Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith


 Lewis Hill
 4 years ago
 Views:
Transcription
1 Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith Inputoutput controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure should be used? 3. How might the process be changed in order to improve the the control? Ideally we want some idea of the answers to these questions without an exhaustive trialanderror design approach
2 Inputoutput controllability Can we achieve the control design specifications?... with limited actuation authority;... in the presence of bounded disturbances;... in the presence of sensor noise;... in the presence of plant variations;... without exact knowledge of the plant. These questions depend only on properties of the plant Scaling Scale the reference by R(ω): Define the error as e = y R(ω)r with r(ω) 1. Scale G(s) and G d (s) such that: Control objective For any disturbance, d(ω) 1, and any reference, r(ω) 1,... make e(ω) 1 using an input u(ω) 1. For example: R(ω) = { R if ω ω r 0 if ω > ω r
3 Perfect control G d (s) d y = G(s)u + G d (s)d y + G(s) u Perfect control gives: y = Rr or e = Rr y = 0. e = Rr Gu G d d Perfect control (feedforward) Error: e = Rr y = Rr Gu G d d Feedforward solution: u = G 1 (s)rr G 1 (s)g d (s)d Limitations: G(s) has r.h.p. zeros (G 1 (s) is unstable). G(s) has delays (G 1 (s) is acausal). G(s) is strictly proper (G 1 (s) is unrealizable). d is not known, measured, or predicted. u will have a maximum control frequency
4 Perfect control (feedforward) Feedforward solution: u = G 1 (s)rr G 1 (s)g d (s)d Control objective requirements: G 1 (jω)r(ω) 1 = G(jω) R(jω) for all ω G 1 (jω)g d (ω) 1 = G(jω) G d (jω) for all ω Perfect control (feedback) Feedback solution: e = Rr y = SRr SG d d Ideally S(jω) = 0. When S 0, T 1, and the control actuation, u, is approximately that generated by perfect feedforward control. u = K(Rr y) = KSRr KSG d d = G 1 T Rr G 1 T G d d Control advantages Correct u (or close to correct) generated:... without having to invert G(s),... without exact knowledge of G(s),... without knowing d
5 Sensitivity/complementary sensitivity S(s) + T (s) = G(s)K(s) + G(s)K(s) 1 + G(s)K(s) = 1 + G(s)K(s) 1 + G(s)K(s) = 1 for all s C Bode sensitivity integral Given a loopshape, L(s), with:  relative degree of at least 2,  N p poles, p i, in the righthalf plane. If the closedloop is stable then, N p π real(p i ) if L(s) is unstable ln S(jω) dω = i=1 0 0 if L(s) is also stable
6 Bode sensitivity integral 0 ln S(jω) dω = 0 (stable example) 5 Magnitude log ω (rad/sec) ω B 0.1 S(jω) Bode sensitivity integral 0 ln S(jω) dω = 0 (stable example) 5 Magnitude 1 ω B + 10 S(jω) 20 ω (rad/sec)
7 Bode sensitivity integral imag j S(jω) > real 1 + L(jω) L(jω) j Bode sensitivity integral (with a righthalf plane zero) Given a loopshape, L(s), with:  L(s) being proper,  one righthalf plane zero at s = z 0,  N p poles, p i, in the righthalf plane. If the closedloop is stable then, 0 N p ln S(jω) w(z 0, ω) dω = π ln p i + z 0 p i z 0 where the weighting function is: i=1 w(z 0, ω) = 2z 0 z ω2 = 2 z 0 1 (1 + (ω/z 0 ) 2 )
8 Bode sensitivity integral (with a righthalf plane zero) 0 ln S(jω) w(z 0, ω) dω z0 0 ln S(jω) dω = 0 (stable case) Magnitude 1/z 0 z 0 2/z 0 log ω wz(jω) (rad/sec) slope = 40dB/decade bad S performance must happen before s = z 0. Situation is worse with an unstable pole as well Bode sensitivity integral (with a righthalf plane zero) L m (s) = 1 s + 1 L(s) = L m (s) 1 s s + 1 imag j S(jω) > real L m (jω) j L(jω)
9 Bode sensitivity integral (with a righthalf plane zero) L(s) = k s ( ) 2 s, k = 0.1, 0.5, 1.0, and 2.0. s + 2 Magnitude 10 1 k = 0.1 k = 1 k = 0.5 z 0 k = 2 (unstable) 10 log ω (rad/sec) Bode sensitivity integral (r.h.p. pole and r.h.p. zero) 0 N p ln S(jω) w(z 0, ω) dω = π ln p i + z 0 p i z 0 p i + z 0 As p i z 0 p i z 0 i=
10 Interpolation conditions Stable closedloop S(s) and T (s) For RHPpoles, p i, of L(s), T (p i ) = 1, S(p i ) = 0 for RHPzeros, z i, of L(s), T (z i ) = 0, S(z i ) = Maximum modulus principle Given a function, f(s), analytic in the complex RHP (i.e. stable). Then, sup f(s) = sup f(s). s RHP s=jω The maximum modulus is achieved on the jω axis. f(s) H = sup f(jω) f(s) ω for all s RHP
11 Weighted sensitivity peak Suppose G(s) has a RHPzero, z. Suppose we also have a sensitivity weight, W S (s). Then for a closedloop stable sensitivity function, S(s), W S (s)s(s) H W S (z)s(z) (via maximum modulus) Performance requirements = W S (z) (via interpolation conditions) W S (s)s(s) H < 1 = W S (z) < Weighted complementary sensitivity peak Suppose G(s) has a RHPpole, p. Suppose we also have a complementary sensitivity weight, W T (s). Then for a closedloop stable sensitivity function, T (s), W T (s)t (s) H W T (p)t (p) (via maximum modulus) = W T (p) (via interpolation conditions) Noise performance (& robustness) requirements W T (s)t (s) H < 1 = W T (p) <
12 RHP poles and RHP zeros Suppose G(s) has N z RHP zeros, z j, and N p RHP poles, p i. Then, S(s) H max c j, c j = j N p i=1 z j + p i z j p i > 1 T (s) H max d i, d i = i N z j=1 z j + p i z j p i > 1 If the RHP pole and zero are close together these bounds are very large Closedloop bandwidth with a RHP zero Suppose G(s) has a real RHPzero, z > 0. Say, W S (s)s(s) H W S (z) = W S (z) < 1. W S (s) = s/m + ω B s + ω B A Substituting s = z implies, ( ω B (1 A) < z 1 1 ) M For example: A = 0, M = 2 : ω B < z
13 Closedloop bandwidth with a RHP pole Suppose G(s) has a real RHPpole, p > 0. Say, W T (s)t (s) H W T (p) = W T (p) < 1. W T (s) = s + 1 ω BT M T Substituting s = p implies, M T ω BT > p M T 1 For example: M T = 2 implies that ω BT > 2p Hierarchy Difficult control problems (easier to harder): G(s) stable and no r.h.p. zeros (Bode integral = 0). G(s) stable and r.h.p. zero (constrained Bode integral = 0, maximum bandwidth limit) G(s) unstable, no r.h.p. zero (Bode integral > 0, minimum bandwidth constraint) G(s) unstable, r.h.p. zero and p < z, (Bode integral 0, min. and max. bandwidth constraints) G(s) unstable, r.h.p. zero and z < p (all hope of any performance is gone)
14 Notes and references Skogestad & Postlethwaite (2nd Ed.) Perfect control sections, 5.1 & 5.4 Bode sensitivity integrals: section 5.2 S(s) H and T (s) H bounds section 5.3 Bode sensitivity integrals J. Freudenberg & D. Looze, Right half plane poles and zeros and design tradeoffs in feedback systems, IEEE Trans. Auto. Ctrl., 30(6), pp ,
An Internal Stability Example
An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several polezero cancellations between the controller and
More informationTopic # Feedback Control Systems
Topic #20 16.31 Feedback Control Systems Closedloop system analysis Bounded Gain Theorem Robust Stability Fall 2007 16.31 20 1 SISO Performance Objectives Basic setup: d i d o r u y G c (s) G(s) n control
More informationIntroduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31
Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured
More informationRobust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
More informationUncertainty and Robustness for SISO Systems
Uncertainty and Robustness for SISO Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Outline Nature of uncertainty (models and signals). Physical sources of model uncertainty. Mathematical
More informationFrequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
More informationRobust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization
Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5303B) A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization A.2 Sensitivity and Feedback Performance A.3
More informationThe loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)
Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)
More informationAnalysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
More informationInputoutput Controllability Analysis
Inputoutput Controllability Analysis Idea: Find out how well the process can be controlled  without having to design a specific controller Note: Some processes are impossible to control Reference: S.
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationRobust stability and Performance
122 c Perry Y.Li Chapter 5 Robust stability and Performance Topics: ([ author ] is supplementary source) Sensitivities and internal stability (Goodwin 5.15.4) Modeling Error and Model Uncertainty (Goodwin
More informationControl Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
More information16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R +  E G c (s) G(s) C Figure 1: The standard block diagram
More informationLet the plant and controller be described as:
Summary of Fundamental Limitations in Feedback Design (LTI SISO Systems) From Chapter 6 of A FIRST GRADUATE COURSE IN FEEDBACK CONTROL By J. S. Freudenberg (Winter 2008) Prepared by: Hammad Munawar (Institute
More informationRobust fixedorder H Controller Design for Spectral Models by Convex Optimization
Robust fixedorder H Controller Design for Spectral Models by Convex Optimization Alireza Karimi, Gorka Galdos and Roland Longchamp Abstract A new approach for robust fixedorder H controller design by
More informationTopic # Feedback Control
Topic #4 16.31 Feedback Control Stability in the Frequency Domain Nyquist Stability Theorem Examples Appendix (details) This is the basis of future robustness tests. Fall 2007 16.31 4 2 Frequency Stability
More informationSingular Value Decomposition Analysis
Singular Value Decomposition Analysis Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationMEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationClassify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 505900 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Nonminimum Phase System) To increase the rise time of the system, we
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Nonminimum Phase System) To decrease the rise time of the system,
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationFEL3210 Multivariable Feedback Control
FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationEE3CL4: Introduction to Linear Control Systems
1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop
More informationMEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer
More informationDesign Methods for Control Systems
Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 20022003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9
More informationTopic # Feedback Control Systems
Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19
More informationChapter 15  Solved Problems
Chapter 5  Solved Problems Solved Problem 5.. Contributed by  Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Consider a plant having a nominal model given by G o (s) = s + 2 The aim of the
More informationCHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
More informationTopic # Feedback Control. StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback
Topic #17 16.31 Feedback Control StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency ResponseDesign Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
More informationD(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
More informationLoop shaping exercise
Loop shaping exercise Excerpt 1 from Controlli Automatici  Esercizi di Sintesi, L. Lanari, G. Oriolo, EUROMA  La Goliardica, 1997. It s a generic book with some typical problems in control, not a collection
More informationStability of CL System
Stability of CL System Consider an open loop stable system that becomes unstable with large gain: At the point of instability, K( j) G( j) = 1 0dB K( j) G( j) K( j) G( j) K( j) G( j) =± 180 o 180 o Closed
More informationNyquist Criterion For Stability of Closed Loop System
Nyquist Criterion For Stability of Closed Loop System Prof. N. Puri ECE Department, Rutgers University Nyquist Theorem Given a closed loop system: r(t) + KG(s) = K N(s) c(t) H(s) = KG(s) +KG(s) = KN(s)
More informationResponse to a pure sinusoid
Harvard University Division of Engineering and Applied Sciences ES 145/215  INTRODUCTION TO SYSTEMS ANALYSIS WITH PHYSIOLOGICAL APPLICATIONS Fall Lecture 14: The Bode Plot Response to a pure sinusoid
More informationIntro to Frequency Domain Design
Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationPID controllers, part I
Faculty of Mechanical and Power Engineering Dr inŝ. JANUSZ LICHOTA CONTROL SYSTEMS PID controllers, part I Wrocław 2007 CONTENTS Controller s classification PID controller what is it? Typical controller
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More informationRejection of fixed direction disturbances in multivariable electromechanical motion systems
Rejection of fixed direction disturbances in multivariable electromechanical motion systems Matthijs Boerlage Rick Middleton Maarten Steinbuch, Bram de Jager Technische Universiteit Eindhoven, Eindhoven,
More informationRobust Control. 2nd class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room
Robust Control Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) 2nd class Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room 2. Nominal Performance 2.1 Weighted Sensitivity [SP05, Sec. 2.8,
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using
More informationActive Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
More informationToday (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
More informationRobust control of MIMO systems
Robust control of MIMO systems Olivier Sename Grenoble INP / GIPSAlab September 2017 Olivier Sename (Grenoble INP / GIPSAlab) Robust control September 2017 1 / 162 O. Sename [GIPSAlab] 2/162 1. Some
More informationIterative Controller Tuning Using Bode s Integrals
Iterative Controller Tuning Using Bode s Integrals A. Karimi, D. Garcia and R. Longchamp Laboratoire d automatique, École Polytechnique Fédérale de Lausanne (EPFL), 05 Lausanne, Switzerland. email: alireza.karimi@epfl.ch
More informationLecture 7 (Weeks 1314)
Lecture 7 (Weeks 1314) Introduction to Multivariable Control (SP  Chapters 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 7 (Weeks 1314) p.
More informationRobust Control 3 The Closed Loop
Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time
More informationControl Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control
More informationData Based Design of 3Term Controllers. Data Based Design of 3 Term Controllers p. 1/10
Data Based Design of 3Term Controllers Data Based Design of 3 Term Controllers p. 1/10 Data Based Design of 3 Term Controllers p. 2/10 History Classical Control  single controller (PID, lead/lag) is designed
More informationModel Uncertainty and Robust Stability for Multivariable Systems
Model Uncertainty and Robust Stability for Multivariable Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Representing model uncertainty.
More informationRobust Loop Shaping Controller Design for Spectral Models by Quadratic Programming
Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming Gorka Galdos, Alireza Karimi and Roland Longchamp Abstract A quadratic programming approach is proposed to tune fixedorder
More informationFrequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 22: The Nyquist Criterion Overview In this Lecture, you will learn: Complex Analysis The Argument Principle The Contour
More informationEE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationProblem Set 4 Solution 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 4 Solution Problem 4. For the SISO feedback
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationChapter 2 SDOF Vibration Control 2.1 Transfer Function
Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:
More informationChapter 5. Standard LTI Feedback Optimization Setup. 5.1 The Canonical Setup
Chapter 5 Standard LTI Feedback Optimization Setup Efficient LTI feedback optimization algorithms comprise a major component of modern feedback design approach: application problems involving complex models
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationRobust control of MIMO systems
Robust control of MIMO systems Olivier Sename Grenoble INP / GIPSAlab September 2018 Olivier Sename (Grenoble INP / GIPSAlab) Robust control September 2018 1 / 169 O. Sename [GIPSAlab] 2/169 1. Some
More informationLecture 120 Compensation of Op AmpsI (1/30/02) Page ECE Analog Integrated Circuit Design  II P.E. Allen
Lecture 20 Compensation of Op AmpsI (/30/02) Page 20 LECTURE 20 COMPENSATION OF OP AMPS I (READING: GHLM 425434 and 624638, AH 249260) INTRODUCTION The objective of this presentation is to present the
More informationPlan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.
Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequencyresponse design method Goal: wrap up lead and
More informationRadar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
More informationControl Lab. Thermal Plant. Chriss Grimholt
Control Lab Thermal Plant Chriss Grimholt Process System Engineering Department of Chemical Engineering Norwegian University of Science and Technology October 3, 23 C. Grimholt (NTNU) Thermal Plant October
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More information1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
More informationKars Heinen. Frequency analysis of reset systems containing a Clegg integrator. An introduction to higher order sinusoidal input describing functions
Frequency analysis of reset systems containing a Clegg integrator An introduction to higher order sinusoidal input describing functions Delft Center for Systems and Control Frequency analysis of reset
More informationLecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
More informationEECE 460. Decentralized Control of MIMO Systems. Guy A. Dumont. Department of Electrical and Computer Engineering University of British Columbia
EECE 460 Decentralized Control of MIMO Systems Guy A. Dumont Department of Electrical and Computer Engineering University of British Columbia January 2011 Guy A. Dumont (UBC EECE) EECE 460  Decentralized
More informationChapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Noninverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
More informationAutomatic Control (TSRT15): Lecture 7
Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13282226 Office: Bhouse extrance 2527 Outline 2 Feedforward
More information8.1.6 Quadratic pole response: resonance
8.1.6 Quadratic pole response: resonance Example G(s)= v (s) v 1 (s) = 1 1+s L R + s LC L + Secondorder denominator, of the form 1+a 1 s + a s v 1 (s) + C R Twopole lowpass filter example v (s) with
More informationChapter 7  Solved Problems
Chapter 7  Solved Problems Solved Problem 7.1. A continuous time system has transfer function G o (s) given by G o (s) = B o(s) A o (s) = 2 (s 1)(s + 2) = 2 s 2 + s 2 (1) Find a controller of minimal
More informationControl Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017
More informationPrinciples of Optimal Control Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture
More informationPart IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Glenn Vinnicombe HANDOUT 5 An Introduction to Feedback Control Systems ē(s) ȳ(s) Σ K(s) G(s) z(s) H(s) z(s) = H(s)G(s)K(s) L(s) ē(s)=
More informationK(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s
321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More information(a) Find the transfer function of the amplifier. Ans.: G(s) =
126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closedloop system
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationDisturbance Propagation in Vehicle Strings
Disturbance Propagation in Vehicle Strings Pete Seiler, Aniruddha Pant, and Karl Hedrick Pete Seiler is with the University of Illinois, UrbanaChampaign; email: pseiler@uiuc.edu Aniruddha Pant is with
More informationRobust Control. 8th class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) Tue., 29th May, 2018, 10:45~11:30, S423 Lecture Room
Robust Control Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) 8th class Tue., 29th May, 2018, 10:45~11:30, S423 Lecture Room 1 8. Design Example 8.1 HiMAT: Control (Highly Maneuverable Aircraft
More information6.241 Dynamic Systems and Control
6.241 Dynamic Systems and Control Lecture 17: Robust Stability Readings: DDV, Chapters 19, 20 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology April 6, 2011 E. Frazzoli
More informationCDS 101/110a: Lecture 101 Robust Performance
CDS 11/11a: Lecture 11 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty
More informationA brief introduction to robust H control
A brief introduction to robust H control JeanMarc Biannic System Control and Flight Dynamics Department ONERA, Toulouse. http://www.onera.fr/staff/jeanmarcbiannic/ http://jm.biannic.free.fr/ European
More informationWind Turbine Control
Wind Turbine Control W. E. Leithead University of Strathclyde, Glasgow Supergen Student Workshop 1 Outline 1. Introduction 2. Control Basics 3. General Control Objectives 4. Constant Speed Pitch Regulated
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationFundamental Design Limitations in SISO Control
Chapter 8 Fundamental Design Limitations in SISO Control This chapter examines those issues that limit the achievable performance in control systems. The limitations that we examine here include Sensors
More information