Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank.

Size: px
Start display at page:

Download "Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank."

Transcription

1 Lecture Note II Example 6 Continuou Stirred-Tank Reactor (CSTR) Chemical reactor together with ma tranfer procee contitute an important part of chemical technologie. From a control point of view, reactor belong to the mot difficult procee. Thi i epecially true for fat exothermal procee. We conider CSTR with a imple exothermal reaction A B. For the development of a mathematical model of the CSTR, the following aumption are made,. neglected heat capacity of inner wall of the reactor, contant denity and pecific heat capacity of liquid,. contant reactor volume, contant overall heat tranfer coefficient, and 3. contant and equal input and output volumetric flow rate. A the reactor i well-mixed, the outlet tream concentration and temperature are identical with thoe in the tank. Figure. A noniothermal CSTR. Ma balance of the component A can be expreed a dc A V qc Av qc A Vr( c A, ϑ) where t - time variable, c A - molar concentration of A (mole/volume) in the outlet tream, c Av - molar concentration of A (mole/volume) in the inlet tream, V - reactor volume, q - volumetric flow rate, r(c A, ϑ) - rate of reaction per unit volume, ϑ- temperature of reaction mixture. The rate of reaction i a trong function of concentration and temperature (Arrheniu law)

2 E R ϑ r( c A, ϑ) kca ke c A where k i the frequency factor, E i the activation energy, and R i the ga contant. Heat balance give dϑ Vρ c p qρ c pϑv qρ c pϑ αf( ϑ ϑc ) + V ( H ) r( c A, ϑ) 3 where ϑv - temperature in the inlet tream, ϑc - cooling temperature, ρ - liquid denity, c p - liquid pecific heat capacity, α - overall heat tranfer coefficient, F - heat tranfer area, (- H) - heat of reaction. Initial condition are c A () c A ϑ () ϑ The proce tate variable are concentration c A and temperature ϑ. The input variable are ϑ c, c Av, ϑ v and among them, the cooling temperature can be ued a a manipulated variable. The reactor i in the teady-tate if derivative with repect to time in equation (), (3) are zero. Conider the teady-tate input variable ϑ c, c Av, ϑv The teady-tate concentration and temperature can be calculated from the equation qc qc Vr( c, ϑ ) 4 Av A A qρ c ϑ qρ c ϑ αf( ϑ ϑ ) + V ( H ) r( c, ϑ ) 5 p Pleae finih the ret a homework. v p c A Example 7 Mathematical model of a thermocouple Figure. Control loop for the Stirred Heating Tank

3 θi θi θ θ θ a) bare thermocouple b) thermocouple with protect acket Figure 3. Temperature enor (thermocouple) a) Mathematical model of a bare thermocouple The energy balance for the bare thermocouple i, dθ C Qi Q 6 where C i the molar pecific heat capacity of the thermocouple, Q i i the heat flow from the media to the thermocouple, and Q i the heat lot by the thermocouple. And, θi θ Qi α A ( θi θ ) R 7 where R i the heat reitor, R α A, A urface area of the tip of the thermocouple, α i the heat tranfer coefficient of the heat tranfer between the media and the thermocouple. Aume Q, ubtitute Eq.7 into Eq.6, dθ R C + θ θ i 8 Follow the tep ued in the early example, dθ R C + θ θ i 9 Therefore it i a firt order ytem. b) Mathematical model of a thermocouple with protect acket. The energy balance for the thermocouple with protect acket i, dθ C Qi Q Q Q where C i the molar pecific heat capacity of the thermocouple protect acket, Q i i the heat flow from the media to the thermocouple protect acket, Q i the heat flow from the 3

4 thermocouple protect acket to the thermocouple, and Q, Q are the heat lot by the thermocouple acket and the thermocouple itelf repectively.. Aume Q, Q are equal zero, dθ C α A θ θ ) α A ( θ ) ( i θ where A i the heat tranfer urface area of the thermocouple protect acket, A i the heat tranfer urface area of the thermocouple tip, α i the heat tranfer coefficient of the heat tranfer between the media and the thermocouple protect acket, α i the heat tranfer coefficient of the heat tranfer between the thermocouple protect acket and the thermocouple. Since A >> A, dθ C α A ( θi θ ) we can alo arrive at d θ R C + θ θ i 3 where R. α A 3. The accumulation of the heat in the thermocouple tip i, dθ C ( ) αa θ θ 4 Similarly we can arrive, d θ R C + θ θ Now differentiate both ide of Eq.5 with repect to t, d θ d θ d θ R C +. 6 Subtitute Eq.3 and 5 into 6, and let τ R C, τ R C, d θ d θ τ τ + ( τ + τ ) + θ θ i. 7 It i a econd order ytem. 4

5 Figure 4. Blending ytem and Control Method, meaure x and adut w Example 8 The pneumatic control valve p p q Figure 5. The chematic diagram of a pneumatic control valve Ma balance of compre air (ignal), dp F F i C 8 where C i the capacitor, p i the preure in the diaphragm chamber, F i, F, are the in and out compre air flow rate. p p Since the diaphragm chamber i ealed, F F, i, R i the reitance of the R compre air line, therefore, 5

6 dp RC + p p 9 and d( p + p ) RC + ( p + p ) ( p + p ) when there i no action, p p. Let T v RC, d p T v + p p Aume the effective area of the diaphragm i A, and let c be the rigidity coefficient of the pring, according the Hooke' law, A p c l 3 where l i the diplacement of the diaphragm caued by the force acted on by p. Subtitute into Eq., d l A Tv + l p 4 c Aume a linear relationhip between the change of the fluid flow rate q and the diplacement of the diaphragm l, q K l 5 Subtitute Eq.5 into 4, d q A Tv + q K p 6 c or, d q Tv + q K v p 7 where A K v K i the gain of the pneumatic control valve and, c T v RC i the time contant of the pneumatic control valve. Thi i a firt order ytem. If the time contant of the pneumatic control valve i much maller than the time contant of the proce it i controlling, T v, q K v p. 8 It i a proportional ytem. Tranfer-Function Repreentation and time domain repone of Control-Sytem Element. The general form of the firt order element, dy( τ + y( Kx( 9 It tranfer function, 6

7 ( ) G ( ) Y K X ( ) τ + Step input x( MU(, K M Y ( ) G( ) X ( ) τ + K M y( L τ + KM e When M (unit tep inpu, t ( ) τ y t K e.63. t τ τ t Figure 6. Step repone of a firt order ytem. The general form of a econd order element, d y( dy( τ m + ζτ + y( x( 3 m 4 Tranfer function, Y ( ) G ( ) 35 X ( ) τ m + ζτ + m ω + ζω + ω 36 where ω i the undamped natural frequency and ζ i the damping ratio of the τ m ytem. Given a tep input x( MU(, 7

8 M Y ( ) G( ) X ( ) 37 τ + ζτ + M y( L τ + ζτ + W e will dicu thi ytem in great detail in later chapter. 38 Figure 7. Step repone of a econd order ytem 3. The general form of the proportional element, y( Kx(. 39 It tranfer function i, Y ( ) G ( ) K 4 X ( ) Given a tep input x( MU(, M Y() G()X() K 4 M y ( L K KMU ( 4 It i a tep with KM a it magnitude. 4. The general form of the integral element, dy( τ i Kx( 43 8

9 It tranfer function i, Y ( ) K G ( ) X ( ) τ i Given a tep input x( MU(, K M Y() G()X() τ i KM KM y ( L t τ i τ i It i a ramp at the lop of KM/τ i The general form of the differential element, dy( y( τ d 47 It tranfer function i, Y ( ) G( ) τ d 48 X ( ) Given a tep input x( MU(, M Y() G()X() τ d τ d M 49 y( L [ τ d M ] τ d Mδ ( 5 It i a impule. 6. The general form of delay element y( x( t τ ) It tranfer function i, Y ( ) τ G ( ) e X ( ) Given a tep input x( MU(, τ M Y ( ) G( ) X ( ) e y( L e τ M M ( t τ ) It i a tep after a time delay of τ Development of Empirical Dynamic Model from Step Repone Data Higher order ytem and dead time Connecting many tank make the ytem correpondingly higher order. Thu by a erie of firt order ytem, we can get an infinite number of higher order ytem. Suppoe we have a well-mixed overflow tank of time contant τ. If we introduce a tep increae in the inlet temperature or concentration, we will (by the well-mixed aumption) 9

10 immediately detect a rie in the outlet tream the familiar firt-order lag repone a in the Figure 6. If we have intead two tank in erie, each half the volume of the original, we will detect a econd-order, igmoid repone at the outlet a in the Figure 7. If we continue to increae the number of tank in the erie, alway maintaining the total volume, we oberve a lower initial repone with a fater rie around the time contant. Thi behavior i hown in Figure 9. Figure 8. Well mixed tank in erie. Figure 9. Time repone of well mixed tank in erie. If taken to the limit of an infinite number of tank, we finally obtain a pure delay, in which the full tep diturbance i not een at the outlet until time τ ha paed. Thi i the dead time, or tranmiion delay; it i familiar to anyone who ha waited at the faucet for the hot water to arrive. That lead u to conider a imple model of the firt-order-plu-time-delay.

11 Approximate uing firt-order-plu-time-delay model The tranfer function of the firt-order-plu-time-delay, Ke θ G( ) τ + Step repone, t θ y( KM e τ θ Figure. The time repone of firt-order-plu-time-delay ytem For a firt-order-plu-time-delay order model, we note the following characteritic (tep repone) a. The repone attain 63.% of it final repone at one time contant (t τ + θ ). b. The line drawn tangent to the repone at maximum lope (t θ) interect the % line at (t τ +θ ). [ee Fig. ] c. K i found from the teady tate repone for an input change magnitude M. The tep repone i eentially complete at t 5τ. In other word, the ettling time i t 5τ. There are two generally accepted parameter τ, θ, and K. graphical technique for determining model Method. Slope-intercept method: Firt, a lope i drawn through the inflection point of the proce reaction curve in Figure. Then t and θ are determined by inpection. Alternatively, τ can be found from the time that the normalized repone i 63.% complete or from determination of the ettling time, τ. Then et τ τ / 5. Method. Sundarean and Krihnawamy Method: Thi method avoid ue of the point of inflection contruction entirely to etimate the time delay. They propoed that two time, t and t, be etimated from a tep repone curve, correponding to the 35.3%

12 and 85.3% repone time, repectively. etimated from the following equation, The time delay and time contant are then θ.3t. 9t 57 ( t ) τ.67 t 58 Thee value of θ and τ approximately minimize the difference between the meaured repone and the model, baed on a correlation for many data et. Example F-6XL Roll Mode Time Contant In the early 98, two F-6 airplane were modified to extend the fuelage length and incorporate a large area delta wing planform. Thee two airplane, deignated the F-6XL, were deigned by the General Dynamic Corporation (now Lockheed Martin Tactical Aircraft Sytem) (Fort Worth, Texa) and were prototype for a derivative fighter evaluation program conducted by the United State Air Force. In thi method hown in figure, t i defined a the time when the lateral tick input reache 5 percent of maximum value. A line repreenting the maximum lope of the roll rate i plotted; the time at which thi line interect the x-axi i denoted a t. The roll rate reache 63 percent of it maximum value at t 3. The τ eff i the time difference between t and t. The τ r i the difference between t and t 3.

13 A ample comparion i hown a figure. Although the flight data how a higher orde r roll rate repone, the model accurately reproduce the initial delay and roll rate onet. Figure. Time hitory method for τ eff and τ r calculation. Figure. Sample reult of comparion between model and F-6XL flight data. 3

14 Etimating Second-order Model Parameter Uing Graphical Analyi In general, a better approximation to an experimental tep repone can be obtained by fitting a econd-order model to the data. Figure 3 how the range of hape that can occur for the tep repone model, K G( ) 59 τ + τ ( )( ) + Figure 3 include two limiting cae: τ /τ, where the ytem become firt order, and, τ /τ, the critically damped cae. The larger of the two time contant, τ, i called the dominant time contant. The aumed model i, θ Ke G( ) 6 ( τ + )( τ + ) Parameter are etimated uing o called Smith Method,. Determine t and t 6 from the tep repone.. Find ζ and t 6 /τ from Figure Find t 6 /τ from Figure 4 and then calculate τ (ince t 6 i known). Figure 3. Step repone for everal overdamped econd-order ytem. 4

15 Figure 4. Relationhip of ζ, τ, t, and t 6 in Smith method. 5

Chapter 10. Closed-Loop Control Systems

Chapter 10. Closed-Loop Control Systems hapter 0 loed-loop ontrol Sytem ontrol Diagram of a Typical ontrol Loop Actuator Sytem F F 2 T T 2 ontroller T Senor Sytem T TT omponent and Signal of a Typical ontrol Loop F F 2 T Air 3-5 pig 4-20 ma

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System ISSN: 454-50 Volume 0 - Iue 05 May 07 PP. 7-78 Analyi of Step Repone, Impule and Ramp Repone in the ontinuou Stirred Tank Reactor Sytem * Zohreh Khohraftar, Pirouz Derakhhi, (Department of hemitry, Science

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples Root Locu Content Root locu, ketching algorithm Root locu, example Root locu, proof Root locu, control example Root locu, influence of zero and pole Root locu, lead lag controller deign 9 Spring ME45 -

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH Brazilian Journal of Chemical Engineering ISSN 004-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 26, No. 0, pp. 89-98, January - March, 2009 CONROL OF INEGRAING PROCESS WIH DEAD IME USING AUO-UNING

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

Function and Impulse Response

Function and Impulse Response Tranfer Function and Impule Repone Solution of Selected Unolved Example. Tranfer Function Q.8 Solution : The -domain network i hown in the Fig... Applying VL to the two loop, R R R I () I () L I () L V()

More information

HOMEWORK ASSIGNMENT #2

HOMEWORK ASSIGNMENT #2 Texa A&M Univerity Electrical Engineering Department ELEN Integrated Active Filter Deign Methodologie Alberto Valde-Garcia TAMU ID# 000 17 September 0, 001 HOMEWORK ASSIGNMENT # PROBLEM 1 Obtain at leat

More information

NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH

NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH International Journal of Electrical, Electronic and Data Communication, ISSN: 232-284 Volume-3, Iue-8, Aug.-25 NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions. ECE-0 Linear Control Sytem Spring 04, Exam No calculator or computer allowed, you may leave your anwer a fraction. All problem are worth point unle noted otherwie. Total /00 Problem - refer to the unit

More information

1 Routh Array: 15 points

1 Routh Array: 15 points EE C28 / ME34 Problem Set 3 Solution Fall 2 Routh Array: 5 point Conider the ytem below, with D() k(+), w(t), G() +2, and H y() 2 ++2 2(+). Find the cloed loop tranfer function Y () R(), and range of k

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems Control and Dynamical Sytem CDS 0 Problem Set #5 Iued: 3 Nov 08 Due: 0 Nov 08 Note: In the upper left hand corner of the econd page of your homework et, pleae put the number of hour that you pent on thi

More information

DYNAMIC MODELS FOR CONTROLLER DESIGN

DYNAMIC MODELS FOR CONTROLLER DESIGN DYNAMIC MODELS FOR CONTROLLER DESIGN M.T. Tham (996,999) Dept. of Chemical and Proce Engineering Newcatle upon Tyne, NE 7RU, UK.. INTRODUCTION The problem of deigning a good control ytem i baically that

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

PI control system design for Electromagnetic Molding Machine based on Linear Programing

PI control system design for Electromagnetic Molding Machine based on Linear Programing PI control ytem deign for Electromagnetic Molding Machine baed on Linear Programing Takayuki Ihizaki, Kenji Kahima, Jun-ichi Imura*, Atuhi Katoh and Hirohi Morita** Abtract In thi paper, we deign a PI

More information

Properties of Z-transform Transform 1 Linearity a

Properties of Z-transform Transform 1 Linearity a Midterm 3 (Fall 6 of EEG:. Thi midterm conit of eight ingle-ided page. The firt three page contain variou table followed by FOUR eam quetion and one etra workheet. You can tear out any page but make ure

More information

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems A Simplified Methodology for the Synthei of Adaptive Flight Control Sytem J.ROUSHANIAN, F.NADJAFI Department of Mechanical Engineering KNT Univerity of Technology 3Mirdamad St. Tehran IRAN Abtract- A implified

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Lecture 8 - SISO Loop Design

Lecture 8 - SISO Loop Design Lecture 8 - SISO Loop Deign Deign approache, given pec Loophaping: in-band and out-of-band pec Fundamental deign limitation for the loop Gorinevky Control Engineering 8-1 Modern Control Theory Appy reult

More information

NODIA AND COMPANY. GATE SOLVED PAPER Chemical Engineering Instrumentation and Process Control. Copyright By NODIA & COMPANY

NODIA AND COMPANY. GATE SOLVED PAPER Chemical Engineering Instrumentation and Process Control. Copyright By NODIA & COMPANY No part of thi publication may be reproduced or ditributed in any form or any mean, electronic, mechanical, photocopying, or otherwie without the prior permiion of the author. GATE SOLVED PAPER Chemical

More information

Online supplementary information

Online supplementary information Electronic Supplementary Material (ESI) for Soft Matter. Thi journal i The Royal Society of Chemitry 15 Online upplementary information Governing Equation For the vicou flow, we aume that the liquid thickne

More information

Quantifying And Specifying The Dynamic Response Of Flowmeters

Quantifying And Specifying The Dynamic Response Of Flowmeters White Paper Quantifying And Specifying The Dynamic Repone Of Flowmeter DP Flow ABSTRACT The dynamic repone characteritic of flowmeter are often incompletely or incorrectly pecified. Thi i often the reult

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

THE RATIO OF DISPLACEMENT AMPLIFICATION FACTOR TO FORCE REDUCTION FACTOR

THE RATIO OF DISPLACEMENT AMPLIFICATION FACTOR TO FORCE REDUCTION FACTOR 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada Augut -6, 4 Paper No. 97 THE RATIO OF DISPLACEMENT AMPLIFICATION FACTOR TO FORCE REDUCTION FACTOR Mua MAHMOUDI SUMMARY For Seimic

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20)

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20) 1 Homework 7 Solution - AME 30315, Spring 2015 Problem 1 [10/10 pt] Ue partial fraction expanion to compute x(t) when X 1 () = 4 2 + 2 + 4 Ue partial fraction expanion to compute x(t) when X 2 () = ( )

More information

5.5 Application of Frequency Response: Signal Filters

5.5 Application of Frequency Response: Signal Filters 44 Dynamic Sytem Second order lowpa filter having tranfer function H()=H ()H () u H () H () y Firt order lowpa filter Figure 5.5: Contruction of a econd order low-pa filter by combining two firt order

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known. PROBLEM.7 A hown in Fig. P.7, 0 ft of air at T = 00 o R, 00 lbf/in. undergoe a polytropic expanion to a final preure of 5.4 lbf/in. The proce follow pv. = contant. The work i W = 94.4 Btu. Auming ideal

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

LTV System Modelling

LTV System Modelling Helinki Univerit of Technolog S-72.333 Potgraduate Coure in Radiocommunication Fall 2000 LTV Stem Modelling Heikki Lorentz Sonera Entrum O heikki.lorentz@onera.fi Januar 23 rd 200 Content. Introduction

More information

Module: 8 Lecture: 1

Module: 8 Lecture: 1 Moule: 8 Lecture: 1 Energy iipate by amping Uually amping i preent in all ocillatory ytem. It effect i to remove energy from the ytem. Energy in a vibrating ytem i either iipate into heat oun or raiate

More information

Lecture #9 Continuous time filter

Lecture #9 Continuous time filter Lecture #9 Continuou time filter Oliver Faut December 5, 2006 Content Review. Motivation......................................... 2 2 Filter pecification 2 2. Low pa..........................................

More information

CHAPTER 3 LITERATURE REVIEW ON LIQUEFACTION ANALYSIS OF GROUND REINFORCEMENT SYSTEM

CHAPTER 3 LITERATURE REVIEW ON LIQUEFACTION ANALYSIS OF GROUND REINFORCEMENT SYSTEM CHAPTER 3 LITERATURE REVIEW ON LIQUEFACTION ANALYSIS OF GROUND REINFORCEMENT SYSTEM 3.1 The Simplified Procedure for Liquefaction Evaluation The Simplified Procedure wa firt propoed by Seed and Idri (1971).

More information

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1.

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1. .P. Holman:.09) T ur : 0 Ue table - to determine the hape factor for thi problem. D :.m r : 0.5m π r S : T phere : 0 r D S 7.0 m :.7 m Ue eq. - to calculate the heat lo. q : S T phere T ur q 57.70 .P.

More information

MM1: Basic Concept (I): System and its Variables

MM1: Basic Concept (I): System and its Variables MM1: Baic Concept (I): Sytem and it Variable A ytem i a collection of component which are coordinated together to perform a function Sytem interact with their environment. The interaction i defined in

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances ECE 350 Root Locu Deign Example Recall the imple crude ervo from lab G( ) 0 6.64 53.78 σ = = 3 23.473 PI To eliminate teady-tate error (for contant input) & perfect reection of contant diturbance Note:

More information

Design of Digital Filters

Design of Digital Filters Deign of Digital Filter Paley-Wiener Theorem [ ] ( ) If h n i a caual energy ignal, then ln H e dω< B where B i a finite upper bound. One implication of the Paley-Wiener theorem i that a tranfer function

More information

AMS 212B Perturbation Methods Lecture 20 Part 1 Copyright by Hongyun Wang, UCSC. is the kinematic viscosity and ˆp = p ρ 0

AMS 212B Perturbation Methods Lecture 20 Part 1 Copyright by Hongyun Wang, UCSC. is the kinematic viscosity and ˆp = p ρ 0 Lecture Part 1 Copyright by Hongyun Wang, UCSC Prandtl boundary layer Navier-Stoke equation: Conervation of ma: ρ t + ( ρ u) = Balance of momentum: u ρ t + u = p+ µδ u + ( λ + µ ) u where µ i the firt

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine Proceeding of the ASME 9 Dynamic Sytem and Control Conference DSCC9 October -4, 9, Hollywood, California, USA DSCC9-59 Control of a Dual-Fuel Sytem Internal Combution Engine Stephen Pace Department of

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Proceeding of IMAC XXXI Conference & Expoition on Structural Dynamic February -4 Garden Grove CA USA THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Yung-Sheng Hu Neil S Ferguon

More information

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Solving Differential Equations by the Laplace Transform and by Numerical Methods 36CH_PHCalter_TechMath_95099 3//007 :8 PM Page Solving Differential Equation by the Laplace Tranform and by Numerical Method OBJECTIVES When you have completed thi chapter, you hould be able to: Find the

More information

Acceptance sampling uses sampling procedure to determine whether to

Acceptance sampling uses sampling procedure to determine whether to DOI: 0.545/mji.203.20 Bayeian Repetitive Deferred Sampling Plan Indexed Through Relative Slope K.K. Sureh, S. Umamahewari and K. Pradeepa Veerakumari Department of Statitic, Bharathiar Univerity, Coimbatore,

More information

Homework 12 Solution - AME30315, Spring 2013

Homework 12 Solution - AME30315, Spring 2013 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder Cloed-loop buck converter example: Section 9.5.4 In ECEN 5797, we ued the CCM mall ignal model to

More information

SKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot

SKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot SKEE 3143 CONTROL SYSTEM DESIGN CHAPTER 3 Compenator Deign Uing the Bode Plot 1 Chapter Outline 3.1 Introduc4on Re- viit to Frequency Repone, ploang frequency repone, bode plot tability analyi. 3.2 Gain

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

PIM Digital Redesign and Experiments of a Roll-Angle Controller for a VTOL-UAV

PIM Digital Redesign and Experiments of a Roll-Angle Controller for a VTOL-UAV 1 roceeding of the International Conference on Information and Automation, December 15-1, 5, Colombo, Sri Lanka. IM Digital Redeign and Experiment of a Roll-Angle Controller for a VTOL-UAV Takahi Kahimura*

More information

Liquid cooling

Liquid cooling SKiiPPACK no. 3 4 [ 1- exp (-t/ τ )] + [( P + P )/P ] R [ 1- exp (-t/ τ )] Z tha tot3 = R ν ν tot1 tot tot3 thaa-3 aa 3 ν= 1 3.3.6. Liquid cooling The following table contain the characteritic R ν and

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar DECOUPLING CONTROL M. Fikar Department of Proce Control, Faculty of Chemical and Food Technology, Slovak Univerity of Technology in Bratilava, Radlinkého 9, SK-812 37 Bratilava, Slovakia Keyword: Decoupling:

More information

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD S.P. Teeuwen, I. Erlich U. Bachmann Univerity of Duiburg, Germany Department of Electrical Power Sytem

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

Modeling in the Frequency Domain

Modeling in the Frequency Domain T W O Modeling in the Frequency Domain SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Tranfer Function Finding each tranfer function: Pot: V i θ i 0 π ; Pre-Amp: V p V i K; Power Amp: E a V p 50

More information

Assessment of Performance for Single Loop Control Systems

Assessment of Performance for Single Loop Control Systems Aement of Performance for Single Loop Control Sytem Hiao-Ping Huang and Jyh-Cheng Jeng Department of Chemical Engineering National Taiwan Univerity Taipei 1617, Taiwan Abtract Aement of performance in

More information

Designing scroll expanders for use in heat recovery Rankine cycles

Designing scroll expanders for use in heat recovery Rankine cycles Deigning croll expander for ue in heat recovery Rankine cycle V Lemort, S Quoilin Thermodynamic Laboratory, Univerity of Liège, Belgium ABSTRACT Thi paper firt invetigate experimentally the performance

More information

FRTN10 Exercise 3. Specifications and Disturbance Models

FRTN10 Exercise 3. Specifications and Disturbance Models FRTN0 Exercie 3. Specification and Diturbance Model 3. A feedback ytem i hown in Figure 3., in which a firt-order proce if controlled by an I controller. d v r u 2 z C() P() y n Figure 3. Sytem in Problem

More information

Fluid-structure coupling analysis and simulation of viscosity effect. on Coriolis mass flowmeter

Fluid-structure coupling analysis and simulation of viscosity effect. on Coriolis mass flowmeter APCOM & ISCM 11-14 th December, 2013, Singapore luid-tructure coupling analyi and imulation of vicoity effect on Corioli ma flowmeter *Luo Rongmo, and Wu Jian National Metrology Centre, A*STAR, 1 Science

More information

Study on the effect of vent on the electroacoustic absorber

Study on the effect of vent on the electroacoustic absorber INTER-NOISE 016 Study on the effect of vent on the electroacoutic aborber Youngeun Cho 1 ; Semyung Wang 1, Gwangju Intitute of Science and Technology, Republic of Korea ABSTRACT Electroacoutic aborber

More information

Time [seconds]

Time [seconds] .003 Fall 1999 Solution of Homework Aignment 4 1. Due to the application of a 1.0 Newton tep-force, the ytem ocillate at it damped natural frequency! d about the new equilibrium poition y k =. From the

More information

Cake ltration analysis the eect of the relationship between the pore liquid pressure and the cake compressive stress

Cake ltration analysis the eect of the relationship between the pore liquid pressure and the cake compressive stress Chemical Engineering Science 56 (21) 5361 5369 www.elevier.com/locate/ce Cake ltration analyi the eect of the relationhip between the pore liquid preure and the cake compreive tre C. Tien, S. K. Teoh,

More information

Sampling and the Discrete Fourier Transform

Sampling and the Discrete Fourier Transform Sampling and the Dicrete Fourier Tranform Sampling Method Sampling i mot commonly done with two device, the ample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquire a CT ignal at

More information

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505)

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505) EE 4443/5329 LAB 3: Control of Indutrial Sytem Simulation and Hardware Control (PID Deign) The Inverted Pendulum (ECP Sytem-Model: 505) Compiled by: Nitin Swamy Email: nwamy@lakehore.uta.edu Email: okuljaca@lakehore.uta.edu

More information

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin Stability The tability of a ytem refer to it ability or tendency to eek a condition of tatic equilibrium after it ha been diturbed. If given a mall perturbation from the equilibrium, it i table if it return.

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial :. PT_EE_A+C_Control Sytem_798 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubanewar olkata Patna Web: E-mail: info@madeeay.in Ph: -4546 CLASS TEST 8-9 ELECTRICAL ENGINEERING Subject

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Solution Dicrete Time Proceing of Continuou Time Signal Sampling à 2.. : Conider a inuoidal ignal and let u ample it at a frequency F 2kHz. xt 3co000t 0. a) Determine and expreion for the ampled

More information

time? How will changes in vertical drop of the course affect race time? How will changes in the distance between turns affect race time?

time? How will changes in vertical drop of the course affect race time? How will changes in the distance between turns affect race time? Unit 1 Leon 1 Invetigation 1 Think About Thi Situation Name: Conider variou port that involve downhill racing. Think about the factor that decreae or increae the time it take to travel from top to bottom.

More information

Analysis of Stability &

Analysis of Stability & INC 34 Feedback Control Sytem Analyi of Stability & Steady-State Error S Wonga arawan.won@kmutt.ac.th Summary from previou cla Firt-order & econd order ytem repone τ ωn ζω ω n n.8.6.4. ζ ζ. ζ.5 ζ ζ.5 ct.8.6.4...4.6.8..4.6.8

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material Spring 4 EE 445S Real-Time Digital Signal Proceing Laboratory Prof. Evan Homework # Solution on Review of Signal and Sytem Material Problem.. Continuou-Time Sinuoidal Generation. In practice, we cannot

More information