6. Lichtstreuung (2) Statische Lichtstreuung

Size: px
Start display at page:

Download "6. Lichtstreuung (2) Statische Lichtstreuung"

Transcription

1 6. Lichtstreuung (2) Statische Lichtstreuung

2 What is Light Scattering? Blue sky, red sunset Automobile headlights in fog Laser beam in a smoky room Reading from an illuminated page Dust particles in beamer light

3 What is Light Scattering? Absolute molar mass measurement by the use different angles.

4 Light and its Properties Light is an oscillating wave of electric and magnetic fields Polarization: direction of electric field oscillation Intensity: I E by J. C. Maxwell

5 How does light scatter? When light interacts with matter, it causes charges to polarize. The oscillating charges radiate light. How much the charges move, and hence how much light radiates, depends upon the matter s polarizability.

6 Index of refraction The polarizability of a material is directly related to its index of refraction n. a n 2-1 The index of refraction is a measure of the velocity of light in a material. e.g., speed of light Snell s law For solutes, the polarizability is expressed as the specific refractive index increment, dn/dc.

7 Adding light Incoherent sum Coherent sum Interference:

8 How Light Scattering measures Mw coherent: incoherent: I (E + E) = 4 E total I total E + E = 2 E 2 I scattered dn Mc dc 2

9 Isotropic Scattering For particles much smaller than the wavelength of the incident light ( <10 nm for l = 690 nm), the amount of radiation scattered into each angle is the same in the plane perpendicular to the polarization.

10 Isotropic and anisotropic Scattering small particles D < l/20 isotropic scattering anisotropic scattering large particles D >l/20

11 Rayleigh-Ratio R ( ) Lord John W. S. Rayleigh ( ) Studied scattering of light by particles much smaller than a wavelength, discovered strong dependence of scattering on wavelength (1/l 4 ). R ( I = I ) ( I I 2, Sovent r, Solvent) = A 0 V I0 I The Rayleight-Ratio R is the fraction of light scattered, in excess of the light scattered by the solvent times the square of the distance between the scattering center and the detector divided by the incident intensity and the volume of the cell illuminated by the laser and seen by the detector.

12 Charakterisierungsmethoden Statische Lichtstreuung

13 Charakterisierungsmethoden Statische Lichtstreuung

14 Charakterisierungsmethoden Statische Lichtstreuung

15 Angular dependence of Light Scattering detector at 0 scattered light in phase detector at, scattered light out-of-phase Intermolecular interference leads to a reduction in scattering intensity as the scattering angle increases.

16 Scattering Function P(θ) P( ) form factor or scattering function describes how the scattered light varies with angle. This variation is affected by <r g2 >, the mean square radius. The greater <r g2 >, the larger the angular variation. Note that P(0 ) = 1

17 Molar mass and radius r g < 10 nm isotropic scatterer r g > 10 nm Non isotropic scatterer

18 How Light Scattering measures r g To calculate the angular distribution of scattered light, integrate over phase shifts from extended particle. No dn/dc and no Concentration in formalism. Integrating over extended particle involves integrating over mass distribution.

19 Interpretation of r g hollow sphere: solid sphere: Random coil polymer with average end to end length L:

20 Basic Light Scattering Principles The amount of light scattered is directly proportional to the product of the molar mass and the molecular concentration The amount of light scattered (divided by the incident light intensity) by a solution into a particular direction per unit solid angle in excess of the amount scattered by the pure solvent is directly proportional to the product of the weight-average molar mass and the concentration. R( ), in limit as 0, Mc The variation of scattered light with scattering angle is proportional to the average size of the scattering molecules. The variation of light scattered with respect to sin 2 /2, in the limit as 0, is directly proportional to the average molecular mean square radius. dr( )/dsin 2 /2 <r g2 >

21 What Do We Mean By ABSOLUTE? NO Reference to standards of mass ALL parameters measured directly from 1st principles Refractive indices geometries of cell and detector wavelength concentrations detector response temperature dn/dc NO assumptions of molecular model/conformation There are 4 Absolute Methods 1) Membrane Osmometry (Number Average MM) 2) Light Scattering (Weight Average MM) 3) Sedimentation Equilibrium (Ultracentrifugation) (z-average MM) 4) Mass spectrometry

22 Zimm Equation The Zimm formalism of the Rayleigh-Debye- Gans light scattering model for dilute polymer solutions: K* c 1 = + R( ) M P( ) w 2 2 A c J. Chem. Phys. 16, (1948) This model embodies the two principles and addresses both intermolecular scattering and intramolecular scattering.

23 Zimm Equation K* c 1 = + R( ) M P( ) w K* = 4p 2 (dn/dc) 2 n 0 2 N A -1 l A c n 0 is the refractive index of the solvent N A is Avogadro s number. l 0 is the vacuum wavelength of the incident light. dn/dc is the refractive index increment, which tells how much the refractive index of the solution varies with solute concentration. c is the concentration of the solute molecules (g/ml). R( ) is the fraction of light scattered, in excess of the light scattered by the solvent times the square of the distance between the scattering center and the detector divided by the incident intensity and the volume of the cell illuminated by the laser and seen by the detector.

24 Zimm Equation K* c 1 = + R( ) M P( ) w 2 2 A c M w is the weight-average molar mass. A 2 is the second virial coefficient (a measure of solvent-solute interaction) (A 2 >0 good solvent for the sample). P( ) is the form factor or scattering function, telling how the scattered light varies with angle. This variation is determined by <r g2 >, the mean square radius. The bigger <r g2 >, the greater the angular variation. Note that P(0 ) = 1.

25 Mathematical Solution We know: We don t know: R( ), c, K*, l 0 (l=l 0 /n0), Mw, <r g2 >, A 2 Three Limits of Interest: Low concentration limit (c 0) K*c R 1 = M W P Low angle limit ( 0) K*c R 0 = A2c M W Low concentration and low angle (c 0, 0) K*c = 1 R 0 M W

26 Plot * K c R( ) The Zimm Plot vs. sin 2 ( /2)+kc where k is a stretch factor selected to put kc and sin 2( /2) into the same numerical range. Final results are independent of this factor. Initial slope of = 0 line gives A 2 Initial slope of c = 0 line gives <r g2 > = 0, c = 0 point gives Mw

Kolligative Eigenschaften der Makromolekülen

Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften (colligere = sammeln) Gefrierpunkterniedrigung, Siedepunkterhöhung, Dampfdruckerniedrigung, Osmotischer Druck Kolligative Eigenschaften

More information

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Dr. Christoph Johann Wyatt Technology Europe GmbH 2010 Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Introduction Overview The Nature of Scattered Light: Intensity of scattered light Angular

More information

Light scattering Small and large particles

Light scattering Small and large particles Scattering by macromolecules E B Incident light Scattered Light particle Oscillating E field from light makes electronic cloud oscillate surrounding the particle Intensity: I E Accelerating charges means

More information

Sem /2007. Fisika Polimer Ariadne L. Juwono

Sem /2007. Fisika Polimer Ariadne L. Juwono Chapter 8. Measurement of molecular weight and size 8.. End-group analysis 8.. Colligative property measurement 8.3. Osmometry 8.4. Gel-permeation chromatography 8.5. Ultracentrifugation 8.6. Light-scattering

More information

Part 8. Special Topic: Light Scattering

Part 8. Special Topic: Light Scattering Part 8. Special Topic: Light Scattering Light scattering occurs when polarizable particles in a sample are placed in the oscillating electric field of a beam of light. The varying field induces oscillating

More information

How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques

How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques Dr. Bernd Tartsch Malvern Instruments GmbH Rigipsstr. 19, D-71083 Herrenberg Tel: +49-703-97 770, Fax: +49-703-97 854

More information

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Introduction. The electromagnetic spectrum. visible 10-16 10-10 10-8 10-4 10-2 10 4 (l m) g-rays X-rays UV IR micro wave Long radio waves 400

More information

Calibration and Normalization of MALS Detectors

Calibration and Normalization of MALS Detectors Page 1 of 9 Technical Note TN3000 Calibration and Normalization of MALS Detectors Summary This technical note describes the calibration and normalization procedures necessary to performing multi-angle

More information

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download)

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) Dr. Debasis Samanta Senior Scientist & AcSIR Assistant Professor Polymer Science & Technology Department., CSIR-CLRI,

More information

Page 1 of 5. Is it alright to estimate dñ/dc in SLS measurements?

Page 1 of 5. Is it alright to estimate dñ/dc in SLS measurements? Page 1 of 5 Is it alright to estimate dñ/dc in SLS measurements? Due to the complexity of measuring the specific refractive index increment (dñ/dc), static light scattering molecular weight measurements

More information

Light Scattering Study of Poly (dimethyl siloxane) in Liquid and Supercritical CO 2.

Light Scattering Study of Poly (dimethyl siloxane) in Liquid and Supercritical CO 2. Supplemental Information. Light Scattering Study of Poly (dimethyl siloxane) in Liquid and Supercritical CO 2. Pascal André, Sarah L. Folk, Mireille Adam, Michael Rubinstein, and Joseph M. DeSimone Technical

More information

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (4/28/09) The Scattering of Light by Small Particles Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract In this experiment we study the scattering of light from

More information

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004

arxiv:physics/ v2 [physics.chem-ph] 8 Dec 2004 arxiv:physics/0407001v2 [physics.chem-ph] 8 Dec 2004 Size Information Obtained Using Static Light Scattering Technique Yong Sun February 2, 2008 Abstract Detailed investigation of static light scattering

More information

p(θ,φ,θ,φ) = we have: Thus:

p(θ,φ,θ,φ) = we have: Thus: 1. Scattering RT Calculations We come spinning out of nothingness, scattering stars like dust. - Jalal ad-din Rumi (Persian Poet, 1207-1273) We ve considered solutions to the radiative transfer equation

More information

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC Advanced GPC GPC On Tour, Barcelona, 28 th February 2012 The use of Advanced Detectors in GPC 1 What does Conventional GPC give? Molecular weight averages Relative to the standards used Mw Weight Average

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

Molecular Weight of Polymers *

Molecular Weight of Polymers * OpenStax-CNX module: m43550 1 Molecular Weight of Polymers * Sehmus Ozden Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Introduction

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry BHT Lecture 11 Light Scattering Experiment Measure I/I 0 = f(θ) Standard Approach Measure scattering of an analyte relative to a well characterized very pure liquid Toluene is

More information

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Introduction to Dynamic Light Scattering with Applications Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Outline Introduction to dynamic light scattering Particle

More information

Coherent vs. Incoherent light scattering

Coherent vs. Incoherent light scattering 11. Light Scattering Coherent vs. incoherent scattering Radiation from an accelerated charge Larmor formula Why the sky is blue Rayleigh scattering Reflected and refracted beams from water droplets Rainbows

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

Sample characterization: Quality control and sample handling prior to data collection

Sample characterization: Quality control and sample handling prior to data collection Sample characterization: Quality control and sample handling prior to data collection Marc JAMIN UMI 3265 UJF-EMBL-CNRS Unit of Virus Host Cell interactions Grenoble, France jamin@embl.fr Take home message

More information

Coherent vs. Incoherent light scattering

Coherent vs. Incoherent light scattering 11. Light Scattering Coherent vs. incoherent scattering Radiation from an accelerated charge Larmor formula Rayleigh scattering Why the sky is blue Reflected and refracted beams from water droplets Rainbows

More information

Tools to Characterize and Study Polymers.

Tools to Characterize and Study Polymers. Tools to Characterize and Study Polymers. Overview. 1. Osmometry.. Viscosity Measurements. 3. Elastic and Inelastic Light Scattering. 4. Gel-Permeation Chromatography. 5. Atomic Force Microscopy. 6. Computer

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Scattering Methods: Basic Principles and Application to Polymer and Colloidal Solutions

Scattering Methods: Basic Principles and Application to Polymer and Colloidal Solutions Scattering Methods: Basic Principles and Application to Polymer and Colloidal Solutions Peter Lang Summer term 2017 Contents 1 Basic Principles 2 1.1 Mathematical description of wave motion..................

More information

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (4/6/10) The Scattering of Light by Small Particles Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract In this experiment we study the scattering of light from various

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Particle Size Determinations: Dynamic Light Scattering: page 161 text

Particle Size Determinations: Dynamic Light Scattering: page 161 text Particle Size Determinations: Dynamic Light Scattering: page 161 text Dynamic light scattering (also known as Photon Correlation Spectroscopy or Quasi- Elastic Light Scattering) is a technique which can

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles Nanophotonics: principle and application Khai Q. Le Lecture 4 Light scattering by small particles Previous lecture Drude model, Drude-Sommerfeld model and Drude-Lorentz model for conducting media (metal):

More information

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics The Plasma Phase Chapter 1. An experiment - measure and understand transport processes in a plasma Three important vugraphs What we have just talked about The diagnostics Chapter 2. An introduction to

More information

Optics in a Fish Tank Demonstrations for the Classroom

Optics in a Fish Tank Demonstrations for the Classroom Optics in a Fish Tank Demonstrations for the Classroom Introduction: This series of demonstrations will illustrate a number of optical phenomena. Using different light sources and a tank of water, you

More information

OPTICAL Optical properties of multilayer systems by computer modeling

OPTICAL Optical properties of multilayer systems by computer modeling Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-15 "Optical Properties of Multilayer Systems by Computer Modeling" E. Centurioni CNR/IMM AREA Science Park - Bologna Italy OPTICAL

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

ISP209 Fall Exam #2. Name: Student #:

ISP209 Fall Exam #2. Name: Student #: ISP209 Fall 2012 Exam #2 Name: Student #: Please write down your name and student # on both the exam and the scoring sheet. After you are finished with the exam, please place the scoring sheet inside the

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

SAS Data Analysis Colloids. Dr Karen Edler

SAS Data Analysis Colloids. Dr Karen Edler SAS Data Analysis Colloids Dr Karen Edler Size Range Comparisons 10 1 0.1 0.01 0.001 proteins viruses nanoparticles micelles polymers Q = 2π/d (Å -1 ) bacteria molecules nanotubes precipitates grain boundaries

More information

第 1 頁, 共 8 頁 Chap32&Chap33 1. Test Bank, Question 2 Gauss' law for magnetism tells us: the net charge in any given volume that the line integral of a magnetic around any closed loop must vanish the magnetic

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Lecture 10 February 25, 2010

Lecture 10 February 25, 2010 Lecture 10 February 5, 010 Last time we discussed a small scatterer at origin. Interesting effects come from many small scatterers occupying a region of size d large compared to λ. The scatterer j at position

More information

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p = Laser Beam Interactions with Solids In absorbing materials photons deposit energy E = hv = hc λ where h = Plank's constant = 6.63 x 10-34 J s c = speed of light Also photons also transfer momentum p p

More information

Light as electromagnetic wave and as particle

Light as electromagnetic wave and as particle Light as electromagnetic wave and as particle Help to understand and learn exam question 5. (How the wave-particle duality can be applied to light?) and to measurements Microscopy II., Light emission and

More information

REFLECTION AND REFRACTION

REFLECTION AND REFRACTION S-108-2110 OPTICS 1/6 REFLECTION AND REFRACTION Student Labwork S-108-2110 OPTICS 2/6 Table of contents 1. Theory...3 2. Performing the measurements...4 2.1. Total internal reflection...4 2.2. Brewster

More information

ANTENNA AND WAVE PROPAGATION

ANTENNA AND WAVE PROPAGATION ANTENNA AND WAVE PROPAGATION Electromagnetic Waves and Their Propagation Through the Atmosphere ELECTRIC FIELD An Electric field exists in the presence of a charged body ELECTRIC FIELD INTENSITY (E) A

More information

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation Klaus Jockers November 11, 2014 Max-Planck-Institut für Sonnensystemforschung

More information

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical Subject PHYSICAL Paper No and Title Module No and Title Module Tag 6, PHYSICAL -II (Statistical 34, Method for determining molar mass - I CHE_P6_M34 Table of Contents 1. Learning Outcomes 2. Introduction

More information

Scattering intensity fluctuations

Scattering intensity fluctuations 11 Size theory Introduction The aim of this chapter is to describe the basic size principles behind the Zetasizer Nano series. This will help in understanding the meaning of the results achieved. The chapter

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect.

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect. Lecture 11: Polarized Light Outline 1 Fundamentals of Polarized Light 2 Descriptions of Polarized Light 3 Scattering Polarization 4 Zeeman Effect 5 Hanle Effect Fundamentals of Polarized Light Electromagnetic

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER 1, 2010/2011

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER 1, 2010/2011 COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER 1, 2010/2011 PROGRAMME SUBJECT CODE : Foundation in Engineering : PHYF144 SUBJECT : Physics 3 DATE : October 2010 TIME VENUE : 2 hours

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Structural Relaxation and Refractive Index of Low-Loss Poly(methyl methacrylate) Glass

Structural Relaxation and Refractive Index of Low-Loss Poly(methyl methacrylate) Glass Polymer Journal, Vol. 34, No. 6, pp 466 470 (2002) NOTES Structural Relaxation and Refractive Index of Low-Loss Poly(methyl methacrylate) Glass Norihisa TANIO Faculty of Photonics Science and Technology,

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Introduction to the calculators in the Zetasizer software

Introduction to the calculators in the Zetasizer software Introduction to the calculators in the Zetasizer software PARTICLE SIZE ZETA POTENTIAL MOLECULAR WEIGHT MOLECULAR SIZE Introduction The calculators are a series of tools in the Zetasizer software that

More information

Lecture 15 Interference Chp. 35

Lecture 15 Interference Chp. 35 Lecture 15 Interference Chp. 35 Opening Demo Topics Interference is due to the wave nature of light Huygen s principle, Coherence Change in wavelength and phase change in a medium Interference from thin

More information

Optics. n n. sin c. sin

Optics. n n. sin c. sin Optics Geometrical optics (model) Light-ray: extremely thin parallel light beam Using this model, the explanation of several optical phenomena can be given as the solution of simple geometric problems.

More information

Physics 208 Exam 1 Oct. 3, 2007

Physics 208 Exam 1 Oct. 3, 2007 1 Name: Student ID: Section #: Physics 208 Exam 1 Oct. 3, 2007 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Example of a Plane Wave LECTURE 22

Example of a Plane Wave LECTURE 22 Example of a Plane Wave http://www.acs.psu.edu/drussell/demos/evanescentwaves/plane-x.gif LECTURE 22 EM wave Intensity I, pressure P, energy density u av from chapter 30 Light: wave or particle? 1 Electromagnetic

More information

Final Exam - PHYS 611 Electromagnetic Theory. Mendes, Spring 2013, April

Final Exam - PHYS 611 Electromagnetic Theory. Mendes, Spring 2013, April NAME: Final Exam - PHYS 611 Electromagnetic Theory Mendes, Spring 2013, April 24 2013 During the exam you can consult your textbooks (Melia, Jackson, Panofsky/Phillips, Griffiths), the print-outs of classnotes,

More information

Light propagation. Ken Intriligator s week 7 lectures, Nov.12, 2013

Light propagation. Ken Intriligator s week 7 lectures, Nov.12, 2013 Light propagation Ken Intriligator s week 7 lectures, Nov.12, 2013 What is light? Old question: is it a wave or a particle? Quantum mechanics: it is both! 1600-1900: it is a wave. ~1905: photons Wave:

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Scattering of Electromagnetic Radiation. References:

Scattering of Electromagnetic Radiation. References: Scattering of Electromagnetic Radiation References: Plasma Diagnostics: Chapter by Kunze Methods of experimental physics, 9a, chapter by Alan Desilva and George Goldenbaum, Edited by Loveberg and Griem.

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation Producing EMR All EMR is produced by accelerating charges Consists of changing electric and magnetic fields Speed of all EMR in vacuum is 3.00 x 10 8 m/s EMR is made up electric

More information

V 11: Electron Diffraction

V 11: Electron Diffraction Martin-Luther-University Halle-Wittenberg Institute of Physics Advanced Practical Lab Course V 11: Electron Diffraction An electron beam conditioned by an electron optical system is diffracted by a polycrystalline,

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information

Chap. 2. Molecular Weight and Polymer Solutions

Chap. 2. Molecular Weight and Polymer Solutions Chap.. Molecular Weight and Polymer Solutions. Number Average and Weight Average Molecular Weight A) Importance of MW and MW Distribution M.W. physical properties As M.W., toughness, viscosity ) Optimum

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 25 Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

Fundametals of Rendering - Radiometry / Photometry

Fundametals of Rendering - Radiometry / Photometry Fundametals of Rendering - Radiometry / Photometry Physically Based Rendering by Pharr & Humphreys Chapter 5: Color and Radiometry Chapter 6: Camera Models - we won t cover this in class Realistic Rendering

More information

Determination of Molecular Weight and Its Distribution of Rigid-Rod Polymers Determined by Phase-Modulated Flow Birefringence Technique

Determination of Molecular Weight and Its Distribution of Rigid-Rod Polymers Determined by Phase-Modulated Flow Birefringence Technique Determination of Molecular Weight and Its Distribution of Rigid-Rod Polymers Determined by Phase-Modulated Flow Birefringence Technique YUM RAK OH, YOUNG SIL LEE, MOO HYUN KWON, O OK PARK Department of

More information

Name: School Name: PHYSICS CONTEST EXAMINATION

Name: School Name: PHYSICS CONTEST EXAMINATION PHYSICS CONTEST EXAMINATION - 2013 Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Please note that i^, j^, and k^ are unit vectors along the x-axis,

More information

Lab 8 - POLARIZATION

Lab 8 - POLARIZATION 137 Name Date Partners Lab 8 - POLARIZATION OBJECTIVES To study the general phenomena of electromagnetic wave polarization To investigate linearly polarized microwaves To investigate linearly polarized

More information

Light Scattering from Silica-Iron Oxide Core-Shell Colloids

Light Scattering from Silica-Iron Oxide Core-Shell Colloids 7 Light Scattering from Silica-Iron Oxide Core-Shell Colloids Abstract Static light scattering measurements have been performed on colloidal dispersions of silica particles with two concentric shells one

More information

Structure of Surfaces

Structure of Surfaces Structure of Surfaces C Stepped surface Interference of two waves Bragg s law Path difference = AB+BC =2dsin ( =glancing angle) If, n =2dsin, constructive interference Ex) in a cubic lattice of unit cell

More information

Application compendium. Authors. Greg Saunders, Ben MacCreath Agilent Technologies, Inc. A guide to multi-detector gel permeation chromatography

Application compendium. Authors. Greg Saunders, Ben MacCreath Agilent Technologies, Inc. A guide to multi-detector gel permeation chromatography Application compendium Authors Greg Saunders, Ben MacCreath Agilent Technologies, Inc. A guide to multi-detector gel permeation chromatography Contents Introduction...3 Why do multi-detector GPC/SEC?...4

More information

Lecture notes 5: Diffraction

Lecture notes 5: Diffraction Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through

More information

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Lab 8 - Polarization

Lab 8 - Polarization Lab 8 Polarization L8-1 Name Date Partners Lab 8 - Polarization OBJECTIVES To study the general phenomena of electromagnetic wave polarization To investigate linearly polarized microwaves To investigate

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution page 1 of 7 EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December 2013 Suggested resolution Exercise 1. [total: 25 p] a) [t: 5 p] Describe the bonding [1.5 p] and the molecular orbitals [1.5 p] of the ethylene

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral

Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral students Course webpage: Course webpage: http://electronics.physics.helsinki.fi/teaching/optics-2016-2/ Personal information

More information

MCRT L10: Scattering and clarification of astronomy/medical terminology

MCRT L10: Scattering and clarification of astronomy/medical terminology MCRT L10: Scattering and clarification of astronomy/medical terminology What does the scattering? Shape of scattering Sampling from scattering phase functions Co-ordinate frames Refractive index changes

More information

Measuring Lysozyme Monomer at 0.1 mg/ml Concentration. Equipment used : Sample Preparation and Measurement :

Measuring Lysozyme Monomer at 0.1 mg/ml Concentration. Equipment used : Sample Preparation and Measurement : Application Report #001 Measuring Lysozyme Monomer at 0.1 mg/ml Concentration Equipment used : ALV-NIBS / HPPS High Sensitivity Version, Lysozyme (MERCK), 0.1 molar Sodium-Acetate buffer (ph 4.25), syringe

More information

Why is the sky blue?

Why is the sky blue? Why is the sky blue? Volcanic: June 12, 1991: Mt Pinatubo ejected 20 million tons of sulfur dioxide. Aerosols spread globally Haze lowered a drop of global temperature by 1F Size parameter: Rayleigh

More information

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Harmonic oscillation: Experiment Experiment to find a mathematical description of harmonic oscillation Kapitel 14 Harmonisk oscillator 1 2 Harmonic oscillation: Experiment Harmonic

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

2 The Radiative Transfer Equation

2 The Radiative Transfer Equation 9 The Radiative Transfer Equation. Radiative transfer without absorption and scattering Free space or homogeneous space I (r,,) I (r,,) r -r d da da Figure.: Following a pencil of radiation in free space

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information