- A Bayesian approach

Size: px
Start display at page:

Download "- A Bayesian approach"

Transcription

1 DM in the Constrained MSSM - A Bayesian approach Leszek Roszkowski CERN and Astro Particle Theory and Cosmology Group, Sheffield, England with Roberto Ruiz de Austri (Autonoma Madrid), Joe Silk and Roberto Trotta (Oxford) hep-ph/ JHEP06, hep-ph/ JHEP07, arxiv: and arxiv: SuperBayes package, superbayes.org L. Roszkowski, COSMO-07, 22/08/2007 p.1

2 Outline the Constrained MSSM (CMSSM) limitations of fixed-grid scans Bayesian Analysis of the CMSSM fits of observables mean quality of fit and the CMSSM direct detection of dark matter indirect detection of dark matter summary L. Roszkowski, COSMO-07, 22/08/2007 p.2

3 Constrained MSSM...aka msugra L. Roszkowski, COSMO-07, 22/08/2007 p.3

4 Constrained MSSM...aka msugra At M GUT GeV: gauginos M 1 = M 2 = m eg = m 1/2 (c.f. MSSM) scalars m 2 eq i = me 2 li = m 2 H b = m 2 H t = m linear soft terms A b = A t = A 0 L. Roszkowski, COSMO-07, 22/08/2007 p.3

5 Constrained MSSM...aka msugra At M GUT GeV: gauginos M 1 = M 2 = m eg = m 1/2 (c.f. MSSM) scalars m 2 eq i = me 2 li = m 2 H b = m 2 H t = m linear soft terms A b = A t = A 0 radiative EWSB µ 2 = m 2 H b +Σ (1) b m 2 H t +Σ (1) t tan 2 β 1 tan 2 β m2 Z 2 L. Roszkowski, COSMO-07, 22/08/2007 p.3

6 Constrained MSSM...aka msugra At M GUT GeV: gauginos M 1 = M 2 = m eg = m 1/2 (c.f. MSSM) scalars m 2 eq i = me 2 li = m 2 H b = m 2 H t = m linear soft terms A b = A t = A 0 radiative EWSB µ 2 = m 2 H b +Σ (1) b m 2 H t +Σ (1) t tan 2 β 1 tan 2 β m2 Z 2 five independent parameters: tan β, m 1/2, m 0, A 0, sgn(µ) L. Roszkowski, COSMO-07, 22/08/2007 p.3

7 Constrained MSSM...aka msugra At M GUT GeV: gauginos M 1 = M 2 = m eg = m 1/2 (c.f. MSSM) scalars m 2 eq i = me 2 li = m 2 H b = m 2 H t = m linear soft terms A b = A t = A 0 radiative EWSB µ 2 = m 2 H b +Σ (1) b m 2 H t +Σ (1) t tan 2 β 1 tan 2 β m2 Z 2 five independent parameters: tan β, m 1/2, m 0, A 0, sgn(µ) mass spectra at m Z : run RGEs, 2 loop for g.c. and Y.c, 1-loop for masses some important quantities (µ, m A,...) very sensitive to procedure of computing EWSB & minimizing V H we use SoftSusy and FeynHiggs L. Roszkowski, COSMO-07, 22/08/2007 p.3

8 CMSSM: allowed regions usual fixed-grid scans L. Roszkowski, COSMO-07, 22/08/2007 p.4

9 CMSSM: allowed regions tan β < 45 usual fixed-grid scans L. Roszkowski, COSMO-07, 22/08/2007 p.4

10 CMSSM: allowed regions usual fixed-grid scans tan β < 45 tan β > 45 L. Roszkowski, COSMO-07, 22/08/2007 p.4

11 CMSSM: allowed regions usual fixed-grid scans tan β < 45 tan β > 45 fixed-grid scans, assuming rigid 1σ or 2σ experimental ranges green: consistent with WMAP-3yr (at 2σ) all the rest excluded by LEP, BR( B X s γ), Ω χ h 2, EWSB, charged LSP,... L. Roszkowski, COSMO-07, 22/08/2007 p.4

12 Instead, allowed is this: L. Roszkowski, COSMO-07, 22/08/2007 p.5

13 Instead, allowed is this: Bayesian pdf maps Ruiz, Trotta & Roszkowski (2006) m m 1/2 L. Roszkowski, COSMO-07, 22/08/2007 p.5

14 Instead, allowed is this: Bayesian pdf maps 4 Ruiz, Trotta & Roszkowski (2006) fixed-grid scans m m 1/2 L. Roszkowski, COSMO-07, 22/08/2007 p.5

15 Instead, allowed is this: Bayesian pdf maps 4 Ruiz, Trotta & Roszkowski (2006) fixed-grid scans m m 1/2 Note: In both an outdated SM value of BR( B X s γ) used. See below. L. Roszkowski, COSMO-07, 22/08/2007 p.5

16 Bayesian Analysis of the CMSSM Apply to the CMSSM: L. Roszkowski, COSMO-07, 22/08/2007 p.6

17 Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters L. Roszkowski, COSMO-07, 22/08/2007 p.6

18 Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters L. Roszkowski, COSMO-07, 22/08/2007 p.6

19 Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters ξ = (ξ 1, ξ 2,..., ξ m ): set of derived variables (observables): ξ(m) L. Roszkowski, COSMO-07, 22/08/2007 p.6

20 Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters ξ = (ξ 1, ξ 2,..., ξ m ): set of derived variables (observables): ξ(m) d: data L. Roszkowski, COSMO-07, 22/08/2007 p.6

21 Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters ξ = (ξ 1, ξ 2,..., ξ m ): set of derived variables (observables): ξ(m) d: data Bayes theorem: posterior pdf p(θ, ψ d) = p(d ξ)π(θ,ψ) p(d) p(d ξ): likelihood π(θ, ψ): prior pdf p(d): evidence (normalization factor) posterior = likelihood prior normalization factor L. Roszkowski, COSMO-07, 22/08/2007 p.6

22 Bayesian Analysis of the CMSSM Apply to the CMSSM: m = (θ, ψ): model s all relevant parameters θ: CMSSM parameters: m 1/2, m 0, A 0, tan β ψ: relevant SM parameters nuisance parameters ξ = (ξ 1, ξ 2,..., ξ m ): set of derived variables (observables): ξ(m) d: data Bayes theorem: posterior pdf p(θ, ψ d) = p(d ξ)π(θ,ψ) p(d) p(d ξ): likelihood π(θ, ψ): prior pdf p(d): evidence (normalization factor) posterior = likelihood prior normalization factor usually marginalize over SM (nuisance) parameters ψ p(θ d) L. Roszkowski, COSMO-07, 22/08/2007 p.6

23 Bayesian Analysis of the CMSSM θ = (m 0, m 1/2, A 0, tan β): CMSSM parameters ψ = (M t, m b (m b ) MS, α em (M Z ) MS, α MS s ): SM (nuisance) parameters priors assume flat distributions and ranges as: flat priors: CMSSM parameters 50 GeV < m 0 < 4 TeV 50 GeV < m 1/2 < 4 TeV A 0 < 7 TeV 2 < tan β < 62 flat priors: SM (nuisance) parameters 160 GeV < M t < 190 GeV 4 GeV < m b (m b ) MS < 5 GeV 0.10 < α MS s < < 1/α em (M Z ) MS < vary all 8 (CMSSM+SM) parameters simultaneously, scan with MCMC include all relevant theoretical and experimental errors L. Roszkowski, COSMO-07, 22/08/2007 p.7

24 Experimental Measurements (assume Gaussian distributions) L. Roszkowski, COSMO-07, 22/08/2007 p.8

25 Experimental Measurements SM (nuisance) parameter Mean Error µ σ (expt) M t GeV 2.1 GeV m b (m b ) MS 4.20 GeV 0.07 GeV α MS s /α em (M Z ) MS (assume Gaussian distributions) L. Roszkowski, COSMO-07, 22/08/2007 p.8

26 Experimental Measurements (assume Gaussian distributions) SM (nuisance) parameter Mean Error µ σ (expt) M t GeV 2.1 GeV m b (m b ) MS 4.20 GeV 0.07 GeV α MS s /α em (M Z ) MS new M W = ± GeV (Jan 07, not yet included) new M t = ± 1.8 GeV (Mar 07, not yet included) BR( B X s γ) 10 4 : new SM: 3.15 ± 0.23 (Misiak & Steinhauser, Sept 06) used here Derived observable Mean Errors µ σ (expt) τ (th) M W GeV 29 MeV 15 MeV sin 2 θ eff δa SUSY µ BR( B X s γ) M Bs Ω χ h Ω χ h 2 take as precisely known: M Z = (21) GeV, G F = (1) 10 5 GeV 2 L. Roszkowski, COSMO-07, 22/08/2007 p.8

27 Experimental Limits Derived observable upper/lower Constraints limit ξ lim τ (theor.) BR(B s µ + µ ) UL % m h LL GeV (91.0 GeV) 3 GeV ζ 2 h g2 ZZh /g2 ZZH SM UL f(m h ) 3% m χ LL 50 GeV 5% m χ ± 1 LL GeV (92.4 GeV) 5% mẽr LL 100 GeV (73 GeV) 5% m µr LL 95 GeV (73 GeV) 5% m τ1 LL 87 GeV (73 GeV) 5% m ν LL 94 GeV (43 GeV) 5% m t 1 LL 95 GeV (65 GeV) 5% m b1 LL 95 GeV (59 GeV) 5% m q LL 318 GeV 5% m g LL 233 GeV 5% (σ SI p UL WIMP mass dependent 100%) Note: DM direct detection σ SI p not applied due to astroph l uncertainties (eg, local DM density) L. Roszkowski, COSMO-07, 22/08/2007 p.9

28 The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured (e.g., M W ) L. Roszkowski, COSMO-07, 22/08/2007 p.10

29 The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) L. Roszkowski, COSMO-07, 22/08/2007 p.10

30 The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) define χ 2 = [ξ(m) c]2 σ 2 L. Roszkowski, COSMO-07, 22/08/2007 p.10

31 The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) define χ 2 = [ξ(m) c]2 σ 2 assuming Gaussian distribution (d (c, σ)): L = p(σ, c ξ(m)) = 1 2πσ exp [ χ2 2 ] L. Roszkowski, COSMO-07, 22/08/2007 p.10

32 The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) define χ 2 = [ξ(m) c]2 σ 2 assuming Gaussian distribution (d (c, σ)): L = p(σ, c ξ(m)) = 1 2πσ exp [ χ2 2 when include theoretical error estimate τ (assumed Gaussian): σ s = σ 2 + τ 2 TH error smears out the EXPTAL range ] L. Roszkowski, COSMO-07, 22/08/2007 p.10

33 The Likelihood: 1-dim case Take a single observable ξ(m) that has been measured c central value, σ standard exptal error (e.g., M W ) define χ 2 = [ξ(m) c]2 σ 2 assuming Gaussian distribution (d (c, σ)): L = p(σ, c ξ(m)) = 1 2πσ exp [ χ2 2 when include theoretical error estimate τ (assumed Gaussian): σ s = σ 2 + τ 2 TH error smears out the EXPTAL range for several uncorrelated observables (assumed Gaussian): [ L = exp i χ 2 i 2 ] ] L. Roszkowski, COSMO-07, 22/08/2007 p.10

34 Probability maps of the CMSSM L. Roszkowski, COSMO-07, 22/08/2007 p.11

35 Probability maps of the CMSSM arxiv: Roszkowski, Ruiz & Trotta (2007) MCMC scan Bayesian analysis m relative probability density fn flat priors 68% total prob. inner contours 1 95% total prob. outer contours 0.5 m 1/2 CMSSM µ> dim pdf p(m 0, m 1/2 d) favored: m 0 m 1/2 (FP region) Relative probability density L. Roszkowski, COSMO-07, 22/08/2007 p.11

36 Probability maps of the CMSSM arxiv: Roszkowski, Ruiz & Trotta (2007) MCMC scan Bayesian analysis m relative probability density fn flat priors 68% total prob. inner contours 1 95% total prob. outer contours 0.5 m 1/2 CMSSM µ> dim pdf p(m 0, m 1/2 d) favored: m 0 m 1/2 (FP region) Relative probability density similar study by Allanach+Lester(+Weber) (but no mean qof), see also, Ellis et al (EHOW, χ 2 approach, no MCMC, they fix SM parameters!) L. Roszkowski, COSMO-07, 22/08/2007 p.11

37 Probability maps of the CMSSM arxiv: Roszkowski, Ruiz & Trotta (2007) MCMC scan Bayesian analysis m relative probability density fn flat priors 68% total prob. inner contours 1 95% total prob. outer contours 0.5 m 1/2 CMSSM µ> dim pdf p(m 0, m 1/2 d) favored: m 0 m 1/2 (FP region) Relative probability density unlike others (except for A+L), we vary also SM parameters L. Roszkowski, COSMO-07, 22/08/2007 p.11

38 Strategies for WIMP Detection L. Roszkowski, COSMO-07, 22/08/2007 p.12

39 Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target go underground to beat cosmic ray bgnd L. Roszkowski, COSMO-07, 22/08/2007 p.12

40 Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): go underground to beat cosmic ray bgnd L. Roszkowski, COSMO-07, 22/08/2007 p.12

41 Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): HE neutrinos from the Sun (or Earth) go underground to beat cosmic ray bgnd WIMPs get trapped in Sun s core, start pair annihilating, only ν s escape L. Roszkowski, COSMO-07, 22/08/2007 p.12

42 Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): HE neutrinos from the Sun (or Earth) go underground to beat cosmic ray bgnd WIMPs get trapped in Sun s core, start pair annihilating, only ν s escape antimatter (e +, p, D) from WIMP pair-annihilation in the MW halo from within a few kpc L. Roszkowski, COSMO-07, 22/08/2007 p.12

43 Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): HE neutrinos from the Sun (or Earth) go underground to beat cosmic ray bgnd WIMPs get trapped in Sun s core, start pair annihilating, only ν s escape antimatter (e +, p, D) from WIMP pair-annihilation in the MW halo from within a few kpc gamma rays from WIMP pair-annihilation in the Galactic center depending on DM distribution in the GC L. Roszkowski, COSMO-07, 22/08/2007 p.12

44 Strategies for WIMP Detection direct detection (DD): measure WIMPs scattering off a target indirect detection (ID): HE neutrinos from the Sun (or Earth) go underground to beat cosmic ray bgnd WIMPs get trapped in Sun s core, start pair annihilating, only ν s escape antimatter (e +, p, D) from WIMP pair-annihilation in the MW halo from within a few kpc gamma rays from WIMP pair-annihilation in the Galactic center depending on DM distribution in the GC other ideas: traces of WIMP annihilation in dwarf galaxies, in rich clusters, etc more speculative L. Roszkowski, COSMO-07, 22/08/2007 p.12

45 Dark matter detection: σ SI p L. Roszkowski, COSMO-07, 22/08/2007 p.13

46 Dark matter detection: σ SI p MCMC+Bayesian analysis (pb)] Log[σ p SI Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II XENON m χ L. Roszkowski, COSMO-07, 22/08/2007 p.13

47 Dark matter detection: σ SI p MCMC+Bayesian analysis compare: fixed grid scan (pb)] Log[σ p SI Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II XENON m χ L. Roszkowski, COSMO-07, 22/08/2007 p.13

48 Prospects for direct detection: σ SI p (pb)] Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II XENON 10 Bayesian analysis, flat priors (MCMC) Log[σ p SI m χ internal (external): 68% (95%) region L. Roszkowski, COSMO-07, 22/08/2007 p.14

49 Prospects for direct detection: σ SI p (pb)] Log[σ p SI Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II m χ XENON Bayesian analysis, flat priors XENON-10 (June 07): new limit σp SI < 10 7 pb: explore the FP region (large m 0 m 1/2 ), (MCMC) also CDMS II (?) outside of the LHC reach ultimately: 1 tonne detectors: σp SI < pb will cover all 68% region internal (external): 68% (95%) region L. Roszkowski, COSMO-07, 22/08/2007 p.14

50 Prospects for direct detection: σ SI p (pb)] Log[σ p SI Roszkowski, Ruiz & Trotta (2007) CMSSM, µ > 0 ZEPLIN I EDELWEISS I CDMS II m χ XENON Bayesian analysis, flat priors XENON-10 (June 07): new limit σp SI < 10 7 pb: explore the FP region (large m 0 m 1/2 ), (MCMC) also CDMS II (?) outside of the LHC reach ultimately: 1 tonne detectors: σp SI < pb will cover all 68% region internal (external): 68% (95%) region most probable range: 10 7 pb < σ SI p < pb partly outside of the LHC reach (m χ < 400 GeV) L. Roszkowski, COSMO-07, 22/08/2007 p.14

51 CDM Halo Models...not a settled matter L. Roszkowski, COSMO-07, 22/08/2007 p.15

52 CDM Halo Models fitting DM halo with a semi-heuristic formula: ( r ρ DM (r) = ρ c / a ) γ [ 1 + ( ) r α ] (β γ)/α a...not a settled matter α, β, γ - adjustable parameters ρ c = ρ 0 ` r0a γ h1 + R0 a α i (β γ)/α, ρ0 0.3 GeV/ cm 3 - DM density at r 0 a - scale radius - from num. sim s or to match observations L. Roszkowski, COSMO-07, 22/08/2007 p.15

53 CDM Halo Models fitting DM halo with a semi-heuristic formula: ( r ρ DM (r) = ρ c / a ) γ [ 1 + ( ) r α ] (β γ)/α a...not a settled matter α, β, γ - adjustable parameters ρ c = ρ 0 ` r0a γ h1 + R0 a α i (β γ)/α, ρ0 0.3 GeV/ cm 3 - DM density at r 0 a - scale radius - from num. sim s or to match observations adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: model model-c L. Roszkowski, COSMO-07, 22/08/2007 p.15

54 CDM Halo Models fitting DM halo with a semi-heuristic formula: ( r ρ DM (r) = ρ c / a ) γ [ 1 + ( ) r α ] (β γ)/α a...not a settled matter α, β, γ - adjustable parameters ρ c = ρ 0 ` r0a γ h1 + R0 a α i (β γ)/α, ρ0 0.3 GeV/ cm 3 - DM density at r 0 a - scale radius - from num. sim s or to match observations adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: model model-c some most popular models: halo model a ( kpc) r 0 ( kpc) (α, β, γ) small r: r γ large r: isothermal cored (2, 2, 0) flat r 2 NFW (1, 3, 1) r 1 r 3 NFW-c (1.5, 3, 1.5) r 1.5 r 3 Moore (1, 3, 1.5) r 1.5 r 3 Moore-c (0.8, 2.7, 1.65) r 1.65 r 2.7 L. Roszkowski, COSMO-07, 22/08/2007 p.15

55 CDM Halo Models fitting DM halo with a semi-heuristic formula: ( r ρ DM (r) = ρ c / a ) γ [ 1 + ( ) r α ] (β γ)/α a...not a settled matter α, β, γ - adjustable parameters ρ c = ρ 0 ` r0a γ h1 + R0 a α i (β γ)/α, ρ0 0.3 GeV/ cm 3 - DM density at r 0 a - scale radius - from num. sim s or to match observations adiabatic compression due to baryon concentration in the GC: likely effect: central cusp becames steeper: model model-c some most popular models: halo model a ( kpc) r 0 ( kpc) (α, β, γ) small r: r γ large r: isothermal cored (2, 2, 0) flat r 2 NFW (1, 3, 1) r 1 r 3 NFW-c (1.5, 3, 1.5) r 1.5 r 3 Moore (1, 3, 1.5) r 1.5 r 3 Moore-c (0.8, 2.7, 1.65) r 1.65 r 2.7 Many open questions: clumps??, central cusp??, spherical or tri axial??,... L. Roszkowski, COSMO-07, 22/08/2007 p.15

56 Gamma Rays from the Galactic Center L. Roszkowski, COSMO-07, 22/08/2007 p.16

57 Gamma Rays from the Galactic Center in the GC: ρ DM is likely to be larger WIMP pair annihilation χχ SMparticles ρ 2 χ will be enhanced WIMP annihilation final decay products: W W, ZZ, qq,... diffuse γ radiation (and/or γγ, γz) L. Roszkowski, COSMO-07, 22/08/2007 p.16

58 Gamma Rays from the Galactic Center in the GC: ρ DM is likely to be larger WIMP pair annihilation χχ SMparticles ρ 2 χ will be enhanced WIMP annihilation final decay products: W W, ZZ, qq,... diffuse γ radiation (and/or γγ, γz) diffuse γ radiation: l.o.s - line of sight dφ γ de γ (E γ, ψ) = X i σ i v 8πm 2 χ dn i γ de γ Z l.o.s. dlρ 2 χ(r(l, ψ)) L. Roszkowski, COSMO-07, 22/08/2007 p.16

59 Gamma Rays from the Galactic Center in the GC: ρ DM is likely to be larger WIMP pair annihilation χχ SMparticles ρ 2 χ will be enhanced WIMP annihilation final decay products: W W, ZZ, qq,... diffuse γ radiation (and/or γγ, γz) diffuse γ radiation: l.o.s - line of sight dφ γ de γ (E γ, ψ) = X i σ i v 8πm 2 χ dn i γ de γ Z l.o.s. dlρ 2 χ(r(l, ψ)) separate particle physics and astrophysics inputs; define: and J(ψ) = kpc GeV/cm 3 Z J( Ω) = (1/ Ω) «2 Z Ω l.o.s. J(ψ)dΩ dl ρ 2 χ (r(l, ψ)) Ω - finite angular resolution of a GR detector L. Roszkowski, COSMO-07, 22/08/2007 p.16

60 Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ Φ γ,0 = cm 2 sec 1 sr 1 L. Roszkowski, COSMO-07, 22/08/2007 p.17

61 Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ total flux Φ γ ( Ω) = Z mχ E th Φ γ,0 = cm 2 sec 1 sr 1 de γ dφ γ de γ (E γ, Ω) L. Roszkowski, COSMO-07, 22/08/2007 p.17

62 Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ total flux Φ γ ( Ω) = Z mχ E th Φ γ,0 = cm 2 sec 1 sr 1 de γ dφ γ de γ (E γ, Ω) main bgnd: π 0 s from primary CR int s with interstellar H and He atoms (π 0 γγ) L. Roszkowski, COSMO-07, 22/08/2007 p.17

63 Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ total flux Φ γ ( Ω) = Z mχ E th Φ γ,0 = cm 2 sec 1 sr 1 de γ dφ γ de γ (E γ, Ω) main bgnd: π 0 s from primary CR int s with interstellar H and He atoms (π 0 γγ) much experimental activity: EGRET, ACT (HESS, Veritas, Cangaroo, etc); GLAST (due to launch in Dec 07): expected major improvement in sensitivity L. Roszkowski, COSMO-07, 22/08/2007 p.17

64 Gamma Rays from the Galactic Center diff l flux from the cone Ω dφ γ X (E γ, Ω) = Φ γ,0 de γ i σ i v cm 3 sec 1 «dn i γ de γ «2 100 GeV ` J( Ω) Ω m χ total flux Φ γ ( Ω) = Z mχ E th Φ γ,0 = cm 2 sec 1 sr 1 de γ dφ γ de γ (E γ, Ω) main bgnd: π 0 s from primary CR int s with interstellar H and He atoms (π 0 γγ) much experimental activity: EGRET, ACT (HESS, Veritas, Cangaroo, etc); GLAST (due to launch in Dec 07): expected major improvement in sensitivity all-sky survey effective energy range 20 MeV to 300 GeV, very good energy resolution angular resolution Ω 10 5 sr (or 0.15 deg for E γ > 10 GeV) L. Roszkowski, COSMO-07, 22/08/2007 p.17

65 GRs from the GC in the CMSSM use GLAST parameters Bayesian posterior probability maps L. Roszkowski, COSMO-07, 22/08/2007 p.18

66 GRs from the GC in the CMSSM use GLAST parameters Bayesian posterior probability maps total flux vs. m χ 4 Roszkowski, Ruiz, Silk & Trotta (2007) Moore adiab. comp. Φ γ from GC Log[Φ γ (cm 2 s 1 )] NFW adiab. comp. NFW Moore CMSSM, µ > 0 GLAST reach (1yr) iso. cored m χ Ω = 10 5 sr E > 1 GeV thr Relative probability density L. Roszkowski, COSMO-07, 22/08/2007 p.18

67 GRs from the GC in the CMSSM use GLAST parameters total flux vs. m χ Log[Φ γ (cm 2 s 1 )] Roszkowski, Ruiz, Silk & Trotta (2007) Moore adiab. comp. NFW adiab. comp. NFW iso. cored Moore m χ Φ γ from GC CMSSM, µ > 0 GLAST reach (1yr) Ω = 10 5 sr E > 1 GeV thr Relative probability density Bayesian posterior probability maps γ-ray energy spectrum: example (E 2 dφ/de) γ (GeV cm 2 s 1 ) 3 Roszkowski, Ruiz, Silk & Trotta (2007) (E 2 dφ/de) γ from GC CMSSM, µ > 0 NFW adiab. comp. GLAST reach (1 yr) 159 GeV < m χ < 493 GeV (68% range) EGRET π 0 bgnd E γ (GeV) m χ (GeV) GeV < m χ < 493 GeV (68% range) L. Roszkowski, COSMO-07, 22/08/2007 p.18

68 GRs from the GC in the CMSSM use GLAST parameters Bayesian posterior probability maps total flux vs. m χ Log[Φ γ (cm 2 s 1 )] Roszkowski, Ruiz, Silk & Trotta (2007) Moore adiab. comp. NFW adiab. comp. NFW iso. cored Moore m χ Φ γ from GC CMSSM, µ > 0 GLAST reach (1yr) Ω = 10 5 sr E thr > 1 GeV Relative probability density γ-ray energy spectrum: example (E 2 dφ/de) γ (GeV cm 2 s 1 ) 3 Roszkowski, Ruiz, Silk & Trotta (2007) (E 2 dφ/de) γ from GC CMSSM, µ > 0 NFW adiab. comp. GLAST reach (1 yr) 159 GeV < m χ < 493 GeV (68% range) EGRET π 0 bgnd E γ (GeV) m χ (GeV) GeV < m χ < 493 GeV (68% range) GLAST prospects critically depend on how cuspy is the GC if more cuspy than NFW: all 95% CMSSM range will be explored (at 95% CL) even if signal detected: much uncertainty in determining m χ L. Roszkowski, COSMO-07, 22/08/2007 p.18

69 Positron flux and PAMELA L. Roszkowski, COSMO-07, 22/08/2007 p.19

70 Positron flux and PAMELA E e + from from DM annihilations propagate in interstellar magnetic field K(ɛ) = ɛ 0.6 cm 2 sec 1 much less halo model dependence ɛ = E e +/1 GeV loose energy via inverse Compton scattering b(ɛ) = ɛ2 τ E ɛ 2 sec 1 τ E = sec 1 diffusion zone: infinite slab of height L = 4 kpc, free escape BC s L. Roszkowski, COSMO-07, 22/08/2007 p.19

71 Positron flux and PAMELA E e + from from DM annihilations propagate in interstellar magnetic field K(ɛ) = ɛ 0.6 cm 2 sec 1 much less halo model dependence ɛ = E e +/1 GeV loose energy via inverse Compton scattering b(ɛ) = ɛ2 τ E ɛ 2 sec 1 τ E = sec 1 diffusion zone: infinite slab of height L = 4 kpc, free escape BC s NFW + adiab. compression Φ e+ /(Φ e+ +Φ e ) Roszkowski, Ruiz, Silk & Trotta (2007) CMSSM, µ > 0 NFW adiab. comp. Moore adiab. comp. 159 GeV < m χ < 493 GeV (68% range) E e+ (GeV) m χ (GeV) BF=1 bgnd CAPRICE 94 HEAT HEAT (scales linearly with boost factor) L. Roszkowski, COSMO-07, 22/08/2007 p.19

72 Positron flux and PAMELA E e + from from DM annihilations propagate in interstellar magnetic field K(ɛ) = ɛ 0.6 cm 2 sec 1 much less halo model dependence ɛ = E e +/1 GeV loose energy via inverse Compton scattering b(ɛ) = ɛ2 τ E ɛ 2 sec 1 τ E = sec 1 diffusion zone: infinite slab of height L = 4 kpc, free escape BC s NFW + adiab. compression Φ e+ /(Φ e+ +Φ e ) Roszkowski, Ruiz, Silk & Trotta (2007) CMSSM, µ > 0 NFW adiab. comp. Moore adiab. comp. 159 GeV < m χ < 493 GeV (68% range) E e+ (GeV) m χ (GeV) BF=1 bgnd CAPRICE 94 HEAT HEAT GeV < m χ < 493 GeV (68% range) L. Roszkowski, COSMO-07, 22/08/2007 p.19

73 Positron flux and PAMELA E e + from from DM annihilations propagate in interstellar magnetic field K(ɛ) = ɛ 0.6 cm 2 sec 1 much less halo model dependence ɛ = E e +/1 GeV loose energy via inverse Compton scattering b(ɛ) = ɛ2 τ E ɛ 2 sec 1 τ E = sec 1 diffusion zone: infinite slab of height L = 4 kpc, free escape BC s NFW + adiab. compression Φ e+ /(Φ e+ +Φ e ) Roszkowski, Ruiz, Silk & Trotta (2007) CMSSM, µ > 0 NFW adiab. comp. Moore adiab. comp. 159 GeV < m χ < 493 GeV (68% range) E e+ (GeV) m χ (GeV) BF=1 bgnd CAPRICE 94 HEAT HEAT prospects for PAMELA rather poor (...unless large boost factor) L. Roszkowski, COSMO-07, 22/08/2007 p.19

74 Summary L. Roszkowski, COSMO-07, 22/08/2007 p.20

75 Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY L. Roszkowski, COSMO-07, 22/08/2007 p.20

76 Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org L. Roszkowski, COSMO-07, 22/08/2007 p.20

77 Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... L. Roszkowski, COSMO-07, 22/08/2007 p.20

78 Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM pb < σ SI p < pb (68%) L. Roszkowski, COSMO-07, 22/08/2007 p.20

79 Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM pb < σ SI p < pb (68%) µ > 0 L. Roszkowski, COSMO-07, 22/08/2007 p.20

80 Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM pb < σ SI p < pb (68%) can be probed at 95% CL with planned 1 tonne detectors µ > 0 L. Roszkowski, COSMO-07, 22/08/2007 p.20

81 Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM pb < σ SI p < pb (68%) can be probed at 95% CL with planned 1 tonne detectors µ > 0 with 4 fb 1 /expt: 3σ evidence over 95% CL m h range L. Roszkowski, COSMO-07, 22/08/2007 p.20

82 Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM pb < σ SI p < pb (68%) can be probed at 95% CL with planned 1 tonne detectors µ > 0 with 4 fb 1 /expt: 3σ evidence over 95% CL m h range DM direct detection: expt now probing favored 68% CL region some already probed with XENON-10 etc. γ-rays from the GC: DM signal guaranteed at GLAST if halo cuspy enough (NFW profile - borderline case) L. Roszkowski, COSMO-07, 22/08/2007 p.20

83 Summary MCMC + Bayesian statistics: a powerful tool to properly analyze multi-dim. new physics models like SUSY new tool: SuperBayes package, superbayes.org easily adaptable to other models, frameworks,... CMSSM: direct detection of neutralino DM pb < σ SI p < pb (68%) can be probed at 95% CL with planned 1 tonne detectors µ > 0 with 4 fb 1 /expt: 3σ evidence over 95% CL m h range DM direct detection: expt now probing favored 68% CL region some already probed with XENON-10 etc. γ-rays from the GC: DM signal guaranteed at GLAST if halo cuspy enough (NFW profile - borderline case) positrons from DM: signal unlikely at PAMELA (unless large boost factor) L. Roszkowski, COSMO-07, 22/08/2007 p.20

84 Backup L. Roszkowski, COSMO-07, 22/08/2007 p.21

85 Fits of Observables Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) good fits: M t, α s, Ω χ h 2, BR( B X s γ) (for µ < 0!) not so good: M W, sin 2 θ eff, BR( B X s γ) (for µ > 0!) bad: a SUSY µ (for both signs of µ!) L. Roszkowski, COSMO-07, 22/08/2007 p.22

86 The Likelihood incorporates information about the observational data the mapping ξ(m) comes with uncertainties experimental uncertainty σ i theoretical uncertainty τ i introduce exact mapping ˆξ(θ, χ) the likelihood: where p(ˆξ ξ) = p(d ξ) = R p(d ˆξ)p(ˆξ ξ)d m ˆξ 1 exp 1 (2π) m/2 C 1/2 2 (ξ ˆξ)C 1 (ξ ˆξ) T p(d ˆξ) = total error for each observable: s i = C: m m covariance matrix if uncorrelated: C = diag `τ1 2,..., τ m 2 1 exp 1 (2π) m/2 D 1/2 2 (d ˆξ)D 1 (d ˆξ) T q σ 2 i + τ 2 i if uncorrelated: D = diag `σ1 2,..., σ2 m L. Roszkowski, COSMO-07, 22/08/2007 p.23

87 Probability maps of the CMSSM µ > 0: 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) m m 1/ CMSSM µ> m 1/2 0.5 CMSSM µ> A 0 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) m m 1/ CMSSM µ>0 0.5 CMSSM µ> tanβ tanβ Roszkowski, Ruiz & Trotta (2007) 6 Roszkowski, Ruiz & Trotta (2007) 3 4 m A CMSSM µ> A 0 4 tanβ CMSSM µ> L. Roszkowski, COSMO-07, 22/08/2007 p.24

88 Probability maps of the CMSSM µ > 0: µ < 0: 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) m m 1/ m m 1/ CMSSM µ>0 0.5 CMSSM µ> CMSSM µ<0 0.5 CMSSM µ< m 1/2 A 0 m 1/2 A 0 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 4 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) m m 1/ m m 1/ CMSSM µ>0 0.5 CMSSM µ> CMSSM µ<0 0.5 CMSSM µ< tanβ tanβ tanβ tanβ Roszkowski, Ruiz & Trotta (2007) 6 Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) 6 Roszkowski, Ruiz & Trotta (2007) m CMSSM µ>0 A CMSSM µ>0 m CMSSM µ<0 A CMSSM µ< A 0 tanβ A 0 tanβ L. Roszkowski, COSMO-07, 22/08/2007 p.24

89 Posterior pdf vs. mean qof: µ < 0 L. Roszkowski, COSMO-07, 22/08/2007 p.25

90 Posterior pdf vs. mean qof: µ < 0 posterior pdf 4 Roszkowski, Ruiz & Trotta (2007) m m 1/2 CMSSM µ< Relative probability density L. Roszkowski, COSMO-07, 22/08/2007 p.25

91 Posterior pdf vs. mean qof: µ < 0 posterior pdf Roszkowski, Ruiz & Trotta (2007) Roszkowski, Ruiz & Trotta (2007) mean qof m m CMSSM µ<0 0.5 CMSSM µ< m 1/2 m 1/2 Relative probability density Mean quality of fit µ < 0 generally poorer fit to the data L. Roszkowski, COSMO-07, 22/08/2007 p.25

Dark Matter A Particle Theorist s Perspective Lecture 2

Dark Matter A Particle Theorist s Perspective Lecture 2 Dark Matter A Particle Theorist s Perspective Lecture 2 Leszek Roszkowski Univ. of Sheffield, England and Soltan Institute for Nuclear Studies, Warsaw, Poland L. Roszkowski, Warsaw, Feb 10 p.1 Outline

More information

A Bayesian approach to supersymmetry phenomenology

A Bayesian approach to supersymmetry phenomenology Corfu Summer Institute 2009 - Sept 1st 2009 A Bayesian approach to supersymmetry phenomenology Imperial College London, Astrophysics Group In collaboration with: R. Ruiz de Austri, L. Roszkowski, M. Hobson,

More information

Signals from Dark Matter Indirect Detection

Signals from Dark Matter Indirect Detection Signals from Dark Matter Indirect Detection Indirect Search for Dark Matter Christian Sander Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany 2nd Symposium On Neutrinos and Dark Matter

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo Indirect Search for Dark Matter W. de Boer 1, I. Gebauer 1, A.V. Gladyshev 2, D. Kazakov 2, C. Sander 1, V. Zhukov 1 1 Institut

More information

Neutralino Dark Matter as the Source of the WMAP Haze

Neutralino Dark Matter as the Source of the WMAP Haze Neutralino Dark Matter as the Source of the WMAP Haze Gabriel Caceres Penn State University & Fermilab Based on work with Dan Hooper INT Summer School 2009 Dark Matter: The Evidence The Search Direct Detection

More information

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. pmssm Dark Matter Searches On Ice! χ ~ 0 1 Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. Rizzo (SLAC) Based on: 1104.XXXX (next week or bust.) In case

More information

Global SUSY Fits with IceCube

Global SUSY Fits with IceCube Global SUSY Fits with IceCube Chris Savage * Oskar Klein Centre for Cosmoparticle Physics Stockholm University For the IceCube Collaboration * associate member Overview All processes depend on WIMP mass

More information

Use of event-level IceCube data in SUSY scans

Use of event-level IceCube data in SUSY scans Use of event-level IceCube data in SUSY scans Pat Scott Department of Physics, McGill University July 3, 202 Based on: PS, Chris Savage, Joakim Edsjö and The IceCube Collaboration (esp. Matthias Danninger

More information

The Egret Excess, an Example of Combining Tools

The Egret Excess, an Example of Combining Tools The Egret Excess, an Example of Combining Tools Institut für Experimentelle Kernphysik, Universität Karlsruhe TOOLS 2006-26th - 28th June 2006 - Annecy Outline Spectral Fit to EGRET data Problems: Rotation

More information

Search for exotic process with space experiments

Search for exotic process with space experiments Search for exotic process with space experiments Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Rencontres de Moriond, Very High Energy Phenomena in the Universe Les Arc, 20-27

More information

A profile likelihood analysis of the CMSSM with Genetic Algorithms

A profile likelihood analysis of the CMSSM with Genetic Algorithms A profile likelihood analysis of the CMSSM with Genetic Algorithms TeVPA 2009 / SLAC / July 13, 2009 Yashar Akrami Collaborators: Pat Scott, Joakim Edsjö, Jan Conrad and Lars Bergström Oskar Klein Center

More information

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

Dark Matter WIMP and SuperWIMP

Dark Matter WIMP and SuperWIMP Dark Matter WIMP and SuperWIMP Shufang Su U. of Arizona S. Su Dark Matters Outline Dark matter evidence New physics and dark matter WIMP candidates: neutralino LSP in MSSM direct/indirect DM searches,

More information

Neutrinos and DM (Galactic)

Neutrinos and DM (Galactic) Neutrinos and DM (Galactic) ArXiv:0905.4764 ArXiv:0907.238 ArXiv: 0911.5188 ArXiv:0912.0512 Matt Buckley, Katherine Freese, Dan Hooper, Sourav K. Mandal, Hitoshi Murayama, and Pearl Sandick Basic Result

More information

Direct Detection Rates of Neutralino WIMP in MSSM

Direct Detection Rates of Neutralino WIMP in MSSM Direct Detection Rates of Neutralino WIMP in MSSM Yeong Gyun Kim a, 1 Takeshi Nihei b, Leszek Roszkowski a, and Roberto Ruiz de Austri c a Department of Physics, Lancaster University, Lancaster LA1 4YB,

More information

SUSY scans and dark matter

SUSY scans and dark matter SUSY scans and dark matter Pat Scott Oskar Klein Centre for Cosmoparticle Physics & Department of Physics, Stockholm University May 27 2010 Mostly based on: JCAP 1001:031 (2010; arxiv:0909.3300) JHEP 1004:057

More information

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

LHC Impact on DM searches

LHC Impact on DM searches LHC Impact on DM searches Complementarity between collider and direct searches for DM Outline Introduction (complementarity of DM searches) Dark Matter signals at the LHC (missing ET, jets, etc... ) Particular

More information

Excess of EGRET Galactic Gamma Ray Data interpreted as Dark Matter Annihilation

Excess of EGRET Galactic Gamma Ray Data interpreted as Dark Matter Annihilation Excess of EGRET Galactic Gamma Ray Data interpreted as Dark Matter Annihilation Wim de Boer, Marc Herold, Christian Sander, Valery Zhukov Univ. Karlsruhe Alex Gladyshev, Dmitri Kazakov Dubna Outline (see

More information

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0810.1892 J.Hisano,

More information

Wino dark matter breaks the siege

Wino dark matter breaks the siege Wino dark matter breaks the siege Shigeki Matsumoto (Kavli IPMU) In collaboration with M. Ibe, K. Ichikawa, and T. Morishita 1. Wino dark matter (Motivation & Present limits) 2. Wino dark matter is really

More information

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Moriond Cosmology 2018 Silvia Manconi (University of Turin & INFN) March 20, 2018 In collaboration with: Hannes Zechlin,

More information

Gravitino LSP as Dark Matter in the Constrained MSSM

Gravitino LSP as Dark Matter in the Constrained MSSM Gravitino LSP as Dark Matter in the Constrained MSSM Ki Young Choi The Dark Side of the Universe, Madrid, 20-24 June 2006 Astro-Particle Theory and Cosmology Group The University of Sheffield, UK In collaboration

More information

Indirect constraints on the (C)MSSM parameter space

Indirect constraints on the (C)MSSM parameter space Indirect constraints on the (C)MSSM parameter space Frédéric Ronga ETH Zurich Switzerland CKM Workshop, Rome September 11, 2008 Contents 1 Introduction 2 Combining today s constraints 3 Prospects for LHC

More information

(Neutrino indirect) detection of neutralino dark matter in (non) universals SUSY GUT models

(Neutrino indirect) detection of neutralino dark matter in (non) universals SUSY GUT models (Neutrino indirect) detection of neutralino dark matter in (non) universals SUSY GUT models E. Nezri To cite this version: E. Nezri. (Neutrino indirect) detection of neutralino dark matter in (non) universals

More information

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München Neutrino bounds on dark matter Alejandro Ibarra Technische Universität München NOW 2012 10 September 2012 Introduction Many pieces of evidence for particle dark matter. However, very little is known about

More information

DarkSUSY. Joakim Edsjö With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda. APS Meeting

DarkSUSY. Joakim Edsjö With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda. APS Meeting DarkSUSY Joakim Edsjö edsjo@fysik.su.se With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda APS Meeting 160830 Ways to search for dark matter Accelerator searches LHC Rare

More information

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity Masaki Asano The Graduate University for Advanced Studies Collaborated with Shigeki Matsumoto Nobuchika Okada Yasuhiro

More information

MACRO Atmospheric Neutrinos

MACRO Atmospheric Neutrinos MACRO Atmospheric Neutrinos 1. Neutrino oscillations 2. WIMPs 3. Astrophysical point sources Barry Barish 5 May 00 µ Neutrino induced upward-travelling muons are identified by the time-of-fligth

More information

Ingredients to this analysis

Ingredients to this analysis The dark connection between Canis Major, Monoceros Stream, gas flaring, the rotation curve and the EGRET excess From EGRET excess of diffuse Galactic gamma rays Determination of WIMP mass Determination

More information

Dark matter and LHC: complementarities and limitations

Dark matter and LHC: complementarities and limitations Dark matter and LHC: complementarities and limitations,1,2, F. Mahmoudi 1,2,3, A. Arbey 1,2,3, M. Boudaud 4 1 Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574,

More information

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration Latest Results on Dark Matter and New Physics Searches with Fermi Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration TeV Particle Astrophysics 2009 SLAC, July 13-16 2009 DM and New Physics

More information

from Dark Matter Annihilation in the Sun

from Dark Matter Annihilation in the Sun in the Sun Holger Motz Physikalisches Institut, Universität Erlangen Nürnberg Erwin Rommel Straße 1, 91058 Erlangen KM3NeT collaboration meeting Pylos, April 16 th Page 1 Indirect Search for Dark Matter

More information

Dark Matter Implications for SUSY

Dark Matter Implications for SUSY Dark Matter Implications for SUSY Sven Heinemeyer, IFCA (CSIC, Santander) Madrid, /. Introduction and motivation. The main idea 3. Some results 4. Future plans Sven Heinemeyer, First MultiDark workshop,

More information

Dark matter, supersymmetry and global fits

Dark matter, supersymmetry and global fits Pat Scott Oskar Klein Centre for Cosmoparticle Physics (OKC) & Department of Physics, Stockholm University Collaborators: Joakim Edsjö, Jan Conrad, Lars Bergström, Yashar Akrami (OKC/Stockholm), Sofia

More information

SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003

SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003 SUSY AND COSMOLOGY Jonathan Feng UC Irvine SLAC Summer Institute 5-6 August 2003 Target Audience From the organizers: graduate students, junior postdocs ¾ experimentalists, ¼ theorists Students enjoy the

More information

EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation

EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation EGRET excess of diffuse Galactic Gamma Rays interpreted as Dark Matter Annihilation Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe From CMB + SN1a + Dmitri Kazakov, Alex Gladyshev structure

More information

Conservative Constraints on Dark Matter Self Annihilation Rate

Conservative Constraints on Dark Matter Self Annihilation Rate Conservative Constraints on Dark Matter Self Annihilation Rate Thomas Jacques 2009-07-13, TeVPA 2009 Indirect Detection Indirect detection often focuses on choosing a model, and comparing predicted flux

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Enhancement of Antimatter Signals from Dark Matter Annihilation

Enhancement of Antimatter Signals from Dark Matter Annihilation Enhancement of Antimatter Signals from Dark Matter Annihilation around Intermediate Mass Black Holes Pierre Brun Laboratoire d Annecy-le-vieux de Physique des Particules CNRS/IN2P3/Université de Savoie

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT A.Malinin a, For AMS Collaboration IPST, University of Maryland, MD-20742, College Park, USA Abstract. The Alpha Magnetic Spectrometer (AMS), to be installed

More information

COSMOLOGY AT COLLIDERS

COSMOLOGY AT COLLIDERS COSMOLOGY AT COLLIDERS Jonathan Feng University of California, Irvine 23 September 2005 SoCal Strings Seminar 23 September 05 Graphic: Feng N. Graf 1 COSMOLOGY NOW We are living through a revolution in

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Andrea Albert (The Ohio State University) on behalf of The Fermi LAT Collaboration. HEP Seminar University of Virginia 12/05/12

Andrea Albert (The Ohio State University) on behalf of The Fermi LAT Collaboration. HEP Seminar University of Virginia 12/05/12 Indirect Searches for Dark Matter with the Fermi Large Area Telescope Andrea Albert (The Ohio State University) on behalf of The Fermi LAT Collaboration HEP Seminar University of Virginia 12/05/12 Outline

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation Stefano Scopel Korea Institute of Advanced Study (based on: J. S. Lee, S. Scopel, PRD75, 075001 (2007)) PPP7, Taipei, Taiwan,

More information

Antiproton Limits on Decaying Gravitino Dark Matter

Antiproton Limits on Decaying Gravitino Dark Matter Antiproton Limits on Decaying Gravitino Dark Matter Michael Grefe Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid Particle Theory Journal Club Rudolf

More information

Supersymmetry at the ILC

Supersymmetry at the ILC Supersymmetry at the ILC Abdelhak DJOUADI (LPT Paris Sud). Introduction 2. High precision measurements 3. Determination of the SUSY lagrangian 4. Connection to cosmology 5. Conclusion For more details,

More information

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter Authors: Kingman Cheung, Po-Yan Tseng, Tzu-Chiang Yuan Physics Department, NTHU Physics Division, NCTS Institute

More information

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology Effective theory of dark matter direct detection Riccardo Catena Chalmers University of Technology March 16, 216 Outline Introduction Dark matter direct detection Effective theory of dark matter-nucleon

More information

Bad Honnef,

Bad Honnef, Astro-Particle Dark Matter Search Physics with AMS 02 Chan Hoon Chan Chung Hoon Chung RWTH-Aachen, Germany Bad Honnef, 22-26. 08. 2005 on behalf of AMS Collaboration Outline AMS Experiment Overview of

More information

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv: Signatures of clumpy dark matter in the global 2 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:0808.088 Daniel Grin Ay. Journal Club /23/2009 /8 Signatures of clumpy dark matter in

More information

Introducing SModelS - with an application to light neutralino DM

Introducing SModelS - with an application to light neutralino DM Hi! Introducing SModelS - with an application to light neutralino DM Suchita Kulkarni (LPSC, Grenoble) based on: 1) work in progress with W. Waltenberger, U. Laa, A. Lessa, D. Proschofsky, S. Kraml 2)

More information

Prospects and Blind Spots for Neutralino Dark Matter

Prospects and Blind Spots for Neutralino Dark Matter Prospects and Blind Spots for Neutralino Dark Matter Josh Ruderman October 6 GGI 01 Cliff Cheung, Lawrence Hall, David Pinner, JTR 111.xxxx ] WIMP-Nucleon Cross Section [cm 10 10 10 10 10 10-39 -40-41

More information

Indirect dark matter detection and the Galactic Center GeV Excess

Indirect dark matter detection and the Galactic Center GeV Excess Image Credit: Springel et al. 2008 Indirect dark matter detection and the Galactic Center GeV Excess Jennifer Siegal-Gaskins Caltech Image Credit: Springel et al. 2008 Jennifer Siegal-Gaskins Caltech Image

More information

Impact of substructures on predictions of dark matter annihilation signals

Impact of substructures on predictions of dark matter annihilation signals Impact of substructures on predictions of dark matter annihilation signals Julien Lavalle Institute & Dept. of Theoretical Physics, Madrid Aut. Univ. & CSIC DESY Theory Astroparticle, Hamburg 16 V 2011

More information

Cosmic Ray Anomalies from the MSSM?

Cosmic Ray Anomalies from the MSSM? Cosmic Ray Anomalies from the MSSM? Randy Cotta (Stanford/SLAC) In collaboration with: J.A. Conley (Bonn) J.S. Gainer (ANL/NU) J.L. Hewett (SLAC) T.G. Rizzo (SLAC) Based on: 0812.0980 0903.4409 1007.5520

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

Indirect Search for Dark Matter with AMS-02

Indirect Search for Dark Matter with AMS-02 Indirect Search for Dark Matter with AMS-02 A. Malinin, UMD For the AMS Collaboration SUSY06, UC Irvine, June 14, 2006 Alpha Magnetic Spectrometer science The AMS is a particle physics experiment in space.

More information

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Simona Murgia University of California, Irvine Debates on the Nature of Dark Matter Sackler 2014 19-22 May 2014 arxiv:0908.0195

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

The Story of Wino Dark matter

The Story of Wino Dark matter The Story of Wino Dark matter Varun Vaidya Dept. of Physics, CMU DIS 2015 Based on the work with M. Baumgart and I. Rothstein, 1409.4415 (PRL) & 1412.8698 (JHEP) Evidence for dark matter Rotation curves

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

Constraints on dark matter annihilation cross section with the Fornax cluster

Constraints on dark matter annihilation cross section with the Fornax cluster DM Workshop@UT Austin May 7, 2012 Constraints on dark matter annihilation cross section with the Fornax cluster Shin ichiro Ando University of Amsterdam Ando & Nagai, arxiv:1201.0753 [astro-ph.he] Galaxy

More information

Search for Dark Matter in the Gamma-ray Sky

Search for Dark Matter in the Gamma-ray Sky Chin. J. Astron. Astrophys. Vol. 8 (2008), Supplement, 54 60 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Search for Dark Matter in the Gamma-ray Sky Aldo Morselli INFN Roma Tor

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe. Outline (see astro-ph/ )

Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe. Outline (see astro-ph/ ) Indirect Evidence for Dark Matter Annihilation from Diffuse Galactic Gamma Rays Wim de Boer, Christian Sander, Valery Zhukov Univ. Karlsruhe Outline (see astro-ph/0408272) Annihilation cross section determined

More information

arxiv:hep-ph/ v2 9 Sep 2005

arxiv:hep-ph/ v2 9 Sep 2005 Indirect Signals from Dark Matter in Split Supersymmetry Asimina Arvanitaki and Peter W. Graham Institute for Theoretical Physics Department of Physics Stanford University Stanford, CA 94305 USA email:

More information

What is known about Dark Matter?

What is known about Dark Matter? What is known about Dark Matter? 95% of the energy of the Universe is non-baryonic 23% in the form of Cold Dark Matter From CMB + SN1a + surveys Dark Matter enhanced in Galaxies and Clusters of Galaxies

More information

Search for Dark Matter in the mono-x* final states with ATLAS

Search for Dark Matter in the mono-x* final states with ATLAS Search for Dark Matter in the mono-x* final states with (on behalf of the Collaboration) Rencontres de Moriond (EW) 08 *: X = jet, Z, W, H Probing Dark Matter (DM) Underlying assumption: DM has also non-gravitational

More information

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München Searching for spectral features in the g-ray sky Alejandro Ibarra Technische Universität München Oslo 5 November 2014 Outline Motivation Indirect dark matter searches with gamma-rays. Overcoming backgrounds

More information

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection Kavli Institue for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford,

More information

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky Dark Matter established as major component of the Universe: CMB determination of its relic density further confirmed by SNs and galaxy clusters;

More information

Confinement of CR in Dark Matter relic clumps

Confinement of CR in Dark Matter relic clumps Confinement of CR in Dark Matter relic clumps University Karlsruhe and SINP Moscow State University W.de Boer University Karlsruhe 1 Dark Matter in Universe and the Galaxy Strong evidences for DM existence:

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

PAMELA from Dark Matter Annihilations to Vector Leptons

PAMELA from Dark Matter Annihilations to Vector Leptons PAMELA from Dark Matter Annihilations to Vector Leptons phalendj@umich.edu With Aaron Pierce and Neal Weiner University of Michigan LHC and Dark Matter Workshop 2009 University of Michigan Outline PAMELA

More information

Where is SUSY? Institut für Experimentelle Kernphysik

Where is SUSY?   Institut für Experimentelle Kernphysik Where is SUSY? Institut ür Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschat www.kit.edu I supersymmetric particles exist,

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Testing a DM explanation of the positron excess with the Inverse Compton scattering Testing a DM explanation of the positron excess with the Inverse Compton scattering Gabrijela Zaharijaš Oskar Klein Center, Stockholm University Work with A. Sellerholm, L. Bergstrom, J. Edsjo on behalf

More information

LHC and the Cosmos Dark Matter Searches. Dark Matter Reconstruction

LHC and the Cosmos Dark Matter Searches. Dark Matter Reconstruction LHC and the Cosmos Dark Matter Searches and Dark Matter Reconstruction Fawzi BOUDJEMA LAPTH, CNRS, Annecy-le-Vieux, France F. BOUDJEMA, Dark Matter and the LHC, LHC2FC, CERN, Feb 2009 p. 1/5 LHC Dark Matter

More information

Carsten Rott. mps. ohio-state. edu. (for the IceCube Collaboration)

Carsten Rott. mps. ohio-state. edu. (for the IceCube Collaboration) Searches for Dark Matter from the Galactic Halo with IceCube Carsten Rott carott @ mps. ohio-state. edu (for the IceCube Collaboration) Center for Cosmology and AstroParticle Physics (CCAPP) The Ohio State

More information

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Michel H.G. Tytgat Université Libre de Bruxelles Belgium Rencontres de Moriond: EW Interactions and Unified Theories March 2011 There are

More information

Probing the nature of Dark matter with radio astronomy. Céline Boehm

Probing the nature of Dark matter with radio astronomy. Céline Boehm Probing the nature of Dark matter with radio astronomy Céline Boehm IPPP, Durham LAPTH, Annecy SKA, Flic en Flac, May 2017 The DM Physics scale strong or weak / stable or decaying strong and stable Electromagnetic

More information

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

High energy events in IceCube: hints of decaying leptophilic Dark Matter? High energy events in IceCube: hints of decaying leptophilic Dark Matter? 33rd IMPRS Workshop Max Planck Institute for Physics (Main Auditorium), Munich 26/10/2015 Messengers from space Messengers from

More information

Neutrino Signals from Dark Matter Decay

Neutrino Signals from Dark Matter Decay Neutrino Signals from Dark Matter Decay Michael Grefe Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany COSMO/CosPA 2010 The University of Tokyo 27 September 2010 Based on work in collaboration with

More information

Surprises in (Inelastic) Dark Matter

Surprises in (Inelastic) Dark Matter Surprises in (Inelastic) Dark Matter David Morrissey Harvard University with Yanou Cui, David Poland, Lisa Randall (hep-ph/0901.0557) Cornell Theory Seminar, March 11, 2009 Outline Evidence and Hints for

More information

Shedding light on Dark Matter from accelerator physics

Shedding light on Dark Matter from accelerator physics Shedding light on Dark Matter from accelerator physics 17/11/ 11. UL-Bruxelles. based on Y. Mambrini, B.Z., hep-ph/16.4819 JCAP 11 (2011) 023 Overview Introduction Experimental evidences DM interpretations

More information

Dark Matter Electron Anisotropy: A universal upper limit

Dark Matter Electron Anisotropy: A universal upper limit Seminari teorici del venerdì Enrico Borriello Università degli Studi di Napoli Federico II & INFN Sezione di Napoli Dark Matter Electron Anisotropy: A universal upper limit Based on Borriello, Maccione,

More information

Chapter 12. Dark Matter

Chapter 12. Dark Matter Karl-Heinz Kampert Univ. Wuppertal 128 Chapter 12 Dark Matter Karl-Heinz Kampert Univ. Wuppertal Baryonic Dark Matter Brightness & Rotation Curve of NGC3198 Brightness Rotation Curve measured expected

More information

Dark Matter Experiments and Searches

Dark Matter Experiments and Searches Dark Matter Experiments and Searches R.J.Cashmore Principal Brasenose College,Oxford and Dept of Physics,Oxford R.Cashmore Dark Matter 3 1 Dark Matter at LHC R.Cashmore Dark Matter 3 2 Satellite view of

More information

THE STATUS OF NEUTRALINO DARK MATTER

THE STATUS OF NEUTRALINO DARK MATTER THE STATUS OF NEUTRALINO DARK MATTER BIBHUSHAN SHAKYA CORNELL UNIVERSITY CETUP 2013 Workshop June 25, 2013 Based on hep-ph 1208.0833, 1107.5048 with Maxim Perelstein, hep-ph 1209.2427 The favorite / most

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL Dark Matter Models Stephen West and Fellow\Lecturer RHUL and RAL Introduction Research Interests Important Experiments Dark Matter - explaining PAMELA and ATIC Some models to explain data Freeze out Sommerfeld

More information

MICROPHYSICS AND THE DARK UNIVERSE

MICROPHYSICS AND THE DARK UNIVERSE MICROPHYSICS AND THE DARK UNIVERSE Jonathan Feng University of California, Irvine CAP Congress 20 June 2007 20 June 07 Feng 1 WHAT IS THE UNIVERSE MADE OF? Recently there have been remarkable advances

More information

Dark matter searches with GLAST

Dark matter searches with GLAST Dark matter searches with GLAST Larry Wai SLAC Representing the GLAST LAT Collaboration Dark Matter and New Physics working group GLAST Large Area Telescope (LAT) 20 MeV 300 GeV 1.8 m γ Anti-Coincidence

More information

SUSY Candidates. Talk outline. Ben Allanach (University of Cambridge) SUSY dark matter: generalities Neutralino Gravitino Sneutrino Axino

SUSY Candidates. Talk outline. Ben Allanach (University of Cambridge) SUSY dark matter: generalities Neutralino Gravitino Sneutrino Axino SUSY Candidates by Ben Allanach (University of Cambridge) Talk outline SUSY dark matter: generalities Neutralino Gravitino Sneutrino Axino SUSY Candidates Please ask questions while I m talking B.C. Allanach

More information