Some Hankel determinants with nice evaluations. Johann Cigler Talk at the occasion of Peter Paule s 60 th birthday

Size: px
Start display at page:

Download "Some Hankel determinants with nice evaluations. Johann Cigler Talk at the occasion of Peter Paule s 60 th birthday"

Transcription

1 Some Hakel determiats with ice evaluatios Joha Cigler Talk at the occasio of Peter Paule s 6 th birthday

2 Itroductio For each we cosider the Hakel determiat H ( a ) + = det. i j i, j= We are iterested i the sequece ( ) H with H =. It is well kow that the sequece of Catala umbers C = + ca be characterized by the fact that all Hakel determiats of the sequeces ( C ) ad ( ) C + are. The geeratig fuctio of the Catala umbers 4 C ( ) = C = satisfies C ( ) = + C ( ). Let C = C The we get r ( r) ( ). C = C + ad () C + r =. + r ( r) r

3 I the first part of this talk I wat to give some overview about the Hakel determiats d r i+ j+ r ( ) = det i+ j i, j= = for r. ( r ) ad D ( ) det ( C ) r i+ j i, j= May of these determiats are easy to guess ad show a iterestig modular patter, but stragely eough I foud almost othig about them i the literature ecept for r = ad r =. Oly after I posted a questio i MathOverflow I leared that at least Egecioglu, Redmod ad Ryavec (arxiv:84.44) had cosidered d ( ). Proofs seem oly to be kow for r 3. 3 ( d ) = ( ) ( ),,,,,, ( d( ) ) = (,,,,, ), ( d( ) ) = (,,,,,,,, ), ( d3( ) ) = (,, 4, 3,3, 8, 5, 5,, 7, 7, 6, ), ( d4( ) ) = (,, 8, 8,,, 6, 6,,, 4, 4, ), ( d ( ) ) = (,, 3, 6, 6, 9,9, 78, 64,37, 5, 5, 695, 44,, 7 ) 5 r

4 It seems that ( ) ( ) k d (k+ ) = d (k+ ) + = (+ ), k+ k+ k + k + k ( ) = ( + ) k ( ) = ( + ) = ( ), d (k ) k ( ) 4, d k d k k k k k+ k k k ( + ) = k ( + + ) = ( ) 4 ( + ). d k k d k k The other values are ot so ice. For eample k ( ) ( ) ( + )(+ ) ( + )(+ 3) 5+ 6 d5(5+ ) =, d5(5+ 4) =. 3 3 But k k + dk(k ) + dk(k + ) = ( ), k + k dk+ ( (k+ ) ) + dk+ ( (k+ ) + ) = (+ ).

5 If ( ) d Some backgroud material = det a for each we ca defie the polyomials i+ j i, j= a a a a a a p a a a ( ) = 3 +. d a a+ a If we defie a liear fuctioal L o the polyomials by L( ) = a the ( ) L pp = for m m ad ( ) There eist s ad t such that p ( ) = ( s ) p ( ) t p ( ). dd + The umbers t are give by t =. d L p (Orthogoality). +

6 For arbitrary s ad t defie umbers a( j ) by The we get a ( j) = [ j = ], a() = sa () + ta (), a ( j) = a ( j ) + s a ( j) + t a ( j+ ). j j ( a + ) i det () t. If we start with the sequece ( ) = i j i, j= j i= j= a ad guess s ad t ad if we also ca guess a( j ) ad show that a () = a the all our guesses are correct ad the Hakel determiat is give by the above formula. For the aerated sequece (,,,,,,5,,4,, ) of Catala umbers it is easy to guess that s = ad t = ad that a ( k) C + a + () =. Therefore all Hakel determiats are. ( k ) + k = ad all other ( ). a j = Thus a () = C ad

7 There is a well-kow equivalece with cotiued fractios, so-called J-fractios: a = t s t s. For some sequeces this gives a simpler approach to Hakel determiats. The geeratig fuctio of the Catala umbers satisfies C ( ) = + C ( ). Therefore C ( ) = C( ) ad C ( ) ( ) = =. C This agai implies that the Hakel determiats of the aerated sequece of Catala umbers are ad also that D ( ) =.

8 Some other eamples of J-fractios C ( ) = C ( ) implies D ( ) =. 4 = C ( ) = C ( ) implies d = ( ). + + C ( ) = = = ad ( ) C ( ) 3 C ( ) = 4give ad thus d ( ) =. C ( ) 4 = 3 C ( )

9 d i+ j+ ( ) = det i+ j i, j= It is easy to guess that s k = 4, s k + = ad t k =. We also guess that a + ( k) =. k This implies a (k+ ) =. k k 3 It remais to verify the trivial idetity + = k k k k k k 4 Therefore we get ( d ) = ( ) ( ),,,,,,,,.

10 A proof with J-fractios By iductio we get r + r C ( ) Br ( ) = =. 4 This implies B( ) + B( ) =. 4 For C ( ) 4= C ( ) ad C ( ) C ( ) = ad therefore 4 C ( ) C ( ) 4 4 ( 4 ) + = C ( )( C ( ) 4 ) + ( C ( ) ) ( ) ( ) = C ( ) C ( ) + C ( ) =. This implies B ( ) = = =. ( ) ( ) 4 + B( ) 4+ 4 B( ) B

11 For r 3 the situatio becomes more complicated. Sice o Hakel determiat vaishes the above method should i priciple be applicable. It seems that it is possible for each fied r to guess s ad t. But for r 5 I could ot guess a( j ). Let me sketch the case r = 3: Here we get d3(3 ) = d3(3+ ) = + ad d (3 + ) = 4( + ) s3 = 5, s3+ =, s3+ =, 4( + ) 4( + ) 4( + ) (+ )(+ 3) 4( + ) t3 =, t3+ =, t 3+ =. + 4 ( + ) a (3 k) =, 3k + k+ + k+ + a (3k+ ) = +, 3k 4( k+ ) 3k 4( k+ ) 3k ( k + ) + a (3k+ ) = +. 3k 3k 3 k + 3 3k 4

12 I have oly foud the followig curious regularities: Let r. The s r = r+, s + s + + s =, r r r+ r+ r t t t r r+ r+ r =. Furthermore it seems that ( ) + r a. rk = rk

13 ( r ) ( C ) + D ( ) = det. r i j These determiats show a similar patter. But some of them vaish. For eample for r = 3 it is kow (C. Krattethaler ad J.C. ) that ( ( )) (,,,,, ) 3 i, j= k k D3 ( ) = ( ) k = k or D =, which is periodic with period 6. For r > 3 apparetly o results appear i the literature. But we will show that for odd r there are always vaishig determiats. Therefore the method of orthogoal polyomials is ot directly applicable. I have studied the case r = 3 i more detail ad looked for other tricks to compute these determiats. Guo-Niu Ha, arxiv:46.593, has show that each formal power series has a uique epasio as a so-called H-fractio k a = + k+ k t s( ) + k + k t s ( ) ad proved a formula for the o-vaishig Hakel determiats.

14 The case r=3 as H-fractio The powers of the geeratig fuctio of the Catala umbers satisfy where r r r ( ) r ( ) = + ( ), C L C ( L ( ) ) (,,, 3, 4, 5 5, r ) = r are Lucas polyomials. This gives rise to cotiued fractios. For r = 3 we get the H-fractio C ( ) 3 = from which we get agai ( D ) = ( ) ( ),,,,,,. 3 Aalogously C ( ) k k ad C ( ) k k + give H-fractios.

15 A valuable Lemma Aother helpful trick is the followig Lemma (Szegö 939): Let p ( ) be moic polyomials which are orthogoal with respect to the liear fuctioal L with momet L( ) = a ad let r( ) = a a +. The ( + ) = ( + ) det r ( ) det a p ( ). i j i, j= i j i, j= For the proof let The we get B = ad p( ) b, b, b, =. b, b, b, + b, ( ri+ j ) = B ( ai+ j) ) i, j= i, j= (.

16 For a = C + we get s =, t = ad k k k ( ) = ( ) ( ). k = k p Sice C = C C the Lemma implies (3) + + k k D3 ( ) = ( ). k = k The Lemma also gives aother proof of the Theorem (Cvetkovic, Rajkovic ad Ivkovic) ( ) det C + C = F. i+ j i+ j+ i, j= +

17 Narayaa polyomials Aother trick is to itroduce aother parameter such that o determiat vaishes. The Narayaa polyomials C() t = t k = k k k + for > ad C () t = satisfy C () = C. The first terms are 3,,, 3, 6 6,. + t + t+ t + t+ t + t k For the sequece ( C () t ) + we get s = + t ad t = t. The orthogoal polyomials are By the Lemma we get ( i+ j+ i+ j+ ) k k k k (, ) = ( ) ( ). k = k p t t t k k k det C ( t) + C ( t) = t ( ) ( t ). i, j= + k = k Aother proof by the Lidström-Gessel-Vieot theorem has bee give by C. Krattethaler.

18 For t = we ca agai get D ( ). 3 More iterestig is the case t =. Here we get ( C ( ) + C ( ) ) = (,,,, 5, 5, 4, 4, ) + +, 4,4,. The correspodig Hakel determiats are Fiboacci umbers ( d ) = (, ),,, 3, 5, 8, 3,. For (,,,,, 5, 5, 4,4, ) we get the Hakel determiats ( d ) (, ) =,,,,,,,,,,,. These results ca also be obtaied directly with the method of orthogoal polyomials.

19 For odd r some Hakel determiats vaish We ca prove that D + ( k+ ) =. k A search for a liear relatio led to k+ j k+ j+ k k j (k+ ) (, ) = ( ) + C+ j = j= j+ j+ Rk for k if k >. More geerally we get Rk C k+ 4k+ (, ) = ( ). Christia Krattethaler has provided a proof usig hypergeometric idetities. It ca also be proved with Peter Paule s implemetatio of Zeilberger s algorithm. I wat to cogratulate Peter Paule ud his team for the very valuable Mathematica packages which were idispesible for my work sice my iterest tured to eperimetal mathematics.

20 DD kk+ () For r > 3 I have oly cojectures: ( D ( ) ) = (,, 5,,5,,,,, 5,,5, ) 5,,, ( D7 ) = ( ) ( ),, 4, 7,,7,39,,, 35,( 7),, ( 7), 687,. More geerally k D ((k+ ) ) = D ((k+ ) + ) = ( ), k+ k+ k + ( ) D (k+ ) + k+ =, k k + + k ( ) ( ) ( ) ( ) D (k+ ) + k+ = D (k+ ) + k = ( ) k+ ( + ), k+ k+ k+ k+ (( + ) ) + k+ (( + ) + ) = ( ) ( )( + ). D k D k k k

21 DD 4 () (4) For ( C ) = (, 4,4, 48,65,57,, ) we get ( D ) = ( ) ( ),,,,3,3, 4, 4,. 4 k + k Here we have s k = 4, s k + =, t k = ad t k. k + = + + k + The correspodig a ( j ) satisfy k 4k+ 4 ( ) = ( ), a k C k + a k+ = C C k + k+ 4k+ 4 k+ 3 4k+ 8 ( ) ( ) ( ).

22 DD kk (, tt) Defie C ( k ) () t by C () t = C () t : ( k) + k This implies that C () = C. ( k) ( k) Let k i j ( k ) ( ) + D ( t, ) = det C ( t). i, j= If we use the q otatio [ ] = + q+ + q q the we get D t t [ ] t [ ] ( ) 4(, ) = ( ) +, D t t 4( +, ) = ( ) +. t

23 The first terms of D ( ) are 6 DD 6 (, tt) ( + ), ( 3 ),, 3,,,3 3,3, 3 + +,. Cojecture: 6(3 ) = 6(3 + ) = ( ) ( + ), D D + + D6 ( 3+ ) = 3 ( ) j j= [ ] D(3 t, ) = ( ) t +, (3 ) 3 [ ] 3 t D (3+, t) = ( ) t +, (3+ ) 3 + [ ] t D (3+, t) = ( ) 3 3 t r ( t) with ( r t ) ( t t t t t t ) t 3 ( ), 3, 3 6 3,. =

24 Some more cojectures ( ) k ( ) ( ) ( ) k k k ( ) ( ), D k = D k + = + k k + k + = ( 3)( + ). D k D k k k k k k k k ( ) = [ + ] D k, t ( ) t, k k + k k ( + ) = [ + ] D k, t ( ) t. t k t k

25 Catala umbers modulo k It is well kow that C mod iff = for some k : Let f( ) = C ( ) mod. The f ( ) f ( ) = + which implies Let ow a k = ad a = else. The d f = ( ). k ( ) a + = det = ( ). i j i, j= I this case the determiat is reduced to a sigle term π + π () + π ( ) k d = sg a a for a uiquely determied permutatio π. For eample π 5 = 43 ad d 5 = det =.

26 Similar determiats have previously bee cosidered by R. Bacher (4) from aother poit of view. I have posted some questios about such determiats o MO ad received some proofs from Darij Griberg. k More geerally let b = k ad b = else. For eample B 5 = 3 3. The correspodig determiats are a( ) det B = ( ), where a ( ) is the total umber of s i the biary epasios of the umbers,,,. I the above eample we get a (5) = 5 because the umber of s i,,, is 5.

27 The aerated sequece (aa,, aa,, aa,, ). Let a k = ad a = else ad let A = a ad A + = be the aerated sequece. It is easy to see that A. = a + For eample ( Ai+ j) ( ai+ j+ ) = =. 3 3 i, j= i, j= I this case too the determiat is reduced to a sigle permutatio. We get D ( A ) + δ = det = ( ), i j i, j= where δ is the umber of pairs εi+ εi = for i or εε = i the biary epasio of. For eample δ 4 = because 4 = or δ 75 = 3 because 75 =. The determiats satisfy D = ( ) D ad + D = ( + ) D.

28 A approach via orthogoal polyomials These determiats have also bee studied by R.Bacher who foud the iterestig formula D = S( j), j= S = is the so-called paperfoldig sequece where ( ( )) (,,,,,,,,,, ) which satisfies S( ) = ( ), S(+ ) = S( ) ad S () =. The method of orthogoal polyomials gives s = ad T = SS ( ) ( + ). The umbers T are uiquely determied by the recursio T = T T T T = T +,, =, T =.

29 Let () The g = ad ( k ) Golay-Rudi-Shapiro sequece k g = ( ) for k > ad g ( ) = else. ( ) det gi ( + j + ) = r ( ), i, j= where r ( ) is the Golay-Rudi-Shapiro sequece defied by Equivaletly epasio of. r( ) = r ( ), r(+ ) = ( ) r ( ), r() =. R( ) r ( ) = ( ), where ( ) R deotes the umber of pairs i the biary

30 Associated cotiued fractios Let me fially state two associated cotiued fractios: k k = S() S() S() S() ad k k = r() r() + r() r(3) + + k ( ).

Hankel determinants of some polynomial sequences. Johann Cigler

Hankel determinants of some polynomial sequences. Johann Cigler Hael determiats of some polyomial sequeces Joha Cigler Faultät für Mathemati, Uiversität Wie ohacigler@uivieacat Abstract We give simple ew proofs of some Catala Hael determiat evaluatios by Ömer Eğecioğlu

More information

0,1,1, 2,3,5,8,13, 21,

0,1,1, 2,3,5,8,13, 21, Catala umbers, Hael determiats ad Fiboacci polyomials Joha Cigler Faultät für Mathemati Uiversität Wie joha.cigler@uivie.ac.at Abstract I this (partly expository) paper we cosider some Hael determiats

More information

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers Abstract Some elemetary observatios o Narayaa polyomials ad related topics II: -Narayaa polyomials Joha Cigler Faultät für Mathemati Uiversität Wie ohacigler@uivieacat We show that Catala umbers cetral

More information

q-fibonacci polynomials and q-catalan numbers Johann Cigler [ ] (4) I don t know who has observed this well-known fact for the first time.

q-fibonacci polynomials and q-catalan numbers Johann Cigler [ ] (4) I don t know who has observed this well-known fact for the first time. -Fiboacci polyoials ad -Catala ubers Joha Cigler The Fiboacci polyoials satisfy the recurrece F ( x s) = s x = () F ( x s) = xf ( x s) + sf ( x s) () with iitial values F ( x s ) = ad F( x s ) = These

More information

Simple proofs of Bressoud s and Schur s polynomial versions of the. Rogers-Ramanujan identities. Johann Cigler

Simple proofs of Bressoud s and Schur s polynomial versions of the. Rogers-Ramanujan identities. Johann Cigler Simple proofs of Bressoud s ad Schur s polyomial versios of the Rogers-Ramaua idetities Joha Cigler Faultät für Mathemati Uiversität Wie A-090 Wie, Nordbergstraße 5 Joha Cigler@uivieacat Abstract We give

More information

Fibonacci polynomials, generalized Stirling numbers, and Bernoulli, Genocchi and tangent numbers

Fibonacci polynomials, generalized Stirling numbers, and Bernoulli, Genocchi and tangent numbers Fiboacci polyomials, geeralied Stirlig umbers, ad Beroulli, Geocchi ad taget umbers Joha Cigler oha.cigler@uivie.ac.at Abstract We study matrices hich trasform the sequece of Fiboacci or Lucas polyomials

More information

arxiv: v3 [math.nt] 24 Dec 2017

arxiv: v3 [math.nt] 24 Dec 2017 DOUGALL S 5 F SUM AND THE WZ-ALGORITHM Abstract. We show how to prove the examples of a paper by Chu ad Zhag usig the WZ-algorithm. arxiv:6.085v [math.nt] Dec 07 Keywords. Geeralized hypergeometric series;

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A58 FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS H. W. Gould Departmet of Mathematics, West Virgiia Uiversity, Morgatow, WV

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

The r-generalized Fibonacci Numbers and Polynomial Coefficients

The r-generalized Fibonacci Numbers and Polynomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 2008, o. 24, 1157-1163 The r-geeralized Fiboacci Numbers ad Polyomial Coefficiets Matthias Schork Camillo-Sitte-Weg 25 60488 Frakfurt, Germay mschork@member.ams.org,

More information

Quantum Computing Lecture 7. Quantum Factoring

Quantum Computing Lecture 7. Quantum Factoring Quatum Computig Lecture 7 Quatum Factorig Maris Ozols Quatum factorig A polyomial time quatum algorithm for factorig umbers was published by Peter Shor i 1994. Polyomial time meas that the umber of gates

More information

LINEAR RECURSION RELATIONS - LESSON FOUR SECOND-ORDER LINEAR RECURSION RELATIONS

LINEAR RECURSION RELATIONS - LESSON FOUR SECOND-ORDER LINEAR RECURSION RELATIONS LINEAR RECURSION RELATIONS - LESSON FOUR SECOND-ORDER LINEAR RECURSION RELATIONS BROTHER ALFRED BROUSSEAU St. Mary's College, Califoria Give a secod-order liear recursio relatio (.1) T. 1 = a T + b T 1,

More information

On Divisibility concerning Binomial Coefficients

On Divisibility concerning Binomial Coefficients A talk give at the Natioal Chiao Tug Uiversity (Hsichu, Taiwa; August 5, 2010 O Divisibility cocerig Biomial Coefficiets Zhi-Wei Su Najig Uiversity Najig 210093, P. R. Chia zwsu@ju.edu.c http://math.ju.edu.c/

More information

Fibonacci numbers and orthogonal polynomials

Fibonacci numbers and orthogonal polynomials Fiboacci umbers ad orthogoal polyomials Christia Berg April 10, 2006 Abstract We prove that the sequece (1/F +2 0 of reciprocals of the Fiboacci umbers is a momet sequece of a certai discrete probability,

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS VERNER E. HOGGATT, JR. Sa Jose State Uiversity, Sa Jose, Califoria 95192 ad CALVIN T. LONG Washigto State Uiversity, Pullma, Washigto 99163

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

q-chebyshev polynomials

q-chebyshev polynomials -Chebyshev polyomials Joha Cigler Faultät für Mathemati, Uiversität Wie oha.cigler@uivie.ac.at Abstract I this overview paper a direct approach to Chebyshev polyomials ad their elemetary properties is

More information

, 4 is the second term U 2

, 4 is the second term U 2 Balliteer Istitute 995-00 wwwleavigcertsolutioscom Leavig Cert Higher Maths Sequeces ad Series A sequece is a array of elemets seperated by commas E,,7,0,, The elemets are called the terms of the sequece

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Sequeces ad 6 Sequeces Ad SEQUENCES AND SERIES Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives rise to what is called a sequece. Sequeces

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II C. T. LONG J. H. JORDAN* Washigto State Uiversity, Pullma, Washigto 1. INTRODUCTION I the first paper [2 ] i this series, we developed certai properties

More information

q-lucas polynomials and associated Rogers-Ramanujan type identities

q-lucas polynomials and associated Rogers-Ramanujan type identities -Lucas polyomials associated Rogers-Ramauja type idetities Joha Cigler Faultät für Mathemati, Uiversität Wie johacigler@uivieacat Abstract We prove some properties of aalogues of the Fiboacci Lucas polyomials,

More information

CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS

CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS J. W. LAYMAN Virgiia Polytechic Istitute State Uiversity, Blacksburg, Virgiia Numerous writers appear to have bee fasciated by the may iterestig summatio idetitites

More information

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction Acta Math. Uiv. Comeiaae Vol. LXXXVI, 2 (2017), pp. 279 286 279 k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c N. IRMAK ad M. ALP Abstract. The k-geeralized Fiboacci sequece { F (k)

More information

Hoggatt and King [lo] defined a complete sequence of natural numbers

Hoggatt and King [lo] defined a complete sequence of natural numbers REPRESENTATIONS OF N AS A SUM OF DISTINCT ELEMENTS FROM SPECIAL SEQUENCES DAVID A. KLARNER, Uiversity of Alberta, Edmoto, Caada 1. INTRODUCTION Let a, I deote a sequece of atural umbers which satisfies

More information

Sum of cubes: Old proofs suggest new q analogues

Sum of cubes: Old proofs suggest new q analogues Sum of cubes: Old proofs suggest ew aalogues Joha Cigler Faultät für Mathemati, Uiversität Wie ohacigler@uivieacat Abstract We show how old proofs of the sum of cubes suggest ew aalogues 1 Itroductio I

More information

~W I F

~W I F A FIBONACCI PROPERTY OF WYTHOFF PAIRS ROBERT SILBER North Carolia State Uiversity, Raleigh, North Carolia 27607 I this paper we poit out aother of those fasciatig "coicideces" which are so characteristically

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS Joural of Algebra, Number Theory: Advaces ad Applicatios Volume, Number, 00, Pages 7-89 ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS OLCAY KARAATLI ad REFİK KESKİN Departmet

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1.

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1. Math 7 Sprig 06 PROBLEM SET 5 SOLUTIONS Notatios. Give a real umber x, we will defie sequeces (a k ), (x k ), (p k ), (q k ) as i lecture.. (a) (5 pts) Fid the simple cotiued fractio represetatios of 6

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION ANOTHER GENERALIZED FIBONACCI SEQUENCE MARCELLUS E. WADDILL A N D LOUIS SACKS Wake Forest College, Wisto Salem, N. C., ad Uiversity of ittsburgh, ittsburgh, a. 1. INTRODUCTION Recet issues of umerous periodicals

More information

THE ZETA FUNCTION AND THE RIEMANN HYPOTHESIS. Contents 1. History 1

THE ZETA FUNCTION AND THE RIEMANN HYPOTHESIS. Contents 1. History 1 THE ZETA FUNCTION AND THE RIEMANN HYPOTHESIS VIKTOR MOROS Abstract. The zeta fuctio has bee studied for ceturies but mathematicias are still learig about it. I this paper, I will discuss some of the zeta

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information

In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example:

In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example: 74 The Method of Partial Fractios I algebra oe speds much time fidig commo deomiators ad thus simplifyig ratioal epressios For eample: + + + 6 5 + = + = = + + + + + ( )( ) 5 It may the seem odd to be watig

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

Commutativity in Permutation Groups

Commutativity in Permutation Groups Commutativity i Permutatio Groups Richard Wito, PhD Abstract I the group Sym(S) of permutatios o a oempty set S, fixed poits ad trasiet poits are defied Prelimiary results o fixed ad trasiet poits are

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

A CONTINUED FRACTION EXPANSION FOR A q-tangent FUNCTION

A CONTINUED FRACTION EXPANSION FOR A q-tangent FUNCTION Sémiaire Lotharigie de Combiatoire 45 001, Article B45b A CONTINUED FRACTION EXPANSION FOR A q-tangent FUNCTION MARKUS FULMEK Abstract. We prove a cotiued fractio expasio for a certai q taget fuctio that

More information

Some remarks for codes and lattices over imaginary quadratic

Some remarks for codes and lattices over imaginary quadratic Some remarks for codes ad lattices over imagiary quadratic fields Toy Shaska Oaklad Uiversity, Rochester, MI, USA. Caleb Shor Wester New Eglad Uiversity, Sprigfield, MA, USA. shaska@oaklad.edu Abstract

More information

+ au n+1 + bu n = 0.)

+ au n+1 + bu n = 0.) Lecture 6 Recurreces - kth order: u +k + a u +k +... a k u k 0 where a... a k are give costats, u 0... u k are startig coditios. (Simple case: u + au + + bu 0.) How to solve explicitly - first, write characteristic

More information

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile. s: /

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile.  s: / THE GELIN-CESÀRO IDENTITY IN SOME THIRD-ORDER JACOBSTHAL SEQUENCES arxiv:1810.08863v1 [math.co] 20 Oct 2018 GAMALIEL CERDA-MORALES 1 1 Istituto de Matemáticas Potificia Uiversidad Católica de Valparaíso

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math E-2b Lecture #8 Notes This week is all about determiats. We ll discuss how to defie them, how to calculate them, lear the allimportat property kow as multiliearity, ad show that a square matrix A

More information

Factors of sums and alternating sums involving binomial coefficients and powers of integers

Factors of sums and alternating sums involving binomial coefficients and powers of integers Factors of sums ad alteratig sums ivolvig biomial coefficiets ad powers of itegers Victor J. W. Guo 1 ad Jiag Zeg 2 1 Departmet of Mathematics East Chia Normal Uiversity Shaghai 200062 People s Republic

More information

Sum of cubes: Old proofs suggest new q analogues

Sum of cubes: Old proofs suggest new q analogues Sum of cubes: Old proofs suggest ew aalogues Joha Cigler Faultät für Mathemati, Uiversität Wie ohacigler@uivieacat Abstract We prove a ew aalogue of Nicomachus s theorem about the sum of cubes ad some

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

KU Leuven Department of Computer Science

KU Leuven Department of Computer Science O orthogoal polyomials related to arithmetic ad harmoic sequeces Adhemar Bultheel ad Adreas Lasarow Report TW 687, February 208 KU Leuve Departmet of Computer Sciece Celestijelaa 200A B-300 Heverlee (Belgium)

More information

Enumerative & Asymptotic Combinatorics

Enumerative & Asymptotic Combinatorics C50 Eumerative & Asymptotic Combiatorics Stirlig ad Lagrage Sprig 2003 This sectio of the otes cotais proofs of Stirlig s formula ad the Lagrage Iversio Formula. Stirlig s formula Theorem 1 (Stirlig s

More information

Sums, products and sequences

Sums, products and sequences Sums, products ad sequeces How to write log sums, e.g., 1+2+ (-1)+ cocisely? i=1 Sum otatio ( sum from 1 to ): i 3 = 1 + 2 + + If =3, i=1 i = 1+2+3=6. The ame ii does ot matter. Could use aother letter

More information

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1)

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1) 5. Determiats 5.. Itroductio 5.2. Motivatio for the Choice of Axioms for a Determiat Fuctios 5.3. A Set of Axioms for a Determiat Fuctio 5.4. The Determiat of a Diagoal Matrix 5.5. The Determiat of a Upper

More information

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0 GENERATING FUNCTIONS Give a ifiite sequece a 0,a,a,, its ordiary geeratig fuctio is A : a Geeratig fuctios are ofte useful for fidig a closed forula for the eleets of a sequece, fidig a recurrece forula,

More information

THE N-POINT FUNCTIONS FOR INTERSECTION NUMBERS ON MODULI SPACES OF CURVES

THE N-POINT FUNCTIONS FOR INTERSECTION NUMBERS ON MODULI SPACES OF CURVES THE N-POINT FUNTIONS FOR INTERSETION NUMBERS ON MODULI SPAES OF URVES KEFENG LIU AND HAO XU Abstract. We derive from Witte s KdV equatio a simple formula of the -poit fuctios for itersectio umbers o moduli

More information

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term.

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term. 0. Sequeces A sequece is a list of umbers writte i a defiite order: a, a,, a, a is called the first term, a is the secod term, ad i geeral eclusively with ifiite sequeces ad so each term Notatio: the sequece

More information

Some p-adic congruences for p q -Catalan numbers

Some p-adic congruences for p q -Catalan numbers Some p-adic cogrueces for p q -Catala umbers Floria Luca Istituto de Matemáticas Uiversidad Nacioal Autóoma de México C.P. 58089, Morelia, Michoacá, México fluca@matmor.uam.mx Paul Thomas Youg Departmet

More information

Tutorial F n F n 1

Tutorial F n F n 1 (CS 207) Discrete Structures July 30, 203 Tutorial. Prove the followig properties of Fiboacci umbers usig iductio, where Fiboacci umbers are defied as follows: F 0 =0,F =adf = F + F 2. (a) Prove that P

More information

On Generalized Fibonacci Numbers

On Generalized Fibonacci Numbers Applied Mathematical Scieces, Vol. 9, 215, o. 73, 3611-3622 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.215.5299 O Geeralized Fiboacci Numbers Jerico B. Bacai ad Julius Fergy T. Rabago Departmet

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

V. Adamchik 1. Recursions. Victor Adamchik Fall of x n1. x n 2. Here are a few first values of the above sequence (coded in Mathematica)

V. Adamchik 1. Recursions. Victor Adamchik Fall of x n1. x n 2. Here are a few first values of the above sequence (coded in Mathematica) V. Adamchik Recursios Victor Adamchik Fall of 2005 Pla. Covergece of sequeces 2. Fractals 3. Coutig biary trees Covergece of Sequeces I the previous lecture we cosidered a cotiued fractio for 2 : 2 This

More information

Square-Congruence Modulo n

Square-Congruence Modulo n Square-Cogruece Modulo Abstract This paper is a ivestigatio of a equivalece relatio o the itegers that was itroduced as a exercise i our Discrete Math class. Part I - Itro Defiitio Two itegers are Square-Cogruet

More information

Householder s approximants and continued fraction expansion of quadratic irrationals

Householder s approximants and continued fraction expansion of quadratic irrationals Householder s approximats ad cotiued fractio expasio of quadratic irratioals Viko Petričević Departmet of Mathematics, Uiversity of Zagre Bijeička cesta 30, 0000 Zagre, Croatia E-mail: vpetrice@mathhr

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Series: Infinite Sums

Series: Infinite Sums Series: Ifiite Sums Series are a way to mae sese of certai types of ifiitely log sums. We will eed to be able to do this if we are to attai our goal of approximatig trascedetal fuctios by usig ifiite degree

More information

Some q-analogues of Fibonacci, Lucas and Chebyshev polynomials with nice moments

Some q-analogues of Fibonacci, Lucas and Chebyshev polynomials with nice moments Some -aaloges o Fiboacci, Lcas ad Chebyshev polyomials with ice momets Joha Cigler Faltät ür Mathemati, Uiversität Wie Ui Wie Rossa, Osar-Morgester-Platz, 090 Wie ohacigler@ivieacat http://homepageivieacat/ohacigler/

More information

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy Liear Differetial Equatios of Higher Order Basic Theory: Iitial-Value Problems d y d y dy Solve: a( ) + a ( )... a ( ) a0( ) y g( ) + + + = d d d ( ) Subject to: y( 0) = y0, y ( 0) = y,..., y ( 0) = y

More information

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs CSE 1400 Applied Discrete Mathematics Number Theory ad Proofs Departmet of Computer Scieces College of Egieerig Florida Tech Sprig 01 Problems for Number Theory Backgroud Number theory is the brach of

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please sed all commuicatios cocerig ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWA- TERSRAND, WITS

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math S-b Lecture # Notes This wee is all about determiats We ll discuss how to defie them, how to calculate them, lear the allimportat property ow as multiliearity, ad show that a square matrix A is ivertible

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Matrix representations of Fibonacci-like sequences

Matrix representations of Fibonacci-like sequences NTMSCI 6, No. 4, 03-0 08 03 New Treds i Mathematical Scieces http://dx.doi.org/0.085/tmsci.09.33 Matrix represetatios of Fiboacci-like sequeces Yasemi Tasyurdu Departmet of Mathematics, Faculty of Sciece

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

Mathematics review for CSCI 303 Spring Department of Computer Science College of William & Mary Robert Michael Lewis

Mathematics review for CSCI 303 Spring Department of Computer Science College of William & Mary Robert Michael Lewis Mathematics review for CSCI 303 Sprig 019 Departmet of Computer Sciece College of William & Mary Robert Michael Lewis Copyright 018 019 Robert Michael Lewis Versio geerated: 13 : 00 Jauary 17, 019 Cotets

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Polynomials with Rational Roots that Differ by a Non-zero Constant. Generalities

Polynomials with Rational Roots that Differ by a Non-zero Constant. Generalities Polyomials with Ratioal Roots that Differ by a No-zero Costat Philip Gibbs The problem of fidig two polyomials P(x) ad Q(x) of a give degree i a sigle variable x that have all ratioal roots ad differ by

More information

A PROOF OF THE TWIN PRIME CONJECTURE AND OTHER POSSIBLE APPLICATIONS

A PROOF OF THE TWIN PRIME CONJECTURE AND OTHER POSSIBLE APPLICATIONS A PROOF OF THE TWI PRIME COJECTURE AD OTHER POSSIBLE APPLICATIOS by PAUL S. BRUCKMA 38 Frot Street, #3 aaimo, BC V9R B8 (Caada) e-mail : pbruckma@hotmail.com ABSTRACT : A elemetary proof of the Twi Prime

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

Math 2112 Solutions Assignment 5

Math 2112 Solutions Assignment 5 Math 2112 Solutios Assigmet 5 5.1.1 Idicate which of the followig relatioships are true ad which are false: a. Z Q b. R Q c. Q Z d. Z Z Z e. Q R Q f. Q Z Q g. Z R Z h. Z Q Z a. True. Every positive iteger

More information

On Some Properties of Digital Roots

On Some Properties of Digital Roots Advaces i Pure Mathematics, 04, 4, 95-30 Published Olie Jue 04 i SciRes. http://www.scirp.org/joural/apm http://dx.doi.org/0.436/apm.04.46039 O Some Properties of Digital Roots Ilha M. Izmirli Departmet

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Subject: Differential Equations & Mathematical Modeling-III

Subject: Differential Equations & Mathematical Modeling-III Power Series Solutios of Differetial Equatios about Sigular poits Subject: Differetial Equatios & Mathematical Modelig-III Lesso: Power series solutios of differetial equatios about Sigular poits Lesso

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Created by T. Madas SERIES. Created by T. Madas

Created by T. Madas SERIES. Created by T. Madas SERIES SUMMATIONS BY STANDARD RESULTS Questio (**) Use stadard results o summatios to fid the value of 48 ( r )( 3r ). 36 FP-B, 66638 Questio (**+) Fid, i fully simplified factorized form, a expressio

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

REVIEW FOR CHAPTER 1

REVIEW FOR CHAPTER 1 REVIEW FOR CHAPTER 1 A short summary: I this chapter you helped develop some basic coutig priciples. I particular, the uses of ordered pairs (The Product Priciple), fuctios, ad set partitios (The Sum Priciple)

More information

with an even sum and for k 1mod4 1, 2,, n with an odd sum. ,, n of Pascal s triangle count the subsets of 1, 2,, n

with an even sum and for k 1mod4 1, 2,, n with an odd sum. ,, n of Pascal s triangle count the subsets of 1, 2,, n Some remars o Rogers-Szegö olyomials ad Losaitsch s triagle Joha Cigler Faultät für Mathemati Uiversität Wie johacigler@uivieacat Abstract I this exository aer we collect some simle facts about aalogues

More information

Number of Spanning Trees of Circulant Graphs C 6n and their Applications

Number of Spanning Trees of Circulant Graphs C 6n and their Applications Joural of Mathematics ad Statistics 8 (): 4-3, 0 ISSN 549-3644 0 Sciece Publicatios Number of Spaig Trees of Circulat Graphs C ad their Applicatios Daoud, S.N. Departmet of Mathematics, Faculty of Sciece,

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3 Exam Problems (x. Give the series (, fid the values of x for which this power series coverges. Also =0 state clearly what the radius of covergece is. We start by settig up the Ratio Test: x ( x x ( x x

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

A Simplified Binet Formula for k-generalized Fibonacci Numbers

A Simplified Binet Formula for k-generalized Fibonacci Numbers A Simplified Biet Formula for k-geeralized Fiboacci Numbers Gregory P. B. Dresde Departmet of Mathematics Washigto ad Lee Uiversity Lexigto, VA 440 dresdeg@wlu.edu Zhaohui Du Shaghai, Chia zhao.hui.du@gmail.com

More information

f t dt. Write the third-degree Taylor polynomial for G

f t dt. Write the third-degree Taylor polynomial for G AP Calculus BC Homework - Chapter 8B Taylor, Maclauri, ad Power Series # Taylor & Maclauri Polyomials Critical Thikig Joural: (CTJ: 5 pts.) Discuss the followig questios i a paragraph: What does it mea

More information