ENERGETICS AND DYNAMICS OF CAGED Zn 4 IN i-sczn

Size: px
Start display at page:

Download "ENERGETICS AND DYNAMICS OF CAGED Zn 4 IN i-sczn"

Transcription

1 ENERGETICS AND DYNAMICS OF CAGED Zn 4 IN i-sczn Marek Mihalkovič and Christopher L. Henley [Support: U.S. Dept. of Energy] ICQ11 Poster P02-3, June 14, 2010, Sapporo Japan 1

2 Introduction Recall: cluster in CaCd-type structure. (a). Zn 4 tetrahedron (focus of this poster) (b). 20 Zn dodecahedron (very deformable!) (c). 30Zn + 12 Sc (2nd shell) At higher T, the tetrahedron can reorient; what is its dynamics, and what determines the optimum orientation(s)? 2

3 Outline: Formulate eff. potential for orientations of Zn 4 tetrahedron Find optimal orientations Theory: model the dynamics (as seen in neutron diffraction) Based on molecular dynamics (MD) simulations using pair potentials. 3

4 Framework for tetrahedron eff. Ham. Degrees of freedom are labeled by rigid-body rotation matrix (orientation) Ω i. (Actually: tetrahedra deform, but we assume this just follows the orientation.) One-body terms: an icosahedrally symmetric part a term with cubic symmetry of the 1/1 approximant. Pair terms: v ij (Ω i, Ω j ) orientations of tetrahedra in neighboring clusters. Determine structural orderings (seen in CaCd case) Probably mediated elastically. 4

5 Our single Zn4 construct This sample: all but one Zn 4 one (large) Sc atom. (Out of 16 clusters in our supercell.) Important: constrained lattice const. same as in all-zn 4 sample. Purpose: separate single-body and pair interactions. potential is acting. The 1/1 approximant with Zn 4 Sc is stable against competing phases over a wide range of Sc fraction substituted. (Explains compositional variability in expts?) Behavior in single-zn 4 and all-zn 4 samples similar we infer pair interactions negligible. (From now on, only consider single-body terms.) 5

6 Pair potentials used Our MD simulation based on these. (Ab-initio-based: computationally demanding, in progress [Euchner, Stuttgart]) Salient features of pair potentials: φ ZnSc (R) strongly attractive well at R Sc 3.0Å; φ ZnZn (R) optimal distance R Zn 2.8Å. 6

7 Sc-Sc Zn-Sc Zn-Zn E[eV] 7

8 Zn potential Handy: Zn potential Φ(r) (analog of electrical potential...) Φ Zn (r) = i φ Zn,i (r r i ), i runs over neighbors; φ Zn,i (R) are the pair potentials (Note: Al potential was used previously for analogous (fluctuating) atoms in d-alcuco [Gu, Mihalkovic, and Henley 2006]). Result: A5 = lowest energy (best distance for Zn-Sc potential to 5-fold Sc; also good Zn-Zn distance to 3-fold Zn in cage). 8

9 Each curve runs from one symmetry direction to another: Am = an m-fold symmetry axis) A2c = cubic (100) axis (6 directions), A2 = other 2-fold (24 directions) A3c = cubic (111) (8 directions) A3c = other 3-fold (12 directions) A2->A3c A2c->A2 A2c->A3 A2c->A5 A3->A2 A5 -> A2 A5-A3c A5->A3 ENERGY [ev] A3c almost as low E (Zn along 111 far away), but A3 is highest E (other 3 fold Zn are close, sterically bad) 9

10 Optimal orientations Φ Zn (r) want to place all four Zn close to a 5-efold axis, but possible for at most three:. Angle between tetrahedral directions is 109, angles between 5-efold directions are 63 and (best) 117. We found two minimum orientations (evidence below). (1) optimal orientation: 2mm symmetry around (say) (001) axis. Zn(1,2) close to (±τ, 0, 1) [117 apart] whereas Zn(3,4) go with (0, ±1, τ) directions [63 apart] this pulls the latter pair closer by 0.05Å. (2) secondary minimum: place Zn(1,2,3 ) near to 5-fold axes ( τ, 0, 1) and cyclic permutations, which are 117 apart. Put Zn(4 ) near (1, 1, 1) This has no symmetry (all four Zn atoms are inequivalent, point symmetry 1 ). 10

11 Evidence 1: movies 3 frames (352, 630, 705) from simulation of Zn 4 in 20-Zn cage. First and last are 2mm states; middle is a secondary min. state Conclude: Transition path is via secondary minimum. 11

12 Evidence 2: probability density "all Zn4" x z x y z y "single Zn4" x z x y z y T=210K, 2x2x2 supercell Probability density for Zn atoms, projected in the (001) direction. 12

13 Vibrational density of states (VDOS) Dyn.; structure factor S(q, ω) from neutron scatt VDOS G(ω) lim q 0 ω 2 S(q, ω) q partial Zn4, T=100K partial Zn4, T=210K VDOS total, 200 ps VDOS E [mev] Red/blue = partial Zn 4 contributions at T = 100K/210K. Black curve = whole spectrum. (called VDOS since it agrees with phonon spectrum if phonons are the only slow dynamics. 13

14 Previous plot matches calculated harmonic phonons except at low ω end) Very low ω (T = 100K) showing (dominant) Zn 4 contributions dynamics of occasional reorientations. In both plots the axis is hω in mev 14

15 Theory: reorientation dynamics and VDOS Can be shown G v (t)= velocity autocorrelation. G(ω) = Fourier transform(g v (t)) Our situation: a constant state for a long time, then randomly has abrupt transitions to another discrete state. Described by discrete master equation with transition rates Γ αβ from state α β. In our case, where position x i (t) is confined, it can be shown that G v (t) = d2 x i (0) x i (t) dt 2. Thus, don t need to know how large the velocities are during the short and rare transitions! 15

16 For the simplest case of a double well we obtain G(ω) = 2 π x 2 0 τ [ 1 1 ] 1 + ω 2 τ 2. This fits our data well for the 1/1 approximant (red line in low-frequency plot of VDOS). Note it does not fit simulation results for the 2/1 approximant. Interpretation: the local environment is less symmetric than cubic various transition barriers spectrum of exponential relaxation rates (not just the one term in fitting form.) 16

17 Discussion 1. Comparison to CaCd 1/1 approximant Cd 4 cluster diffraction study by C. P. Gomez et al, PRB Our similar simulations for CaCd show that (in contrast to ScZn) the optimal configuration is the asymmetric one, while the 2mm confiuration is secondary. 2. Compare central cluster in i-alpdmn i-alpdmn and i-alcufe built from pseudo-mackay icosahedron clusters with an irregular Mn Al 7 core. The orientational dynamics of this core calls for analysis like Zn 4, but much more complicated. 17

RESEARCH ARTICLE. In i-znsc (like other quasicrystals of the i-cacd class) the innermost shell of the icosahedral

RESEARCH ARTICLE. In i-znsc (like other quasicrystals of the i-cacd class) the innermost shell of the icosahedral Philosophical Magazine Letters Vol. 00, No. 00, Month 200x, 1 8 RESEARCH ARTICLE ENERGETICS AND DYNAMICS OF CAGED Zn 4 IN i-sczn M. Mihalkovič a and C. L. Henley b, a Inst. of Physics, Slovak Academy of

More information

Ordering and correlation of cluster orientations in CaCd 6

Ordering and correlation of cluster orientations in CaCd 6 Philosophical Magazine, Vol. 00, No. 00, DD Month 200x, 1 5 Ordering and correlation of cluster orientations in CaCd 6 PETER BROMMER, FRANZ GÄHLER and MAREK MIHALKOVIČ Institut für Theoretische und Angewandte

More information

Order-disorder transition in the Cd-Ca cubic approximant

Order-disorder transition in the Cd-Ca cubic approximant Mat. Res. Soc. Symp. Proc. Vol. 805 2004 Materials Research Society LL1.10.1 Order-disorder transition in the Cd-Ca cubic approximant M. Widom and M. Mihalkovič 1 Department of Physics, Carnegie Mellon

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Boxes within boxes: discovering the atomic structure of an Al-Co-Ni quasicrystal

Boxes within boxes: discovering the atomic structure of an Al-Co-Ni quasicrystal Boxes within boxes: discovering the atomic structure of an Al-Co-Ni quasicrystal Nan Gu, Marek Mihalkovič, and C.L. Henley, Cornell University LASSP Pizza talk, Tues July 11, 2006 1 1. Quasicrystals Fourier

More information

Canonical cell model of Cadmium-based icosahedral alloys

Canonical cell model of Cadmium-based icosahedral alloys Canonical cell model of Cadmium-based icosahedral alloys M. Mihalkovič Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia M. Widom Department of Physics, Carnegie Mellon University

More information

Caged clusters in Al 11 Ir 4 : Structural transition and insulating phase

Caged clusters in Al 11 Ir 4 : Structural transition and insulating phase PHYSICAL REVIEW B 88, 064201 (2013) Caged clusters in Al 11 Ir 4 : Structural transition and insulating phase Marek Mihalkovič 1 and C. L. Henley 2 1 Institute of Physics, Slovak Academy of Sciences, 84511

More information

MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing

MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing Due Thursday Feb. 21 at 5pm in Durand 110. Evan Reed In this homework,

More information

Co-rich Decagonal Al-Co-Ni predicting structure, orientatio order, and puckering

Co-rich Decagonal Al-Co-Ni predicting structure, orientatio order, and puckering Co-rich Decagonal Al-Co-Ni predicting structure, orientatio order, and puckering Nan Gu, Marek Mihalkovič, and C.L. Henley, Cornell University ICQ9 poster, Monday May 23, 2005 Supported by DOE grant DE-FG02-89ER-45405

More information

Structural Calculations phase stability, surfaces, interfaces etc

Structural Calculations phase stability, surfaces, interfaces etc Structural Calculations phase stability, surfaces, interfaces etc Keith Refson STFC Rutherford Appleton Laboratory September 19, 2007 Phase Equilibrium 2 Energy-Volume curves..................................................................

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

Electron-phonon scattering (Finish Lundstrom Chapter 2)

Electron-phonon scattering (Finish Lundstrom Chapter 2) Electron-phonon scattering (Finish Lundstrom Chapter ) Deformation potentials The mechanism of electron-phonon coupling is treated as a perturbation of the band energies due to the lattice vibration. Equilibrium

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: After structural optimization of the CH 3 NH 3 PbI 3 unit cell, the resulting relaxed volumes for three distinct orientation of the MA molecules are shown.

More information

Geometry Optimisation

Geometry Optimisation Geometry Optimisation Matt Probert Condensed Matter Dynamics Group Department of Physics, University of York, UK http://www.cmt.york.ac.uk/cmd http://www.castep.org Motivation Overview of Talk Background

More information

QENS in the Energy Domain: Backscattering and Time-of

QENS in the Energy Domain: Backscattering and Time-of QENS in the Energy Domain: Backscattering and Time-of of-flight Alexei Sokolov Department of Polymer Science, The University of Akron Outline Soft Matter and Neutron Spectroscopy Using elastic scattering

More information

Quasicrystals Structure and dynamics. M. de Boissieu SIMaP, Grenoble- INP, CNRS, UJF St Mar=n d Hères France.

Quasicrystals Structure and dynamics. M. de Boissieu SIMaP, Grenoble- INP, CNRS, UJF St Mar=n d Hères France. Quasicrystals Structure and dynamics M. de Boissieu SIMaP, Grenoble- INP, CNRS, UJF St Mar=n d Hères France. Quasicrystals Long range order with Forbidden 5- fold symmetry No periodicity QUASICRYSTAL:

More information

Thermal Neutron Scattering in Graphite

Thermal Neutron Scattering in Graphite Thermal Neutron Scattering in Graphite by Iyad I. Al-Qasir Department of Physics University of Jordan Amman, Jordan Supervisor Dr. Ayman I. Hawari Department of Nuclear Engineering North Carolina State

More information

Crystal Relaxation, Elasticity, and Lattice Dynamics

Crystal Relaxation, Elasticity, and Lattice Dynamics http://exciting-code.org Crystal Relaxation, Elasticity, and Lattice Dynamics Pasquale Pavone Humboldt-Universität zu Berlin http://exciting-code.org PART I: Structure Optimization Pasquale Pavone Humboldt-Universität

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Phonons and lattice dynamics

Phonons and lattice dynamics Chapter Phonons and lattice dynamics. Vibration modes of a cluster Consider a cluster or a molecule formed of an assembly of atoms bound due to a specific potential. First, the structure must be relaxed

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Basic Principles of Quasicrystallography

Basic Principles of Quasicrystallography Chapter 2 Basic Principles of Quasicrystallography Conventional crystals are constructed by a periodic repetition of a single unit-cell. This periodic long-range order only agrees with two-, three-, four-

More information

An introduction to vibrational properties of glass models

An introduction to vibrational properties of glass models An introduction to vibrational properties of glass models Simona ISPAS simona.ispas@univ-montp2.fr Laboratoire Charles Coulomb, Dépt. Colloïdes, Verres et Nanomatériaux, UMR 522 Université Montpellier

More information

Cleavage Planes of Icosahedral Quasicrystals: A Molecular Dynamics Study

Cleavage Planes of Icosahedral Quasicrystals: A Molecular Dynamics Study Cleavage Planes of Icosahedral Quasicrystals: A Molecular Dynamics Study Frohmut Rösch 1, Christoph Rudhart 1, Peter Gumbsch 2,3, and Hans-Rainer Trebin 1 1 Universität Stuttgart, Institut für Theoretische

More information

Structure of the icosahedral Ti-Zr-Ni quasicrystal

Structure of the icosahedral Ti-Zr-Ni quasicrystal Structure of the icosahedral Ti-Zr-Ni quasicrystal R. G. Hennig* Department of Physics, Ohio State University, Columbus, Ohio 43210 K. F. Kelton and A. E. Carlsson Department of Physics, Washington University,

More information

BMT 2014 Symmetry Groups of Regular Polyhedra 22 March 2014

BMT 2014 Symmetry Groups of Regular Polyhedra 22 March 2014 Time Limit: 60 mins. Maximum Score: 125 points. Instructions: 1. When a problem asks you to compute or list something, no proof is necessary. However, for all other problems, unless otherwise indicated,

More information

T. Egami. Model System of Dense Random Packing (DRP)

T. Egami. Model System of Dense Random Packing (DRP) Introduction to Metallic Glasses: How they are different/similar to other glasses T. Egami Model System of Dense Random Packing (DRP) Hard Sphere vs. Soft Sphere Glass transition Universal behavior History:

More information

(b) 7-fold symmetry. Figure 1: GroEL. Figure 2: Noisy and clean cryo-em Images of GroEL

(b) 7-fold symmetry. Figure 1: GroEL. Figure 2: Noisy and clean cryo-em Images of GroEL Applications of Mathematical Symmetry: HW 3 Applied Algebra Spring 2015, Due 9 April 2015 Goal: In this homework you will implement the symmetry detection algorithm and complete some exercises that provide

More information

Accuracy and transferability of GAP models for tungsten

Accuracy and transferability of GAP models for tungsten Accuracy and transferability of GAP models for tungsten Wojciech J. Szlachta Albert P. Bartók Gábor Csányi Engineering Laboratory University of Cambridge 5 November 214 Motivation Number of atoms 1 1 2

More information

Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities

Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities Umesh V. Waghmare Theoretical Sciences Unit J N C A S R Bangalore ICMR OUTLINE Vibrations and interatomic force constants (IFC) Extended

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 214 Infrared Spectroscopy from Ab Initio Molecular Dynamics - the MeCN-HCl Molecular

More information

Magnetoelastics in the frustrated spinel ZnCr 2 O 4. Roderich Moessner CNRS and ENS Paris

Magnetoelastics in the frustrated spinel ZnCr 2 O 4. Roderich Moessner CNRS and ENS Paris Magnetoelastics in the frustrated spinel ZnCr 2 O 4 Roderich Moessner CNRS and ENS Paris CEA Saclay, June 2005 Overview Neutron scattering experiments on ZnCr 2 O 4 Modelling magnetism on the B sublattice

More information

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

ATOMIC MOTION APERIODIC SOLIDS

ATOMIC MOTION APERIODIC SOLIDS ATOMIC MOTION Sponsoring in APERIODIC SOLIDS CRC 701, Bielefeld Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu Collaborations

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

Relative stability of α and β boron

Relative stability of α and β boron Relative stability of α and β boron Michael Widom 1 and Marek Mihalkovič 2 1 Department of Physics, Carnegie Mellon University, Pittsburgh PA 15213, USA 2 Department of Physics, Slovakian Academy of Sciences,

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

M04M.1 Particles on a Line

M04M.1 Particles on a Line Part I Mechanics M04M.1 Particles on a Line M04M.1 Particles on a Line Two elastic spherical particles with masses m and M (m M) are constrained to move along a straight line with an elastically reflecting

More information

CCSD(T) benchmarks of non-equilibrium water clusters: the importance of monomer deformation

CCSD(T) benchmarks of non-equilibrium water clusters: the importance of monomer deformation CCSD(T) benchmarks of non-equilibrium water clusters: the importance of monomer deformation Biswajit Santra 1, Angelos Michaelides 1,2, and Matthias Scheffler 1 1 Fritz-Haber-Institut der MPG, Berlin,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures 8 6 Energy (ev 4 2 2 4 Γ M K Γ Supplementary Figure : Energy bands of antimonene along a high-symmetry path in the Brillouin zone, including spin-orbit coupling effects. Empty circles

More information

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Tomi Johnson Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Please leave your work in the Clarendon laboratory s J pigeon hole by 5pm on Monday of

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

Road map (Where are we headed?)

Road map (Where are we headed?) Road map (Where are we headed?) oal: Fairly high level understanding of carrier transport and optical transitions in semiconductors Necessary Ingredients Crystal Structure Lattice Vibrations Free Electron

More information

Deformed (Nilsson) shell model

Deformed (Nilsson) shell model Deformed (Nilsson) shell model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 31, 2011 NUCS 342 (Lecture 9) January 31, 2011 1 / 35 Outline 1 Infinitely deep potential

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: He atoms: [E (ev)] 1/2 = 0.14 / (Å) E 1Å = 0.0196 ev Neutrons: [E (ev)] 1/2 = 0.28 / (Å) E 1Å = 0.0784 ev Electrons:

More information

Terahertz Lasers Based on Intersubband Transitions

Terahertz Lasers Based on Intersubband Transitions Terahertz Lasers Based on Intersubband Transitions Personnel B. Williams, H. Callebaut, S. Kumar, and Q. Hu, in collaboration with J. Reno Sponsorship NSF, ARO, AFOSR,and NASA Semiconductor quantum wells

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

COMPARISON OF PROCESS OF DIFFUSION OF INTERSTITIAL OXYGEN ATOMS AND INTERSTITIAL HYDROGEN MOLECULES IN SILICON AND

COMPARISON OF PROCESS OF DIFFUSION OF INTERSTITIAL OXYGEN ATOMS AND INTERSTITIAL HYDROGEN MOLECULES IN SILICON AND COMPARISON OF PROCESS OF DIFFUSION OF INTERSTITIAL OXYGEN ATOMS AND INTERSTITIAL HYDROGEN MOLECULES IN SILICON AND GERMANIUM CRYSTALS: QUANTUMCHEMICAL SIMULATION Vasilii Gusakov Joint Institute of Solid

More information

Disordered Materials: Glass physics

Disordered Materials: Glass physics Disordered Materials: Glass physics > 2.7. Introduction, liquids, glasses > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors > 9.7. Static structures: X-ray scattering,

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

A simple example of a polyhedral network or polynet, constructed from truncated octahedra and hexagonal prisms.

A simple example of a polyhedral network or polynet, constructed from truncated octahedra and hexagonal prisms. Polyhedral Nets A simple example of a polyhedral network or polynet, constructed from truncated octahedra and hexagonal prisms. The building process indicated produces a labyrinth. The labyrinth graph

More information

Inhomogeneous elastic response of amorphous solids

Inhomogeneous elastic response of amorphous solids Inhomogeneous elastic response of amorphous solids Jean-Louis Barrat Université de Lyon Institut Universitaire de France Acknowledgements: Anne Tanguy, Fabien Chay Goldenberg, Léonforte, Michel Tsamados

More information

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 3, 29 This afternoon s plan introductory talk Phonons: harmonic vibrations for solids Phonons:

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

3.320 Lecture 23 (5/3/05)

3.320 Lecture 23 (5/3/05) 3.320 Lecture 23 (5/3/05) Faster, faster,faster Bigger, Bigger, Bigger Accelerated Molecular Dynamics Kinetic Monte Carlo Inhomogeneous Spatial Coarse Graining 5/3/05 3.320 Atomistic Modeling of Materials

More information

MOLECULES. ENERGY LEVELS electronic vibrational rotational

MOLECULES. ENERGY LEVELS electronic vibrational rotational MOLECULES BONDS Ionic: closed shell (+) or open shell (-) Covalent: both open shells neutral ( share e) Other (skip): van der Waals (He-He) Hydrogen bonds (in DNA, proteins, etc) ENERGY LEVELS electronic

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure Page 1 of 22 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: 2 p h E = where p = 2m λ h 1 E = ( ) 2m λ hc E = hυ = ( photons) λ ( matter wave) He atoms: [E (ev)]

More information

Status of the magnetic spectrometer PRISMA

Status of the magnetic spectrometer PRISMA Status of the magnetic spectrometer PRISMA E. Fioretto INFN Laboratori Nazionali di Legnaro 1 PRISMA in vacuum mode Dipole 50 cm 120 cm 60 +130 Quadrupole 30 cm Beam Target 2-20 Rotating platform PRISMA:

More information

DFT modeling of novel materials for hydrogen storage

DFT modeling of novel materials for hydrogen storage DFT modeling of novel materials for hydrogen storage Tejs Vegge 1, J Voss 1,2, Q Shi 1, HS Jacobsen 1, JS Hummelshøj 1,2, AS Pedersen 1, JK Nørskov 2 1 Materials Research Department, Risø National Laboratory,

More information

1.3 Molecular Level Presentation

1.3 Molecular Level Presentation 1.3.1 Introduction A molecule is the smallest chemical unit of a substance that is capable of stable, independent existence. Not all substances are composed of molecules. Some substances are composed of

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles

Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles S. Wippermann, M. Vörös, D. Rocca, T. Li, A. Gali, G. Zimanyi, F. Gygi,

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

III.H Zeroth Order Hydrodynamics

III.H Zeroth Order Hydrodynamics III.H Zeroth Order Hydrodynamics As a first approximation, we shall assume that in local equilibrium, the density f 1 at each point in space can be represented as in eq.(iii.56), i.e. [ ] p m q, t)) f

More information

Jack D. Dunitz. X-Ray Analysis and the Structure of Organic Molecules VCHP. (2nd Corrected Reprint) $ Verlag Helvetica Chimica Acta, Basel

Jack D. Dunitz. X-Ray Analysis and the Structure of Organic Molecules VCHP. (2nd Corrected Reprint) $ Verlag Helvetica Chimica Acta, Basel Jack D. Dunitz X-Ray Analysis and the Structure of Organic Molecules (2nd Corrected Reprint) $ Verlag Helvetica Chimica Acta, Basel VCHP Weinheim New York Basel Cambridge Tokyo Introduction 17 PART ONE:

More information

Structural optimization of Lennard-Jones clusters by a genetic algorithm. Abstract

Structural optimization of Lennard-Jones clusters by a genetic algorithm. Abstract Structural optimization of Lennard-Jones clusters by a genetic algorithm D.M. Deaven and J.R. Morris, K.M. Ho Physics Department, Ames Laboratory USDOE, Ames, IA 50011 N. Tit Physics Department, UAE University,

More information

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1 Thermal transport from first-principles DFT calculations Keivan Esfarjani Department of Mechanical Engineering MIT 5/23/2012 Phonon School @ UWM 1 Classical MD simulations use an empirical potential fitted

More information

Gear methods I + 1/18

Gear methods I + 1/18 Gear methods I + 1/18 Predictor-corrector type: knowledge of history is used to predict an approximate solution, which is made more accurate in the following step we do not want (otherwise good) methods

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

12. Spectral diffusion

12. Spectral diffusion 1. Spectral diffusion 1.1. Spectral diffusion, Two-Level Systems Until now, we have supposed that the optical transition frequency of each single molecule is a constant (except when we considered its variation

More information

ANALYSIS OF NUCLEAR TRANSMUTATION INDUCED FROM METAL PLUS MULTIBODY-FUSION- PRODUCTS REACTION

ANALYSIS OF NUCLEAR TRANSMUTATION INDUCED FROM METAL PLUS MULTIBODY-FUSION- PRODUCTS REACTION Ohta, M. and A. Takahashi. Analysis Of Nuclear Transmutation Induced From Metal Plus Multibody-Fusion- Products, Reaction PowerPoint slides. in Tenth International Conference on Cold Fusion. 23. Cambridge,

More information

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors N. A. W. Holzwarth Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA Introduction

More information

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases MD Simulation of Diatomic Gases Bull. Korean Chem. Soc. 14, Vol. 35, No. 1 357 http://dx.doi.org/1.51/bkcs.14.35.1.357 Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases Song

More information

GROUND STATES OF THE CLASSICAL ANTIFERROMAGNET ON THE PYROCHLORE LATTICE

GROUND STATES OF THE CLASSICAL ANTIFERROMAGNET ON THE PYROCHLORE LATTICE GROUND STATES OF THE CLASSICAL ANTIFERROMAGNET ON THE PYROCHLORE LATTICE By Matthew Lapa An Honors Thesis Submitted to the Department of Applied and Engineering Physics in Partial Fulfillment of the Requirements

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Paper to appear in Nature Materials, accepted 26 Sept 2007.

Paper to appear in Nature Materials, accepted 26 Sept 2007. Paper to appear in Nature Materials, accepted 26 Sept 27. Lattice dynamics of the Zn-Mg-Sc icosahedral quasicrystal and its Zn-Sc periodic 1/1 approximant. Marc de Boissieu 1 **, Sonia Francoual 1,2 *,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Hierarchical Self-Assembly of Symmetric Supramolecular Polyhedra Yu He, Tao Ye, Min Su, Chuan Zhang, Alexander E. Ribbe, Wen Jiang & Chengde Mao Figure S1. Non-denaturing polyacrylamide gel electrophoresis

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Systematics of the α-decay fine structure in even-even nuclei

Systematics of the α-decay fine structure in even-even nuclei Systematics of the α-decay fine structure in even-even nuclei A. Dumitrescu 1,4, D. S. Delion 1,2,3 1 Department of Theoretical Physics, NIPNE-HH 2 Academy of Romanian Scientists 3 Bioterra University

More information

InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures

InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures PHYSICAL REVIEW B VOLUME 59, NUMBER 24 15 JUNE 1999-II InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures A. J. Williamson and Alex Zunger National Renewable

More information

COHOMOLOGY. Sponsoring. Jean BELLISSARD

COHOMOLOGY. Sponsoring. Jean BELLISSARD Sponsoring Grant no. 0901514 COHOMOLOGY Jean BELLISSARD CRC 701, Bielefeld Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu Main References

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

dynamics computer code, whiccan simulate the motion of atoms at a surface and We coembininewton's equation for the nuclei,

dynamics computer code, whiccan simulate the motion of atoms at a surface and We coembininewton's equation for the nuclei, DUI FILE COpy T DTIC ANNUAL LETTER REPORT BY 0. F. ELEC33 20KE AD-A224 069 P.1. FOR N00014-85-K-0442 U Theory of electronic states and formations energies of.defect comp exes, interstitial defects, and

More information

Rustam Z. Khaliullin University of Zürich

Rustam Z. Khaliullin University of Zürich Rustam Z. Khaliullin University of Zürich Molecular dynamics (MD) MD is a computational method for simulating time evolution of a collection of interacting atoms by numerically integrating Newton s equation

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Effective potentials for quasicrystals from ab-initio data

Effective potentials for quasicrystals from ab-initio data Effective potentials for quasicrystals from ab-initio data Peter Brommer and Franz Gähler Institut für Theoretische und Angewandte Physik Universität Stuttgart August 31, 2005 Abstract Classical effective

More information

SIMULATIONAL ANALYSIS OF GLASSES PREPARED VIA DIFFERENT INTERATOMIC POTENTIALS

SIMULATIONAL ANALYSIS OF GLASSES PREPARED VIA DIFFERENT INTERATOMIC POTENTIALS Journal of Optoelectronics and Advanced Materials Vol. 7, No. 4, August 2005, p. 1915-1922 SIMULATIONAL ANALYSIS OF GLASSES PREPARED VIA DIFFERENT INTERATOMIC POTENTIALS Y. Sano, J. K ga, F. Yonezawa Department

More information

Solving Einstein s Equation Numerically III

Solving Einstein s Equation Numerically III Solving Einstein s Equation Numerically III Lee Lindblom Center for Astrophysics and Space Sciences University of California at San Diego Mathematical Sciences Center Lecture Series Tsinghua University

More information

Modeling Biological Systems Opportunities for Computer Scientists

Modeling Biological Systems Opportunities for Computer Scientists Modeling Biological Systems Opportunities for Computer Scientists Filip Jagodzinski RBO Tutorial Series 25 June 2007 Computer Science Robotics & Biology Laboratory Protein: πρώτα, "prota, of Primary Importance

More information

I. Collective Behavior, From Particles to Fields

I. Collective Behavior, From Particles to Fields I. Collective Behavior, From Particles to Fields I.A Introduction The object of the first part of this course was to introduce the principles of statistical mechanics which provide a bridge between the

More information

Quantum Physics III (8.06) Spring 2016 Assignment 3

Quantum Physics III (8.06) Spring 2016 Assignment 3 Quantum Physics III (8.6) Spring 6 Assignment 3 Readings Griffiths Chapter 9 on time-dependent perturbation theory Shankar Chapter 8 Cohen-Tannoudji, Chapter XIII. Problem Set 3. Semi-classical approximation

More information

Ionic Bonding - Electrostatic Interactions and Polarization

Ionic Bonding - Electrostatic Interactions and Polarization Ionic Bonding - Electrostatic Interactions and Polarization Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #13 Born-Haber Cycle for NaCl It is energetically unfavorable for Na metal and

More information

arxiv: v1 [nucl-th] 8 Sep 2011

arxiv: v1 [nucl-th] 8 Sep 2011 Tidal Waves a non-adiabatic microscopic description of the yrast states in near-spherical nuclei S. Frauendorf, Y. Gu, and J. Sun Department of Physics, University of Notre Dame, Notre Dame, IN 6556, USA

More information

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM S. GRABOWSKI, K. KADAU and P. ENTEL Theoretische Physik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany (Received...) Abstract We present molecular-dynamics

More information