boundary war dh is smallr han h criical dh corrsonding o h sciic low ra, ha is: h ( uh) ( vh) / b () g a oal lu corrsonding o h criical dh is assignd o h lmn boundary sid, ha is: F g / / ( h ) L F /,,, () I inualiy () dos no hold, boundary war dh is assignd o lmn, along wih h corrsonding Dirichl condiion and diusiv lu is comud a osriori by mans o E. (9). 6 D NUMERICAL TESTS In h ollowing, rsuls o h modl ar comard wih rimnal daa o wo laboraory ss and wih rsuls obaind or h simulaion o h sam rimns by ohr auhors. In all h simulaions, h comuaional msh is unsrucurd and auomaically dsignd by h ARGUS ONE msh gnraor (Argus oldings). Th war dh and vlociy comonns in a givn oin wih, y coordinas hav bn assumd ual o h h, u and v valus o h lmn conaining h givn oin, wihou any urhr inrolaion. 57

= x. I (x,y ) Example: Translation. Operations depend on pixel s Coordinates. Context free. Independent of pixel values. I(x,y) Forward mapping:

= x. I (x,y ) Example: Translation. Operations depend on pixel s Coordinates. Context free. Independent of pixel values. I(x,y) Forward mapping: Gomric Transormaion Oraions dnd on il s Coordinas. Con r. Indndn o il valus. (, ) ' (, ) ' I (, ) I ' ( (, ), ( ) ), (,) (, ) I(,) I (, ) Eaml: Translaion (, ) (, ) (, ) I(, ) I ' Forward Maing Forward

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Ratio-Product Type Exponential Estimator For Estimating Finite Population Mean Using Information On Auxiliary Attribute

Ratio-Product Type Exponential Estimator For Estimating Finite Population Mean Using Information On Auxiliary Attribute Raio-Produc T Exonnial Esimaor For Esimaing Fini Poulaion Man Using Informaion On Auxiliar Aribu Rajsh Singh, Pankaj hauhan, and Nirmala Sawan, School of Saisics, DAVV, Indor (M.P., India (rsinghsa@ahoo.com

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

PFC Predictive Functional Control

PFC Predictive Functional Control PFC Prdiciv Funcional Conrol Prof. Car d Prada D. of Sm Enginring and Auomaic Conrol Univri of Valladolid, Sain rada@auom.uva. Oulin A iml a oibl Moivaion PFC main ida An inroducor xaml Moivaion Prdiciv

More information

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline. Dlin Curvs Dlin Curvs ha lo flow ra vs. im ar h mos ommon ools for forasing roduion and monioring wll rforman in h fild. Ths urvs uikly show by grahi mans whih wlls or filds ar roduing as xd or undr roduing.

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

B) 25y e. 5. Find the second partial f. 6. Find the second partials (including the mixed partials) of

B) 25y e. 5. Find the second partial f. 6. Find the second partials (including the mixed partials) of Sampl Final 00 1. Suppos z = (, y), ( a, b ) = 0, y ( a, b ) = 0, ( a, b ) = 1, ( a, b ) = 1, and y ( a, b ) =. Thn (a, b) is h s is inconclusiv a saddl poin a rlaiv minimum a rlaiv maimum. * (Classiy

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0) CHATER 6 inar Sysms of Diffrnial Equaions 6 Thory of inar DE Sysms! ullclin Skching = y = y y υ -nullclin Equilibrium (unsabl) a (, ) h nullclin y = υ nullclin = h-nullclin (S figur) = + y y = y Equilibrium

More information

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED 006-0 Asian Rsarch Publishing work (ARP). All righs rsrvd. USTEADY FLOW OF A FLUID PARTICLE SUSPESIO BETWEE TWO PARALLEL PLATES SUDDELY SET I MOTIO WITH SAME SPEED M. suniha, B. Shankr and G. Shanha 3

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: System Identification Theory For The User Lennart Ljung

Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: System Identification Theory For The User Lennart Ljung SYSEM IDEIFICAIO Ali Karimpour Associa Prossor Frdowsi Univrsi o Mashhad Rrnc: Ssm Idniicaion hor For h Usr Lnnar Ljung Lcur 7 lcur 7 Paramr Esimaion Mhods opics o b covrd includ: Guiding Principls Bhind

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER A THREE COPARTENT ATHEATICAL ODEL OF LIVER V. An N. Ch. Paabhi Ramacharyulu Faculy of ahmaics, R D collgs, Hanamonda, Warangal, India Dparmn of ahmaics, Naional Insiu of Tchnology, Warangal, India E-ail:

More information

Lecture 2: Bayesian inference - Discrete probability models

Lecture 2: Bayesian inference - Discrete probability models cu : Baysian infnc - Disc obabiliy modls Many hings abou Baysian infnc fo disc obabiliy modls a simila o fqunis infnc Disc obabiliy modls: Binomial samling Samling a fix numb of ials fom a Bnoulli ocss

More information

Control System Engineering (EE301T) Assignment: 2

Control System Engineering (EE301T) Assignment: 2 Conrol Sysm Enginring (EE0T) Assignmn: PART-A (Tim Domain Analysis: Transin Rspons Analysis). Oain h rspons of a uniy fdack sysm whos opn-loop ransfr funcion is (s) s ( s 4) for a uni sp inpu and also

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

3(8 ) (8 x x ) 3x x (8 )

3(8 ) (8 x x ) 3x x (8 ) Scion - CHATER -. a d.. b. d.86 c d 8 d d.9997 f g 6. d. d. Thn, = ln. =. =.. d Thn, = ln.9 =.7 8 -. a d.6 6 6 6 6 8 8 8 b 9 d 6 6 6 8 c d.8 6 6 6 6 8 8 7 7 d 6 d.6 6 6 6 6 6 6 8 u u u u du.9 6 6 6 6 6

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Failure Load of Plane Steel Frames Using the Yield Surface Method

Failure Load of Plane Steel Frames Using the Yield Surface Method ISBN 978-93-84422-22-6 Procdings of 2015Inrnaional Confrnc on Innovaions in Civil and Srucural Enginring (ICICSE'15) Isanbul (Turky), Jun 3-4, 2015. 206-212 Failur Load of Plan Sl Frams Using h Yild Surfac

More information

First Lecture of Machine Learning. Hung-yi Lee

First Lecture of Machine Learning. Hung-yi Lee Firs Lcur of Machin Larning Hung-yi L Larning o say ys/no Binary Classificaion Larning o say ys/no Sam filring Is an -mail sam or no? Rcommndaion sysms rcommnd h roduc o h cusomr or no? Malwar dcion Is

More information

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey cur : Growh and dcay of currn in circui Growh of currn in Circui us considr an inducor of slf inducanc is conncd o a DC sourc of.m.f. E hrough a rsisr of rsisanc and a ky K in sris. Whn h ky K is swichd

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Laplace Transforms recap for ccts

Laplace Transforms recap for ccts Lalac Tranform rca for cc Wha h big ida?. Loo a iniial condiion ron of cc du o caacior volag and inducor currn a im Mh or nodal analyi wih -domain imdanc rianc or admianc conducanc Soluion of ODE drivn

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

The transition:transversion rate ratio vs. the T-ratio.

The transition:transversion rate ratio vs. the T-ratio. PhyloMah Lcur 8 by Dan Vandrpool March, 00 opics of Discussion ransiion:ransvrsion ra raio Kappa vs. ransiion:ransvrsion raio raio alculaing h xpcd numbr of subsiuions using marix algbra Why h nral im

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

Themes. Flexible exchange rates with inflation targeting. Expectations formation under flexible exchange rates

Themes. Flexible exchange rates with inflation targeting. Expectations formation under flexible exchange rates CHAPTER 25 THE OPEN ECONOMY WITH FLEXIBLE EXCHANGE RATES Thms Flxibl xchang ras wih inlaion arging Expcaions ormaion undr lxibl xchang ras Th AS-AD modl wih lxibl xchang ras Macroconomic adjusmn undr lxibl

More information

Ministry of Education and Science of Ukraine National Technical University Ukraine "Igor Sikorsky Kiev Polytechnic Institute"

Ministry of Education and Science of Ukraine National Technical University Ukraine Igor Sikorsky Kiev Polytechnic Institute Minisry of Educaion and Scinc of Ukrain Naional Tchnical Univrsiy Ukrain "Igor Sikorsky Kiv Polychnic Insiu" OPERATION CALCULATION Didacic marial for a modal rfrnc work on mahmaical analysis for sudns

More information

Modelling of three dimensional liquid steel flow in continuous casting process

Modelling of three dimensional liquid steel flow in continuous casting process AMME 2003 12h Modlling of hr dimnsional liquid sl flow in coninuous casing procss M. Jani, H. Dyja, G. Banasz, S. Brsi Insiu of Modlling and Auomaion of Plasic Woring Procsss, Faculy of Marial procssing

More information

A Numerical Simulation and New Traveling Wave Solutions of Convection-Diffusion Equation with Reaction

A Numerical Simulation and New Traveling Wave Solutions of Convection-Diffusion Equation with Reaction Inrnaional Journal of Scinific and Innovaiv Mahaical Rsarch IJSIMR Volu, Issu 4, ril 04, PP 345-35 ISSN 347-307X Prin & ISSN 347-34 Onlin www.arcjournals.org Nurical Siulaion and Nw Travling Wav Soluions

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

4.3 Design of Sections for Flexure (Part II)

4.3 Design of Sections for Flexure (Part II) Prsrssd Concr Srucurs Dr. Amlan K Sngupa and Prof. Dvdas Mnon 4. Dsign of Scions for Flxur (Par II) This scion covrs h following opics Final Dsign for Typ Mmrs Th sps for Typ 1 mmrs ar xplaind in Scion

More information

Logistic equation of Human population growth (generalization to the case of reactive environment).

Logistic equation of Human population growth (generalization to the case of reactive environment). Logisic quaion of Human populaion growh gnralizaion o h cas of raciv nvironmn. Srg V. Ershkov Insiu for Tim aur Exploraions M.V. Lomonosov's Moscow Sa Univrsi Lninski gor - Moscow 999 ussia -mail: srgj-rshkov@andx.ru

More information

Effect of sampling on frequency domain analysis

Effect of sampling on frequency domain analysis LIGO-T666--R Ec sampling n rquncy dmain analysis David P. Nrwd W rviw h wll-knwn cs digial sampling n h rquncy dmain analysis an analg signal, wih mphasis n h cs upn ur masurmns. This discussin llws h

More information

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović FCT UNIVESITTIS Sri: chanic uomaic Conrol and oboic Vol. N o 7 5. 87-9 PEIODICL SOLUTION OF SOE DIFFEENTIL EQUTIONS UDC 57.95= Julka Knžvić-iljanović Facul o ahmaic Univri o lgrad E-mail: knzvic@oincar.ma.bg.ac.u

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Solutions to FINAL JEE MAINS/IITJEE

Solutions to FINAL JEE MAINS/IITJEE Soluions o FINAL JEE MAINS/IIJEE - [CHEMISRY].(C By consrvaion of mols PV P V P V + R R R P + P am..(a.(d.(b KMnO will rac wih FSO only. mols 5 mols χ FSO / N (g + H (g NH (g a a a a q a a P PNH P. a AgNO

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction. Inducors and Inducanc C For inducors, v() is proporional o h ra of chang of i(). Inducanc (con d) C Th proporionaliy consan is h inducanc, L, wih unis of Hnris. 1 Hnry = 1 Wb / A or 1 V sc / A. C L dpnds

More information

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r)

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r) 98 Scion 7.. L w. Thn dw d, so d dw w dw. sin d (sin w)( wdw) w sin w dw L u w dv sin w dw du dw v cos w w sin w dw w cos w + cos w dw w cos w+ sin w+ sin d wsin wdw w cos w+ sin w+ cos + sin +. L w +

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

Mundell-Fleming I: Setup

Mundell-Fleming I: Setup Mundll-Flming I: Sup In ISLM, w had: E ( ) T I( i π G T C Y ) To his, w now add n xpors, which is a funcion of h xchang ra: ε E P* P ( T ) I( i π ) G T NX ( ) C Y Whr NX is assumd (Marshall Lrnr condiion)

More information

EE 434 Lecture 22. Bipolar Device Models

EE 434 Lecture 22. Bipolar Device Models EE 434 Lcur 22 Bipolar Dvic Modls Quiz 14 Th collcor currn of a BJT was masurd o b 20mA and h bas currn masurd o b 0.1mA. Wha is h fficincy of injcion of lcrons coming from h mir o h collcor? 1 And h numbr

More information

A HAMILTON-JACOBI TREATMENT OF DISSIPATIVE SYSTEMS

A HAMILTON-JACOBI TREATMENT OF DISSIPATIVE SYSTEMS Europan Scinific Journal Ocobr 13 diion vol9, No3 ISSN: 1857 7881 (Prin) - ISSN 1857-7431 A AMILTON-JACOBI TREATMENT OF DISSIPATIVE SYSTEMS Ola A Jarab'ah Tafila Tchnical Univrsiy, Tafila, Jordan Khald

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School o Cour Scinc robabilisic Grahical Mols Aroia Inrnc: Mon Carlo hos Eric ing Lcur 6 March 7 204 Raing: S class wbsi Eric ing @ CMU 2005-204 Aroachs o inrnc Eac inrnc algorihs Th liinaion algorih Mssag-assing

More information

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to:

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to: Rfrncs Brnank, B. and I. Mihov (1998). Masuring monary policy, Quarrly Journal of Economics CXIII, 315-34. Blanchard, O. R. Proi (00). An mpirical characrizaion of h dynamic ffcs of changs in govrnmn spnding

More information

ERROR ANALYSIS A.J. Pintar and D. Caspary Department of Chemical Engineering Michigan Technological University Houghton, MI September, 2012

ERROR ANALYSIS A.J. Pintar and D. Caspary Department of Chemical Engineering Michigan Technological University Houghton, MI September, 2012 ERROR AALYSIS AJ Pinar and D Caspary Dparmn of Chmical Enginring Michigan Tchnological Univrsiy Houghon, MI 4993 Spmbr, 0 OVERVIEW Exprimnaion involvs h masurmn of raw daa in h laboraory or fild I is assumd

More information

XV Exponential and Logarithmic Functions

XV Exponential and Logarithmic Functions MATHEMATICS 0-0-RE Dirnial Calculus Marin Huard Winr 08 XV Eponnial and Logarihmic Funcions. Skch h graph o h givn uncions and sa h domain and rang. d) ) ) log. Whn Sarah was born, hr parns placd $000

More information

Homework #2: CMPT-379 Distributed on Oct 2; due on Oct 16 Anoop Sarkar

Homework #2: CMPT-379 Distributed on Oct 2; due on Oct 16 Anoop Sarkar Homwork #2: CMPT-379 Disribud on Oc 2 du on Oc 16 Anoop Sarkar anoop@cs.su.ca Rading or his homwork includs Chp 4 o h Dragon book. I ndd, rr o: hp://ldp.org/howto/lx-yacc-howto.hml Only submi answrs or

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information

Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct

Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct Qus Journals Journal of Rsarch in Applid Mahmaics Volum ~ Issu (5 pp: -5 ISSN(Onlin : 94-74 ISSN (Prin:94-75 www.usjournals.org Rsarch Papr Asympoic Soluions of Fifh Ordr Criically Dampd Nonlinar Sysms

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 4/25/2011. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 4/25/2011. UW Madison conomics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 4/25/2011 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 21 1 Th Mdium Run ε = P * P Thr ar wo ways in which

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

A Polynomial-Space Exact Algorithm for TSP in Degree-8 Graphs

A Polynomial-Space Exact Algorithm for TSP in Degree-8 Graphs A Polynomial-Spac Exac Algorihm for TSP in Dgr-8 Graphs Norhazwani Md Yunos Alksandar Shurbski Hiroshi Nagamochi Dparmn of Applid Mahmaics and Physics, Gradua School of Informaics, Kyoo Unirsiy {wani,

More information

Advanced Queueing Theory. M/G/1 Queueing Systems

Advanced Queueing Theory. M/G/1 Queueing Systems Advand Quung Thory Ths slds ar rad by Dr. Yh Huang of Gorg Mason Unvrsy. Sudns rgsrd n Dr. Huang's ourss a GMU an ma a sngl mahn-radabl opy and prn a sngl opy of ah sld for hr own rfrn, so long as ah sld

More information

The University of Alabama in Huntsville Electrical and Computer Engineering Homework #4 Solution CPE Spring 2008

The University of Alabama in Huntsville Electrical and Computer Engineering Homework #4 Solution CPE Spring 2008 Th Univrsity of Alabama in Huntsvill Elctrical and Comutr Enginring Homwork # Solution CE 6 Sring 8 Chatr : roblms ( oints, ( oints, ( oints, 8( oints, ( oints. You hav a RAID systm whr failurs occur at

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Midterm Examination (100 pts)

Midterm Examination (100 pts) Econ 509 Spring 2012 S.L. Parn Midrm Examinaion (100 ps) Par I. 30 poins 1. Dfin h Law of Diminishing Rurns (5 ps.) Incrasing on inpu, call i inpu x, holding all ohr inpus fixd, on vnuall runs ino h siuaion

More information

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems MCE503: Modling and Simulation o Mchatronic Systms Discussion on Bond Graph Sign Convntions or Elctrical Systms Hanz ichtr, PhD Clvland Stat Univrsity, Dpt o Mchanical Enginring 1 Basic Assumption In a

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information