Computability in Europe 2006 Clocking Type-2 Computation in the Unit Cost Model

Size: px
Start display at page:

Download "Computability in Europe 2006 Clocking Type-2 Computation in the Unit Cost Model"

Transcription

1 Computability in Europe 2006 Clocking Type-2 Computation in the Unit Cost Model Chung-Chih Li Illinois State University Normal, Illinois, USA July 4,

2 Types Bertrand Russell ( ) Type-0: N (natural numbers). 0, 1, 2, 3... Type-1: functions, N N. f(x) = x 2, g(x) = 1 3 x3 Type-2: functionals, (N N) (N N). Mapping from type-1 objects to type-1 objects. ( x 2 ) = 1 3 x3 Type-0 Type-1 Type-2. 2

3 Some more Examples 1. Γ(f) = f f. Γ : (N N) (N N) 2. F (f, x) = f(x). F : (N N) N N 3. G(f, x) = x i=0 f(i). G : (N N) N N 4. H(f, x) = µi [f(i) = x]. H : (N N) N N How difficult are they to compute? 3

4 Formalisms for computing at type-1 A function (N N) is computable iff it is λ-definable (A. Church), or recursively definable (K. Gödel/S. Kleene), or Turing machine computable (A. Turing), or you name it!! Church-Turing Thesis: All algorithms are computable!! While any reasonable formalisms yields the same computable class, a machine model can provide an intuitive understanding of computational complexity. 4

5 The Foundations of Classical Type-1 Complexity Theory ϕ i i N : an acceptable indexing, Φ i i N : a complexity measure. 1. Complexity Class [HS65]: { C(t) = f e [ ϕ e = f x t : N N, a computable resource bound. ( )]} Φ e (x) t( x ). x, the size of the representation of x, e.g., x log 2 (x). 2. Axiomization (Abstract Complexity Measure [Blu67]) Axiom 1: e, x N[ϕ e (x) Φ e (x) ]. { } Axiom 2: (e, x, m) Φ e (x) m is recursive. 5

6 Type-1 Complexity Theory t g Gap t Union Speedup Compression (Honesty) Polynomial Hierarchy P feasible NP? 6

7 By Union Theorem (McCreight and Meyer [MM69]): For any computable f : N N, there is a computable t : N N such that C(t) = O(f), where O(f) = C(af + b). a,b N There is a computable t : N N such that, C(t) = O(1) O(n) O(n 2 ) O(n 3 ) = P. There is a computable t : N N such that, C(t) = EXP. 7

8 How about Type-2 Computation? Good News: Oracle Turing Machine (OTM) a widely accepted machine model for type-2 computation. 8

9 Oracle Turing Machine [Tur39] Input, x N Oracle f query TM M answer M f (x) = y y N, output Cook Reduction [Coo71] M SAT (x) = 1 if x TSP ; 0 otherwise, 9

10 Computable F : (N N) N N Oracle Turing Machines (OTMs) Type-1 input, f : N N Type-0 input, x N Oracle f query TM M answer y N, output F (f, x) = M f (x) = y 10

11 Bad News: There is no corresponding Church-Turing thesis at type-2. if f = g then return 1; else return 0; How to handle finitely many type-1 inputs? How to patch our program on finitely many bad type-1 inputs? What should be a workable notion of asymptotic computations? How to clock a machine? to shut down? What is the sort of clocks (bounds) for type-2 computations? Why POTM (Polynomial-time OTM) [CK89, Coo91] isn t so nice? 11

12 Type-2 Complexity Theory C(T ) =? T =?????? 40 years after, still stuck!!? L Feasible? BFF 2 feasible 12

13 Our solutions: (Time/Space) constructible bounds (clocks) Type-2 Time Bounds (T 2 TB) T 2 TB: F N N... convergent... Finite compact in... Let β T 2 TB. C(β) = where E e,β = {(f, x) { } ϕ e E e,β is compact, } ϕ e,β (f, x). 13

14 A Clocked Oracle Turing Machine Type-1 input, f : N N Type-0 input, x N Clock β Oracle f query answer TM, M e $Budget$ if budget 0 bϕ e,β (f, x) y N, output bϕ e,β (f, x) = bϕ e (f, x) = y bϕ e,β : (N N) N N 14

15 β T 2 TB is Locking Detectable if β has a locking detector l such that, l : F N {0, 1} is recursive and for every total function f, finite function σ, and x N, we have 1. l(σ, x) = 1 = β(σ, x). 2. lim σ f l(σ, x) = 1. Theorem: There is an effective operator Θ : T 2 TB T 2 TB such that, for every β T 2 TB, we have C(β) = C(Θ(β)) 15

16 Theorem: Basic Hierarchy [ ] β 1, β 2 T 2 TB β 1 β 2 = C(β 1 ) C(β 2 ). Question: Is there any effective operator Θ such that, for any β T 2 TB, we have C(β) C(Θ(β)) C(Θ 2 (β)) C(Θ 3 (β))? The classical Operator Gap Theorem [Con72, You73] says NO to the type-1 complexity classes. 16

17 Answer-Length cost model vs. Unit cost model Type-1 input, f : N N Type-0 input, x N Clock β Oracle f query TM, M e $Budget$ if budget 0 bϕ e,β (f, x) y N, output bϕ e,β (f, x) = bϕ e (f, x) = y C A (β) vs. C U (β) 17

18 Theorem: (Weak Type-2 Gap Theorem) Given any strictly increasing recursive function g : N N, there exists β T 2 TB such that, C A (β) = C A (g β). Theorem: (Anti-Gap Theorem I) For every β T 2 TB, there exists a recursive function g : N N such that C U (β) C U (g β). Theorem: (Weak Anti-Gap Theorem II) Suppose g : N N is recursive and, for every x N, g(x) 3x. Then, for every strong β T 2 TB, C U (β) C U (g β). 18

19 Theorem: (Inflation Theorem) There is a recursive operator Θ such that, for each β T 2 TB, we have Θ(β) T 2 TB and C(β) C(Θ(β)). Corollary: (Compression Theorem) C(β) C(Θ(β)) C(Θ 2 (β)) C(Θ 3 (β)) Hold in both models 19

20 Just like at type-1, the union of arbitrary complexity classes fail to be a complexity class in general. Theorem: There exist β 1, β 2 T 2 TB such that, α T 2 TB, C(α) C(β 1 ) C(β 2 ). Theorem: BFF 2 is not type-2 complexity class, i.e., β T 2 TB[C(β) BFF 2 ]. 20

21 The Union Theorem (McCreight and Meyer [MM69]) Theorem: Given any sequence of recursive functions f 0, f 1, f 2,... such that, (i) λi, x.f i (x) is recursive, and (ii) f 0 f 1 f 2 there is a recursive function g such that C(g) = i N The conditions are rather weak. C(f i ). P, P SP ACE, EXP, Big-O(t), ect., are all complexity classes. 21

22 Definitions: (Oh! They are too ugly to be seen clearly!!) Let β i denote a sequence of type-2 time bounds β 0, β 1, β 2, We say that β i is uniform if and only if λi, σ, x.β i (σ, x) is recursive. 2. We say that β i is ascending if and only if, for all i N, β i β i We say that β i is useful if and only if, for all i N, β i is useful. 4. We say that β i is convergent if and only if, for every (f, x) T N, there is a σ f such that, β i (σ, x) for every i N. 5. We say that β i is uniformly convergent if and only if, for every n N and (σ, x) F N, if β n (σ, x), then for all i N, β i (σ, x). 6. We say that β i is strongly convergent if and only if β i is uniformly convergent and there is a recursive locking detector for β 0. 22

23 Under answer-length cost model Theorem: (Type-2 Union Theorem) Suppose that β i is (i) uniform, (2) ascending, (3) useful, (4) strongly convergent. Then, there is an α T 2 TB such that, C A (α) = C A ( β i ). 23

24 Type-2 Big-O Given β T 2 TB, define { } O(β) = ϕ e ϕ e C(cβ + d) for some c, d N. Under unit cost model Theorem: For every β T 2 TB, O(β) is not a complexity class under unit-cost model. 24

25 Conclusion and current and future study The two different models give two very different type-2 complexity theories. What is the notion of honesty at type-2? Speedup theorems? 25

26 References [Blu67] Manuel Blum. A machine-independent theory of the complexity of recursive functions. Journal of the ACM, 14(2): , [CK89] Stephen A. Cook and Bruce M. Kapron. Characterization of the basic feasible functions of finite type. Proceedings of the 30th Annual IEEE Symposium on the Foundations of Computer Science, pages , [Con72] Robert L. Constable. The operator gap. Journal of the ACM, 19: , [Coo71] [Coo91] [HS65] [MM69] [Tur39] [You73] Stephen Cook. The complexity of theorem proving procedures. Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing, pages , Stephen A. Cook. Computability and complexity of higher type functions. In Y. N. Mpschovakis, editor, Logic from Computer Science, pages Springer-Verlag, J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transitions of the American Mathematics Society, pages , May E. McCreight and A. R. Meyer. Classes of computable functions defined by bounds on computation. Proceedings of the First ACM Symposium on the Theory of Computing, pages 79 88, Alan M. Turing. System of logic based on ordinals. Proceedings of the London Mathematical Society, 45: , Paul Young. Easy construction in complexity theory: Gap and speed-up theorems. Proceedings of the American Mathematical Society, 37(2): , February

Speed-up Theorems in Type-2 Computation

Speed-up Theorems in Type-2 Computation Speed-up Theorems in Type-2 Computation Chung-Chih Li School of Information Technology Illinois State University, Normal, IL 61790-5150, USA cli2@ilstu.edu Abstract. A classic result known as the speed-up

More information

On Type-2 Complexity Classes

On Type-2 Complexity Classes 123 On Type-2 Complexity Classes Preliminary Report Chung-Chih Li James S. Royer Abstract There are now a number of things called higher-type complexity classes. The most promenade of these is the class

More information

Speed-up Theorems in Type-2 Computations Using Oracle Turing Machines

Speed-up Theorems in Type-2 Computations Using Oracle Turing Machines Speed-up Theorems in Type-2 Computations Using Oracle Turing Machines Chung-Chih Li School of Information Technology Illinois State University, Normal, IL 61790-5150, USA cli2@ilstu.edu Abstract. A classic

More information

Automata Theory. Definition. Computational Complexity Theory. Computability Theory

Automata Theory. Definition. Computational Complexity Theory. Computability Theory Outline THEORY OF COMPUTATION CS363, SJTU What is Theory of Computation? History of Computation Branches and Development Xiaofeng Gao Dept. of Computer Science Shanghai Jiao Tong University 2 The Essential

More information

Author Query Form. Page 1 of 1. Many thanks for your assistance. Journal:

Author Query Form. Page 1 of 1. Many thanks for your assistance. Journal: Author Query Form Journal: Article ID: TOCS 9182 Please send your responses together with your list of corrections via web (preferred), or send the completed form and your marked proof to: Akademijos 4,

More information

SEPARATING NOTIONS OF HIGHER-TYPE POLYNOMIAL-TIME. Robert Irwin Syracuse University Bruce Kapron University of Victoria Jim Royer Syracuse University

SEPARATING NOTIONS OF HIGHER-TYPE POLYNOMIAL-TIME. Robert Irwin Syracuse University Bruce Kapron University of Victoria Jim Royer Syracuse University SEPARATING NOTIONS OF HIGHER-TYPE POLYNOMIAL-TIME Robert Irwin Syracuse University Bruce Kapron University of Victoria Jim Royer Syracuse University FUNCTIONALS & EFFICIENCY Question: Suppose you have

More information

Introduction to Complexity Theory. Bernhard Häupler. May 2, 2006

Introduction to Complexity Theory. Bernhard Häupler. May 2, 2006 Introduction to Complexity Theory Bernhard Häupler May 2, 2006 Abstract This paper is a short repetition of the basic topics in complexity theory. It is not intended to be a complete step by step introduction

More information

The basic feasible functionals in computable analysis

The basic feasible functionals in computable analysis Journal of Complexity 22 (2006) 909 917 www.elsevier.com/locate/jco The basic feasible functionals in computable analysis Branimir Lambov a,b, a BRICS, University of Aarhus, IT Parken, 8200 Aarhus N, Denmark

More information

Mitosis in Computational Complexity

Mitosis in Computational Complexity Mitosis in Computational Complexity Christian Glaßer 1, A. Pavan 2, Alan L. Selman 3, and Liyu Zhang 4 1 Universität Würzburg, glasser@informatik.uni-wuerzburg.de 2 Iowa State University, pavan@cs.iastate.edu

More information

258 Handbook of Discrete and Combinatorial Mathematics

258 Handbook of Discrete and Combinatorial Mathematics 258 Handbook of Discrete and Combinatorial Mathematics 16.3 COMPUTABILITY Most of the material presented here is presented in far more detail in the texts of Rogers [R], Odifreddi [O], and Soare [S]. In

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1 U.C. Berkeley CS278: Computational Complexity Handout N1 Professor Luca Trevisan August 30, 2004 Notes for Lecture 1 This course assumes CS170, or equivalent, as a prerequisite. We will assume that the

More information

Some Applications of Logic to Feasibility in Higher Types

Some Applications of Logic to Feasibility in Higher Types Some Applications of Logic to Feasibility in Higher Types ALEKSANDAR IGNJATOVIC and ARUN SHARMA The University of New South Wales While it is commonly accepted that computability on a Turing machine in

More information

Bi-Immunity Separates Strong NP-Completeness Notions

Bi-Immunity Separates Strong NP-Completeness Notions Bi-Immunity Separates Strong NP-Completeness Notions A. Pavan 1 and Alan L Selman 2 1 NEC Research Institute, 4 Independence way, Princeton, NJ 08540. apavan@research.nj.nec.com 2 Department of Computer

More information

Reducibility in polynomialtime computable analysis. Akitoshi Kawamura (U Tokyo) Wadern, Germany, September 24, 2015

Reducibility in polynomialtime computable analysis. Akitoshi Kawamura (U Tokyo) Wadern, Germany, September 24, 2015 Reducibility in polynomialtime computable analysis Akitoshi Kawamura (U Tokyo) Wadern, Germany, September 24, 2015 Computable Analysis Applying computability / complexity theory to problems involving real

More information

NP-completeness was introduced by Stephen Cook in 1971 in a foundational paper.

NP-completeness was introduced by Stephen Cook in 1971 in a foundational paper. NP Completeness NP-completeness was introduced by Stephen Cook in 1971 in a foundational paper. Leonid Levin independently introduced the same concept and proved that a variant of SAT is NP-complete. 1.

More information

AN INTRODUCTION TO COMPUTABILITY THEORY

AN INTRODUCTION TO COMPUTABILITY THEORY AN INTRODUCTION TO COMPUTABILITY THEORY CINDY CHUNG Abstract. This paper will give an introduction to the fundamentals of computability theory. Based on Robert Soare s textbook, The Art of Turing Computability:

More information

α-recursion Theory and Ordinal Computability

α-recursion Theory and Ordinal Computability α-recursion Theory and Ordinal Computability by Peter Koepke University of Bonn 1 3. 2. 2007 Abstract Motivated by a talk of S. D. Friedman at BIWOC we show that the α-recursive and α-recursively enumerable

More information

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

About the relationship between formal logic and complexity classes

About the relationship between formal logic and complexity classes About the relationship between formal logic and complexity classes Working paper Comments welcome; my email: armandobcm@yahoo.com Armando B. Matos October 20, 2013 1 Introduction We analyze a particular

More information

Probabilistic Autoreductions

Probabilistic Autoreductions Probabilistic Autoreductions Liyu Zhang University of Texas Rio Grande Valley Joint Work with Chen Yuan and Haibin Kan SOFSEM 2016 1 Overview Introduction to Autoreducibility Previous Results Main Result

More information

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity CSE 531: Computational Complexity I Winter 2016 Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity January 22, 2016 Lecturer: Paul Beame Scribe: Paul Beame Diagonalization enabled us to separate

More information

: On the P vs. BPP problem. 30/12/2016 Lecture 11

: On the P vs. BPP problem. 30/12/2016 Lecture 11 03684155: On the P vs. BPP problem. 30/12/2016 Lecture 11 Promise problems Amnon Ta-Shma and Dean Doron 1 Definitions and examples In a promise problem, we are interested in solving a problem only on a

More information

Non-Deterministic Time

Non-Deterministic Time Non-Deterministic Time Master Informatique 2016 1 Non-Deterministic Time Complexity Classes Reminder on DTM vs NDTM [Turing 1936] (q 0, x 0 ) (q 1, x 1 ) Deterministic (q n, x n ) Non-Deterministic (q

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

Separating NE from Some Nonuniform Nondeterministic Complexity Classes

Separating NE from Some Nonuniform Nondeterministic Complexity Classes Separating NE from Some Nonuniform Nondeterministic Complexity Classes Bin Fu 1, Angsheng Li 2, and Liyu Zhang 3 1 Dept. of Computer Science, University of Texas - Pan American TX 78539, USA. binfu@cs.panam.edu

More information

1 Deterministic Turing Machines

1 Deterministic Turing Machines Time and Space Classes Exposition by William Gasarch 1 Deterministic Turing Machines Turing machines are a model of computation. It is believed that anything that can be computed can be computed by a Turing

More information

Limitations of Efficient Reducibility to the Kolmogorov Random Strings

Limitations of Efficient Reducibility to the Kolmogorov Random Strings Limitations of Efficient Reducibility to the Kolmogorov Random Strings John M. HITCHCOCK 1 Department of Computer Science, University of Wyoming Abstract. We show the following results for polynomial-time

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

On the non-existence of maximal inference degrees for language identification

On the non-existence of maximal inference degrees for language identification On the non-existence of maximal inference degrees for language identification Sanjay Jain Institute of Systems Science National University of Singapore Singapore 0511 Republic of Singapore sanjay@iss.nus.sg

More information

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy A Note on the Karp-Lipton Collapse for the Exponential Hierarchy Chris Bourke Department of Computer Science & Engineering University of Nebraska Lincoln, NE 68503, USA Email: cbourke@cse.unl.edu January

More information

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs Any Expression φ Can Be Converted into CNFs and DNFs φ = x j : This is trivially true. φ = φ 1 and a CNF is sought: Turn φ 1 into a DNF and apply de Morgan s laws to make a CNF for φ. φ = φ 1 and a DNF

More information

On NP-Completeness for Linear Machines

On NP-Completeness for Linear Machines JOURNAL OF COMPLEXITY 13, 259 271 (1997) ARTICLE NO. CM970444 On NP-Completeness for Linear Machines Christine Gaßner* Institut für Mathematik und Informatik, Ernst-Moritz-Arndt-Universität, F.-L.-Jahn-Strasse

More information

DRAFT. Diagonalization. Chapter 4

DRAFT. Diagonalization. Chapter 4 Chapter 4 Diagonalization..the relativized P =?NP question has a positive answer for some oracles and a negative answer for other oracles. We feel that this is further evidence of the difficulty of the

More information

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in Oracle Turing Machines Nondeterministic OTM defined in the same way (transition relation, rather than function) oracle is like a subroutine, or function in your favorite PL but each call counts as single

More information

Autoreducibility of NP-Complete Sets under Strong Hypotheses

Autoreducibility of NP-Complete Sets under Strong Hypotheses Autoreducibility of NP-Complete Sets under Strong Hypotheses John M. Hitchcock and Hadi Shafei Department of Computer Science University of Wyoming Abstract We study the polynomial-time autoreducibility

More information

Foundations of Computation. Ana Bove

Foundations of Computation. Ana Bove Foundations of Computation Ana Bove Programming Logic (ProgLog) Group February 13th 2018 Outline of the talk: What we do in ProgLog Origines of computer science Courses in the area Warming-up Exercise

More information

Computational Complexity: A Modern Approach. Draft of a book: Dated January 2007 Comments welcome!

Computational Complexity: A Modern Approach. Draft of a book: Dated January 2007 Comments welcome! i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University complexitybook@gmail.com Not to be reproduced or distributed

More information

6-1 Computational Complexity

6-1 Computational Complexity 6-1 Computational Complexity 6. Computational Complexity Computational models Turing Machines Time complexity Non-determinism, witnesses, and short proofs. Complexity classes: P, NP, conp Polynomial-time

More information

ON THE STRUCTURE OF BOUNDED QUERIES TO ARBITRARY NP SETS

ON THE STRUCTURE OF BOUNDED QUERIES TO ARBITRARY NP SETS ON THE STRUCTURE OF BOUNDED QUERIES TO ARBITRARY NP SETS RICHARD CHANG Abstract. Kadin [6] showed that if the Polynomial Hierarchy (PH) has infinitely many levels, then for all k, P SAT[k] P SAT[k+1].

More information

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005 Complexity Theory Knowledge Representation and Reasoning November 2, 2005 (Knowledge Representation and Reasoning) Complexity Theory November 2, 2005 1 / 22 Outline Motivation Reminder: Basic Notions Algorithms

More information

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018 CS 301 Lecture 17 Church Turing thesis Stephen Checkoway March 19, 2018 1 / 17 An abridged modern history of formalizing algorithms An algorithm is a finite, unambiguous sequence of steps for solving a

More information

: Computational Complexity Lecture 3 ITCS, Tsinghua Univesity, Fall October 2007

: Computational Complexity Lecture 3 ITCS, Tsinghua Univesity, Fall October 2007 80240233: Computational Complexity Lecture 3 ITCS, Tsinghua Univesity, Fall 2007 16 October 2007 Instructor: Andrej Bogdanov Notes by: Jialin Zhang and Pinyan Lu In this lecture, we introduce the complexity

More information

Lecture 1: Course Overview and Turing machine complexity

Lecture 1: Course Overview and Turing machine complexity CSE 531: Computational Complexity I Winter 2016 Lecture 1: Course Overview and Turing machine complexity January 6, 2016 Lecturer: Paul Beame Scribe: Paul Beame 1 Course Outline 1. Basic properties of

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 15 Ana Bove May 17th 2018 Recap: Context-free Languages Chomsky hierarchy: Regular languages are also context-free; Pumping lemma

More information

NP Completeness. Richard Karp, 1972.

NP Completeness. Richard Karp, 1972. NP Completeness In this paper we give theorems that suggest, but do not imply, that these problems as well as many others, will remain intractable perpetually. Richard Karp, 1972. Reductions At the heart

More information

Tape encoding of lists of numbers

Tape encoding of lists of numbers L7 74 We ve seen that a Turing machine s computation can be implemented by a register machine. The converse holds: the computation of a register machine can be implemented by a Turing machine. To make

More information

Polynomial Hierarchy

Polynomial Hierarchy Polynomial Hierarchy A polynomial-bounded version of Kleene s Arithmetic Hierarchy becomes trivial if P = NP. Karp, 1972 Computational Complexity, by Fu Yuxi Polynomial Hierarchy 1 / 44 Larry Stockmeyer

More information

conp, Oracles, Space Complexity

conp, Oracles, Space Complexity conp, Oracles, Space Complexity 1 What s next? A few possibilities CS161 Design and Analysis of Algorithms CS254 Complexity Theory (next year) CS354 Topics in Circuit Complexity For your favorite course

More information

Lecture 3: Reductions and Completeness

Lecture 3: Reductions and Completeness CS 710: Complexity Theory 9/13/2011 Lecture 3: Reductions and Completeness Instructor: Dieter van Melkebeek Scribe: Brian Nixon Last lecture we introduced the notion of a universal Turing machine for deterministic

More information

Review of Basic Computational Complexity

Review of Basic Computational Complexity Lecture 1 Review of Basic Computational Complexity March 30, 2004 Lecturer: Paul Beame Notes: Daniel Lowd 1.1 Preliminaries 1.1.1 Texts There is no one textbook that covers everything in this course. Some

More information

A Note on Bootstrapping Intuitionistic Bounded Arithmetic

A Note on Bootstrapping Intuitionistic Bounded Arithmetic A Note on Bootstrapping Intuitionistic Bounded Arithmetic SAMUEL R. BUSS Department of Mathematics University of California, San Diego Abstract This paper, firstly, discusses the relationship between Buss

More information

Non-Approximability Results (2 nd part) 1/19

Non-Approximability Results (2 nd part) 1/19 Non-Approximability Results (2 nd part) 1/19 Summary - The PCP theorem - Application: Non-approximability of MAXIMUM 3-SAT 2/19 Non deterministic TM - A TM where it is possible to associate more than one

More information

Short Introduction to Admissible Recursion Theory

Short Introduction to Admissible Recursion Theory Short Introduction to Admissible Recursion Theory Rachael Alvir November 2016 1 Axioms of KP and Admissible Sets An admissible set is a transitive set A satisfying the axioms of Kripke-Platek Set Theory

More information

Final exam study sheet for CS3719 Turing machines and decidability.

Final exam study sheet for CS3719 Turing machines and decidability. Final exam study sheet for CS3719 Turing machines and decidability. A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine is a 6-tuple M = (Q, Σ, Γ, δ, q 0,

More information

The Church-Turing Thesis and Relative Recursion

The Church-Turing Thesis and Relative Recursion The Church-Turing Thesis and Relative Recursion Yiannis N. Moschovakis UCLA and University of Athens Amsterdam, September 7, 2012 The Church -Turing Thesis (1936) in a contemporary version: CT : For every

More information

Time-Space Tradeoffs for SAT

Time-Space Tradeoffs for SAT Lecture 8 Time-Space Tradeoffs for SAT April 22, 2004 Lecturer: Paul Beame Notes: Definition 8.1. TIMESPACE(T (n), S(n)) = {L {0, 1} offline, multitape TM M such that L = L(M) and M uses time O(T (n))

More information

ECE 695 Numerical Simulations Lecture 2: Computability and NPhardness. Prof. Peter Bermel January 11, 2017

ECE 695 Numerical Simulations Lecture 2: Computability and NPhardness. Prof. Peter Bermel January 11, 2017 ECE 695 Numerical Simulations Lecture 2: Computability and NPhardness Prof. Peter Bermel January 11, 2017 Outline Overview Definitions Computing Machines Church-Turing Thesis Polynomial Time (Class P)

More information

Introduction to Turing Machines

Introduction to Turing Machines Introduction to Turing Machines Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 12 November 2015 Outline 1 Turing Machines 2 Formal definitions 3 Computability

More information

Uniformly Hard Languages

Uniformly Hard Languages Uniformly Hard Languages Rod Downey Victoria University Lance Fortnow University of Chicago February 17, 2014 Abstract Ladner [18] showed that there are no minimal recursive sets under polynomial-time

More information

Comparing Reductions to NP-Complete Sets

Comparing Reductions to NP-Complete Sets Comparing Reductions to NP-Complete Sets John M. Hitchcock A. Pavan Abstract Under the assumption that NP does not have p-measure 0, we investigate reductions to NP-complete sets and prove the following:

More information

Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death Robbie Hott www.cs.virginia.edu/~jh2jf Department of Computer Science University of Virginia

More information

Portland, ME 04103, USA IL 60637, USA. Abstract. Buhrman and Torenvliet created an oracle relative to which

Portland, ME 04103, USA IL 60637, USA. Abstract. Buhrman and Torenvliet created an oracle relative to which Beyond P NP = NEXP Stephen A. Fenner 1? and Lance J. Fortnow 2?? 1 University of Southern Maine, Department of Computer Science 96 Falmouth St., Portland, ME 04103, USA E-mail: fenner@usm.maine.edu, Fax:

More information

This is an author produced version of Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise Classes..

This is an author produced version of Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise Classes.. This is an author produced version of Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise Classes.. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74777/

More information

Polynomial-Time Random Oracles and Separating Complexity Classes

Polynomial-Time Random Oracles and Separating Complexity Classes Polynomial-Time Random Oracles and Separating Complexity Classes John M. Hitchcock Department of Computer Science University of Wyoming jhitchco@cs.uwyo.edu Adewale Sekoni Department of Computer Science

More information

The Cook-Levin Theorem

The Cook-Levin Theorem An Exposition Sandip Sinha Anamay Chaturvedi Indian Institute of Science, Bangalore 14th November 14 Introduction Deciding a Language Let L {0, 1} be a language, and let M be a Turing machine. We say M

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 20.1 Introduction Definition 20.1.1 We say that an algorithm runs in polynomial time if its running

More information

On Unique Satisfiability and Randomized Reductions. Department of Computer Science, Cornell University Ithaca, New York 14853, USA

On Unique Satisfiability and Randomized Reductions. Department of Computer Science, Cornell University Ithaca, New York 14853, USA On Unique Satisfiability and Randomized Reductions Richard Chang Pankaj Rohatgi Department of Computer Science, Cornell University Ithaca, New York 14853, USA Abstract Ever since Valiant and Vazirani [VV86]

More information

Definition: conp = { L L NP } What does a conp computation look like?

Definition: conp = { L L NP } What does a conp computation look like? Space Complexity 28 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string y of x k length and the machine accepts

More information

Turing Machines, diagonalization, the halting problem, reducibility

Turing Machines, diagonalization, the halting problem, reducibility Notes on Computer Theory Last updated: September, 015 Turing Machines, diagonalization, the halting problem, reducibility 1 Turing Machines A Turing machine is a state machine, similar to the ones we have

More information

Derandomizing from Random Strings

Derandomizing from Random Strings Derandomizing from Random Strings Harry Buhrman CWI and University of Amsterdam buhrman@cwi.nl Lance Fortnow Northwestern University fortnow@northwestern.edu Michal Koucký Institute of Mathematics, AS

More information

Reductions for One-Way Functions

Reductions for One-Way Functions Reductions for One-Way Functions by Mark Liu A thesis submitted in partial fulfillment of the requirements for degree of Bachelor of Science (Honors Computer Science) from The University of Michigan 2013

More information

An algorithm for the satisfiability problem of formulas in conjunctive normal form

An algorithm for the satisfiability problem of formulas in conjunctive normal form Journal of Algorithms 54 (2005) 40 44 www.elsevier.com/locate/jalgor An algorithm for the satisfiability problem of formulas in conjunctive normal form Rainer Schuler Abt. Theoretische Informatik, Universität

More information

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 We now embark on a study of computational classes that are more general than NP. As these classes

More information

Generalized Lowness and Highness and Probabilistic Complexity Classes

Generalized Lowness and Highness and Probabilistic Complexity Classes Generalized Lowness and Highness and Probabilistic Complexity Classes Andrew Klapper University of Manitoba Abstract We introduce generalized notions of low and high complexity classes and study their

More information

, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor, Michigan

, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor, Michigan SIAM J. COMPUT. Vol. 13, No. 4, November 1984 (C) 1984 Society for Industrial and Applied Mathematics 002 EQUIVALENCE RELATIONS, INVARIANTS, AND NORMAL FORMS* ANDREAS BLASS" AND YURI GUREVICH* Abstract.

More information

Notes for Lecture 3... x 4

Notes for Lecture 3... x 4 Stanford University CS254: Computational Complexity Notes 3 Luca Trevisan January 18, 2012 Notes for Lecture 3 In this lecture we introduce the computational model of boolean circuits and prove that polynomial

More information

Lecture 7: Polynomial time hierarchy

Lecture 7: Polynomial time hierarchy Computational Complexity Theory, Fall 2010 September 15 Lecture 7: Polynomial time hierarchy Lecturer: Kristoffer Arnsfelt Hansen Scribe: Mads Chr. Olesen Recall that adding the power of alternation gives

More information

Quantum Computing. Part I. Thorsten Altenkirch

Quantum Computing. Part I. Thorsten Altenkirch Quantum Computing Part I Thorsten Altenkirch Is Computation universal? Alonzo Church - calculus Alan Turing Turing machines computable functions The Church-Turing thesis All computational formalisms define

More information

Lecture 16: Time Complexity and P vs NP

Lecture 16: Time Complexity and P vs NP 6.045 Lecture 16: Time Complexity and P vs NP 1 Time-Bounded Complexity Classes Definition: TIME(t(n)) = { L there is a Turing machine M with time complexity O(t(n)) so that L = L(M) } = { L L is a language

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

A Note on Many-One and 1-Truth-Table Complete Languages

A Note on Many-One and 1-Truth-Table Complete Languages Syracuse University SURFACE Electrical Engineering and Computer Science Technical Reports College of Engineering and Computer Science 12-15-1991 A Note on Many-One and 1-Truth-Table Complete Languages

More information

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Compute the Fourier transform on the first register to get x {0,1} n x 0. CS 94 Recursive Fourier Sampling, Simon s Algorithm /5/009 Spring 009 Lecture 3 1 Review Recall that we can write any classical circuit x f(x) as a reversible circuit R f. We can view R f as a unitary

More information

Identifying an Honest EXP NP Oracle Among Many

Identifying an Honest EXP NP Oracle Among Many Identifying an Honest EXP NP Oracle Among Many Shuichi Hirahara The University of Tokyo CCC 18/6/2015 Overview Dishonest oracle Honest oracle Queries Which is honest? Our Contributions Selector 1. We formulate

More information

On the NP-Completeness of the Minimum Circuit Size Problem

On the NP-Completeness of the Minimum Circuit Size Problem On the NP-Completeness of the Minimum Circuit Size Problem John M. Hitchcock Department of Computer Science University of Wyoming A. Pavan Department of Computer Science Iowa State University Abstract

More information

On Fixed Point Equations over Commutative Semirings

On Fixed Point Equations over Commutative Semirings On Fixed Point Equations over Commutative Semirings Javier Esparza, Stefan Kiefer, and Michael Luttenberger Universität Stuttgart Institute for Formal Methods in Computer Science Stuttgart, Germany {esparza,kiefersn,luttenml}@informatik.uni-stuttgart.de

More information

2. Notation and Relative Complexity Notions

2. Notation and Relative Complexity Notions 1. Introduction 1 A central issue in computational complexity theory is to distinguish computational problems that are solvable using efficient resources from those that are inherently intractable. Computer

More information

Theoretical Cryptography, Lectures 18-20

Theoretical Cryptography, Lectures 18-20 Theoretical Cryptography, Lectures 18-20 Instructor: Manuel Blum Scribes: Ryan Williams and Yinmeng Zhang March 29, 2006 1 Content of the Lectures These lectures will cover how someone can prove in zero-knowledge

More information

On Modal Logics of Partial Recursive Functions

On Modal Logics of Partial Recursive Functions arxiv:cs/0407031v1 [cs.lo] 12 Jul 2004 On Modal Logics of Partial Recursive Functions Pavel Naumov Computer Science Pennsylvania State University Middletown, PA 17057 naumov@psu.edu June 14, 2018 Abstract

More information

The P-vs-NP problem. Andrés E. Caicedo. September 10, 2011

The P-vs-NP problem. Andrés E. Caicedo. September 10, 2011 The P-vs-NP problem Andrés E. Caicedo September 10, 2011 This note is based on lecture notes for the Caltech course Math 6c, prepared with A. Kechris and M. Shulman. 1 Decision problems Consider a finite

More information

What are the recursion theoretic properties of a set of axioms? Understanding a paper by William Craig Armando B. Matos

What are the recursion theoretic properties of a set of axioms? Understanding a paper by William Craig Armando B. Matos What are the recursion theoretic properties of a set of axioms? Understanding a paper by William Craig Armando B. Matos armandobcm@yahoo.com February 5, 2014 Abstract This note is for personal use. It

More information

Recursive definitions on surreal numbers

Recursive definitions on surreal numbers Recursive definitions on surreal numbers Antongiulio Fornasiero 19th July 2005 Abstract Let No be Conway s class of surreal numbers. I will make explicit the notion of a function f on No recursively defined

More information

Computability Theory. CS215, Lecture 6,

Computability Theory. CS215, Lecture 6, Computability Theory CS215, Lecture 6, 2000 1 The Birth of Turing Machines At the end of the 19th century, Gottlob Frege conjectured that mathematics could be built from fundamental logic In 1900 David

More information

Lecture 23: Alternation vs. Counting

Lecture 23: Alternation vs. Counting CS 710: Complexity Theory 4/13/010 Lecture 3: Alternation vs. Counting Instructor: Dieter van Melkebeek Scribe: Jeff Kinne & Mushfeq Khan We introduced counting complexity classes in the previous lecture

More information

1 PSPACE-Completeness

1 PSPACE-Completeness CS 6743 Lecture 14 1 Fall 2007 1 PSPACE-Completeness Recall the NP-complete problem SAT: Is a given Boolean formula φ(x 1,..., x n ) satisfiable? The same question can be stated equivalently as: Is the

More information

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY RYAN DOUGHERTY If we want to talk about a program running on a real computer, consider the following: when a program reads an instruction,

More information

Handbook of Logic and Proof Techniques for Computer Science

Handbook of Logic and Proof Techniques for Computer Science Steven G. Krantz Handbook of Logic and Proof Techniques for Computer Science With 16 Figures BIRKHAUSER SPRINGER BOSTON * NEW YORK Preface xvii 1 Notation and First-Order Logic 1 1.1 The Use of Connectives

More information

Lecture 3 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 3 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science March 7, 2016 Lecturer: Ola Svensson Lecture 3 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning Principles of Knowledge Representation and Reasoning Complexity Theory Bernhard Nebel, Malte Helmert and Stefan Wölfl Albert-Ludwigs-Universität Freiburg April 29, 2008 Nebel, Helmert, Wölfl (Uni Freiburg)

More information