Assignment Set 2 - Solutions Due: Wednesday October 6; 1:00 pm

Size: px
Start display at page:

Download "Assignment Set 2 - Solutions Due: Wednesday October 6; 1:00 pm"

Transcription

1 Assignments CE 312 Fluid Mechanics (Fall 21) Assignment Set 2 - s Due: Wednesday October 6; 1: m Question A (7 marks) Consider the situation in the Figure where you see a gate laced under an angle θ=1 o that searates layers of water (ρ w =1 kg/m 3 ) and oil (ρ o =92 kg/m 3 ). Both layers have a height =1.2 m. The vessel is W=1 m wide in the direction erendicular to the lane of view. Determine the net force (in x and y direction) exerted by the two liquids on the gate. Gravity (g) oints in the negative y direction. Due to the density difference of oil and water there is a ressure difference over the gate. This = g ρ ρ y. The force on a small ressure difference is a function of y only: ( )( ) ortion of the late with height (since the late is under an angle the length of this ortion is ) has an x and a y-comonent: cos θ df = x cosθ W W dfy sinθ W tanθ W cosθ = = cosθ =. The total force we find by integration: 1 1 F = g y W = Wg y y = W g 2 2 ( ρ ρ )( ) ( ρ ρ ) ( ρ ρ ) x w o w o w o Fy = g ( ρw ρo )( y) W tanθ = W g ( ρw ρo ) tanθ 2 Substituting the numbers gives F x =564 N, F y = 99.4 N. w o

2 Question B (4 marks) Estimate the and absolute ressure in the gas tank if the liquid in the manometer has a secific gravity of 1.93, and h=39 cm. Neglect the density of the gas in your estimates. This is retty much the same as the examle in the Lecture Notes 2. The absolute ressure in the gas is g = + hgρl ; the ressure is the ressure in the gas relative to the osheric ressure: g, = hgρl. With ρ l = kg/m 3 and =1 5 Pa we get g, = Pa, and g = Pa.

3 Question C (4 marks) A tree trunk is floating in the river. It can be considered a solid wooden cylinder having a circular cross section with diameter D=6 cm, and length L=1 m. The density of the wood is ρ wd =96 kg/m 3, the density of the water is ρ wtr =1 kg/m 3. Can a m=8 kg erson stand on the floating trunk without getting her/his feet wet? The maximum buoyancy force is reached if the trunk is fully submerged. Then π 2 π 2 π 2 Fbuo = ρwtr g D L. For the answer to be yes ρwtr g D L ρwd g D L + mg which π 2 imlies m ( ρwtr ρwd ) D L = 113 kg which is true. 4

4 Question D (8 marks) An oen-ended can, L=3 cm long is originally full of air at =1 bar and 2 o C. The can is now immersed in water (ρ=1 kg/m 3 ) as shown in the figure. Assuming that the air in the can stays at 2 o C, and that the air in the can behaves as an ideal gas, what will be the height h with which the water rises in the can? (neglect surface tension effects) We can determine the ressure in the submerged can in two ways. Equating these rovides an equation in the unknown h. In the first lace, since the air in the can is an ideal gas with constant temerature, the roduct of volume and ressure stays constant when submerging the L can: LA = subm ( L h) A subm =. ere A is the cross-sectional area of the L h ( ) can. In the second lace, the ressure in the can is equal to the hydrostatic ressure at the air- = + ρg h. water interface in the can: ( ) And thus ( L h) subm L = + ρg h ( ). If we multily both sides by ( L h) both sides by we get L L h ( h)( L h), and divide ρg = +. This is a quadratic equation in h. 2 Writing it in the standard ax + bx + c = form gives ρg 2 ρg ρg ρg h 1+ + L h + L = (always a good exercise to check if the units of ρg -1 all terms are the same; they are all meters). Inserting numbers: =.98 m, ρg ρ g 1+ + L = (dimensionless), ( ) 2 ρg L =.882 m. As a result: ± h =. The lus sign in this equation gives an answer 2.98 that does not make sense (h would be bigger than L); the minus sign answer is h=6.2 cm which does make sense.

5 Question E (7 marks) Marine biologists with an interest in forms of life in the very dee sea want to know the ressure at =11 km below sea level. They base their estimate on the equation = g ρw and come u with = Pa=178 bar (they took g=9.8 m/s 2 and ρ w =1 kg/m 3 ). An engineer comes by and says that under these extreme circumstances they may want to consider the comressibility of water, i.e. the fact that the density of water increases if the ressure increases. She gives the biologists the following equation that relates water density to ressure: ρ = ρ ( 1+ β ) with ρ =1 kg/m 3, and β =5 1-1 Pa -1 and then walks away. Please hel the biologists and determine the ressure at =11 km taking into account the comressibility of water. Since the density is not considered constant anymore we have to revert to the more fundamental fluid statics equation from the lecture notes: = ρg where (different from the z lecture notes) there is no minus sign because we chose to let the z-coordinate oint down instead of u. For in this equation we can take the ressure. If we also realize that the ressure is only a function of z we can write u the following ordinary differential d with = if z= (at the sea surface the dz absolute ressure is osheric). We can solve the ODE by searation of variables: d = gρdz. If we integrate both sides of the equation from the surface to we get 1+ β equation (ODE): = g ρ ( 1+ β ) ( ) ( ) 1 ln 1 β ρ β β ρ ( + ) = g so that ( ) = ( g 1) only a little bit higher than the estimate based on constant density. 1 e = Pa. This is β

Static Forces on Surfaces-Buoyancy. Fluid Mechanics. There are two cases: Case I: if the fluid is above the curved surface:

Static Forces on Surfaces-Buoyancy. Fluid Mechanics. There are two cases: Case I: if the fluid is above the curved surface: Force on a Curved Surface due to Hydrostatic Pressure If the surface is curved, the forces on each element of the surface will not be parallel (normal to the surface at each point) and must be combined

More information

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface.

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface. Hydrostatic Forces on Submerged Plane Surfaces Hydrostatic forces mean forces exerted by fluid at rest. - A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liquid storage tank,

More information

Chapter 3 Fluid Statics

Chapter 3 Fluid Statics Chapter 3 Fluid Statics 3.1 Pressure Pressure : The ratio of normal force to area at a point. Pressure often varies from point to point. Pressure is a scalar quantity; it has magnitude only It produces

More information

1 atm = 1.01x10 Pa = 760 Torr = 14.7 lb / in

1 atm = 1.01x10 Pa = 760 Torr = 14.7 lb / in Last class we began discussion of ressure in fluids, with ressure defined as, F = ; units N 1 Pa = 1 m 2 There are a number of other ressure units in common use having the following equivalence, 5 2 1

More information

hapter 13 Archimedes Up-thrust

hapter 13 Archimedes Up-thrust hapter 13 Archimedes Up-thrust In science, buoyancy is an upward force exerted by a fluid that opposes the weight of an immersed object. The buoyant force is also called Archimedes Up-thrust force. Proof

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

CHAPTER 28 PRESSURE IN FLUIDS

CHAPTER 28 PRESSURE IN FLUIDS CHAPTER 8 PRESSURE IN FLUIDS EXERCISE 18, Page 81 1. A force of 80 N is applied to a piston of a hydraulic system of cross-sectional area 0.010 m. Determine the pressure produced by the piston in the hydraulic

More information

ME-B41 Lab 1: Hydrostatics. Experimental Procedures

ME-B41 Lab 1: Hydrostatics. Experimental Procedures ME-B41 Lab 1: Hydrostatics In this lab you will do four brief experiments related to the following topics: manometry, buoyancy, forces on submerged planes, and hydraulics (a hydraulic jack). Each experiment

More information

Day 3. Fluid Statics. - pressure - forces

Day 3. Fluid Statics. - pressure - forces Day 3 Fluid Statics - ressure - forces we define fluid article: small body of fluid with finite mass but negligible dimension (note: continuum mechanics must aly, so not too small) we consider a fluid

More information

Fluid Statics. Pressure. Pressure

Fluid Statics. Pressure. Pressure Pressure Fluid Statics Variation of Pressure with Position in a Fluid Measurement of Pressure Hydrostatic Thrusts on Submerged Surfaces Plane Surfaces Curved Surfaces ddendum First and Second Moment of

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

DIMENSIONS AND UNITS

DIMENSIONS AND UNITS DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension

More information

An-Najah National University Civil Engineering Departemnt. Fluid Mechanics. Chapter [2] Fluid Statics

An-Najah National University Civil Engineering Departemnt. Fluid Mechanics. Chapter [2] Fluid Statics An-Najah National University Civil Engineering Deartemnt Fluid Mechanics Chater [2] Fluid Statics 1 Fluid Statics Problems Fluid statics refers to the study of fluids at rest or moving in such a manner

More information

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chater / Fluid Statics CHAPTER Fluid Statics FE-tye Exam Review Problems: Problems - to -9. (C) h (.6 98) (8.5.54) 96 6 Pa Hg. (D) gh 84. 9.8 4 44 76 Pa. (C) h h. 98. 8 Pa w atm x x water w.4 (A) H (.6

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Pressure variation with direction. Pressure variation with location How can we calculate the total force on a submerged surface?

Pressure variation with direction. Pressure variation with location How can we calculate the total force on a submerged surface? Definitions and Alications CVEN Statics: no relative motion between adjacent fluid layers. Shear stress is ero Only ressure can be acting Gravity force acts on the fluid ( body force) Alications: Pressure

More information

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

More information

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

More information

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka 1 Hydrostatics 2 Introduction In Fluid Mechanics hydrostatics considers fluids at rest: typically fluid pressure on stationary bodies and surfaces, pressure measurements, buoyancy and flotation, and fluid

More information

Ideal Gas Law. September 2, 2014

Ideal Gas Law. September 2, 2014 Ideal Gas Law Setember 2, 2014 Thermodynamics deals with internal transformations of the energy of a system and exchanges of energy between that system and its environment. A thermodynamic system refers

More information

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chater / Fluid Statics CHAPTER Fluid Statics FE-tye Exam Review Problems: Problems - to -9. (C) h (.6 98) (8.5.54) 96 6 Pa Hg. (D) gh 84. 9.8 4 44 76 Pa. (C) h h. 98. 8 Pa w atm x x water w.4 (A) H (.6

More information

Chapter 9 Exercise 9A

Chapter 9 Exercise 9A Chater 9 Exercise 9A Q. 1. 0. 1,000 = 0 kg/m Q. 2. 75 1,000 = 0.75 Q.. (i) 1 m has mass 1.6 1,000,000 = 1,600,000 grammes (ii) = 1,600 kg Density = 1,600 kg/m 1,600 1,000 = 1.6 Q.. Volume = 0.1 0.06 0.02

More information

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad Discussion Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad 2014-2015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance

More information

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 09 Free Surface Effect In the

More information

Chapter 1 Fundamentals

Chapter 1 Fundamentals Chater Fundamentals. Overview of Thermodynamics Industrial Revolution brought in large scale automation of many tedious tasks which were earlier being erformed through manual or animal labour. Inventors

More information

Eric G. Paterson. Spring 2005

Eric G. Paterson. Spring 2005 Eric G. Paterson Department of Mechanical and Nuclear Engineering Pennsylvania State University Spring 2005 Reading and Homework Read Chapter 3. Homework Set #2 has been posted. Due date: Friday 21 January.

More information

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2 Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

More information

CHAPTER 2 Pressure and Head

CHAPTER 2 Pressure and Head FLUID MECHANICS Gaza, Sep. 2012 CHAPTER 2 Pressure and Head Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce the concept of pressure. Prove it has a unique value at any particular elevation.

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering Shanghai Jiao Tong University

More information

Ch. 5: Distributed Forces

Ch. 5: Distributed Forces 234 5.0 Outline 234 Introduction 235 Center of Mass 236 Centroids (Line, Area, Volume) 241 Composite Bodies and Figures 257 Theorem of Pappus 265 Fluid Statics 272 5.0 Outline 5.0 Introduction Ch. 5: Distributed

More information

Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain

Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA PAGE NO.: 1 of 6 + Formula Sheet Equal marks for all questions. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will look

More information

CE MECHANICS OF FLUIDS

CE MECHANICS OF FLUIDS CE60 - MECHANICS OF FLUIDS (FOR III SEMESTER) UNIT II FLUID STATICS & KINEMATICS PREPARED BY R.SURYA, M.E Assistant Professor DEPARTMENT OF CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SRI VIDYA COLLEGE

More information

Fluid Dynamics. Type of Flows Continuity Equation Bernoulli Equation Steady Flow Energy Equation Applications of Bernoulli Equation

Fluid Dynamics. Type of Flows Continuity Equation Bernoulli Equation Steady Flow Energy Equation Applications of Bernoulli Equation Tye of Flows Continity Eqation Bernolli Eqation Steady Flow Energy Eqation Alications of Bernolli Eqation Flid Dynamics Streamlines Lines having the direction of the flid velocity Flids cannot cross a

More information

Fluid Mechanics. Forces on Fluid Elements. Fluid Elements - Definition:

Fluid Mechanics. Forces on Fluid Elements. Fluid Elements - Definition: Fluid Mechanics Chapter 2: Fluid Statics Lecture 3 Forces on Fluid Elements Fluid Elements - Definition: Fluid element can be defined as an infinitesimal region of the fluid continuum in isolation from

More information

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, ORK, ND THE FIRST L OF THERMODYNMIS 8 EXERISES Section 8. The First Law of Thermodynamics 5. INTERPRET e identify the system as the water in the insulated container. The roblem involves calculating

More information

Physics 4C Spring 2017 Test 1

Physics 4C Spring 2017 Test 1 Physics 4C Spring 017 Test 1 Name: April 19, 017 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must give your answer in terms of the variables

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 15 - Fluid Mechanics Thursday, March 24 th Chapter 15 - Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME

! =!#$% exerted by a fluid (liquid or gas) !#$ =!# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent

More information

Physics 211 Week 10. Statics: Walking the Plank (Solution)

Physics 211 Week 10. Statics: Walking the Plank (Solution) Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

R g. o p2. Lecture 2: Buoyancy, stability, convection and gravity waves

R g. o p2. Lecture 2: Buoyancy, stability, convection and gravity waves Lecture : Clarifications of lecture 1: Hydrostatic balance: Under static conditions, only gravity will work on the fluid. Why doesn't all the fluid contract to the ground? Pressure builds u and resists

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 9 Fluid Statics Part VI

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 9 Fluid Statics Part VI Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Fluid Statics Part VI Good morning, I welcome you all to this session of Fluid

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

Final Mock Exam PH 221-1D

Final Mock Exam PH 221-1D Final Mock Exam PH 221-1D April 18, 2015 You will have 2 hours to complete this exam. You must answer 8 questions to make a perfect score of 80. 1 Chapter Concept Summary Equations: Cutnell & Johnson

More information

Physical Sciences 2: Assignments for Oct Oct 31 Homework #7: Elasticity and Fluid Statics Due Tuesday, Oct 31, at 9:30AM

Physical Sciences 2: Assignments for Oct Oct 31 Homework #7: Elasticity and Fluid Statics Due Tuesday, Oct 31, at 9:30AM Physical Sciences 2: Assignments for Oct. 24 - Oct 31 Homework #7: Elasticity and Fluid Statics Due Tuesday, Oct 31, at 9:30AM After completing this homework, you should Be able to describe what is meant

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

More information

Phase transition. Asaf Pe er Background

Phase transition. Asaf Pe er Background Phase transition Asaf Pe er 1 November 18, 2013 1. Background A hase is a region of sace, throughout which all hysical roerties (density, magnetization, etc.) of a material (or thermodynamic system) are

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

Mixture Homogeneous Mixtures (air, sea water ) same composition, no chemical bond components are NOT distinguishable

Mixture Homogeneous Mixtures (air, sea water ) same composition, no chemical bond components are NOT distinguishable BASIC CONCEPTAND DEFINITIONS1 2 THERMODYNAMICS CHAPTER 2 Thermodynamic Concets Lecturer Axel GRONIEWSKY, PhD 11 th of February2019 Thermodynamics study of energy and its transformation describes macroscoic

More information

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) Test Midterm 1 F2013 MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:

More information

Physics 107 HOMEWORK ASSIGNMENT #9

Physics 107 HOMEWORK ASSIGNMENT #9 Physics 07 HOMEORK ASSIGNMENT #9 Cutnell & Johnson, 7 th edition Chapter : Problems 6, 8, 33, 40, 44 *6 A 58-kg skier is going down a slope oriented 35 above the horizontal. The area of each ski in contact

More information

df da df = force on one side of da due to pressure

df da df = force on one side of da due to pressure I. Review of Fundamental Fluid Mechanics and Thermodynamics 1. 1 Some fundamental aerodynamic variables htt://en.wikiedia.org/wiki/hurricane_ivan_(2004) 1) Pressure: the normal force er unit area exerted

More information

Fluid Mechanics-61341

Fluid Mechanics-61341 An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [2] Fluid Statics 1 Fluid Mechanics-2nd Semester 2010- [2] Fluid Statics Fluid Statics Problems Fluid statics refers to

More information

12.808: Some Physical Properties of Sea Water or, More than you ever wanted to know about the basic state variables of the ocean

12.808: Some Physical Properties of Sea Water or, More than you ever wanted to know about the basic state variables of the ocean 12.88: Some Physical Proerties of Sea Water or, More than you ever wanted to know about the basic state variables of the ocean Salinity Various salt constituents in 1 m 3 of seawater having (t, S) = (2,

More information

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;

More information

Formulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3

Formulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3 CE30 Test 1 Solution Key Date: 26 Sept. 2017 COVER PAGE Write your name on each sheet of paper that you hand in. Read all questions very carefully. If the problem statement is not clear, you should ask

More information

2.6 Force reacts with planar object in fluid

2.6 Force reacts with planar object in fluid 2.6 Force reacts with planar object in fluid Fluid surface Specific weight (γ) => Object sinks in fluid => C is center of gravity or Centroid => P is center of pressure (always under C) => x axis is cross

More information

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions... CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!

More information

The general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know that:

The general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know that: ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 2 Pressure This section will study the forces acting on or generated by fluids at rest. Objectives Introduce the concept

More information

PHYSICS 220 Lecture 16 Fluids Textbook Sections

PHYSICS 220 Lecture 16 Fluids Textbook Sections PHYSICS 220 Lecture 16 Fluids Textbook Sections 10.1-10.4 Lecture 16 Purdue University, Physics 220 1 States of Matter Fluids Solid Hold Volume Hold Shape Liquid Hold Volume Adapt Shape Gas Adapt Volume

More information

PHYSICS HYDROSTATICS FORM 5

PHYSICS HYDROSTATICS FORM 5 Pressure Pressure is defined as force per unit area. Pressure = Force Area Pressure = Newton (metre) 2 1 Pa = 1N/m 2 Which of the following exerts a greater pressure? A woman of mass 70kg stepping on your

More information

CH 10: PRESSURE, GRAVITY AND MOMENTS

CH 10: PRESSURE, GRAVITY AND MOMENTS CH 10: PRESSURE, GRAVITY AND MOMENTS Exercise 10.1: Page 104 1. Convert each of the following to kg: (i) 200 g (ii) 4 g (iii) 2 x 10 5 g (iv) 24 mg 2. Convert each of the following to m 3 : (i) 1 cm 3

More information

BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD

BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD BFC 10403 FLUID MECHANICS CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics 1.2 Thermodynamic Properties of a Fluid: Density, specific weight, specific gravity, viscocity (kelikatan)berat

More information

Physics 106 Lecture 13. Fluid Mechanics

Physics 106 Lecture 13. Fluid Mechanics Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle

More information

THE FIRST LAW OF THERMODYNAMICS

THE FIRST LAW OF THERMODYNAMICS THE FIRST LA OF THERMODYNAMIS 9 9 (a) IDENTIFY and SET UP: The ressure is constant and the volume increases (b) = d Figure 9 Since is constant, = d = ( ) The -diagram is sketched in Figure 9 The roblem

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Lecture 13 HYDRAULIC ACTUATORS[CONTINUED]

Lecture 13 HYDRAULIC ACTUATORS[CONTINUED] Lecture 1 HYDRAULIC ACTUATORS[CONTINUED] 1.5Acceleration and Deceleration of Cylinder Loads Cylinders are subjected to acceleration and deceleration during their oeration. Cylinders are decelerated to

More information

Physics 207 Lecture 18

Physics 207 Lecture 18 Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 80-00 A 6-79 B or A/B 34-6 C or B/C 9-33 marginal 9-8 D Physics 07: Lecture 8,

More information

A Model Answer for. Problem Set #4 FLUID DYNAMICS

A Model Answer for. Problem Set #4 FLUID DYNAMICS A Model Answer for Problem Set #4 FLUID DYNAMICS Problem. Some elocity measurements in a threedimensional incomressible flow field indicate that u = 6xy and = -4y z. There is some conflicting data for

More information

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised 10/13/01 Densities MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised

More information

Topic: Fluids PHYSICS 231

Topic: Fluids PHYSICS 231 Topic: Fluids PHYSICS 231 Key Concepts Density, Volume, Mass density as material property Pressure units, how to measure, direction Hydrostatic pressure in liquid on earth Buoyancy and Archimedes Principle

More information

P = ρ{ g a } + µ 2 V II. FLUID STATICS

P = ρ{ g a } + µ 2 V II. FLUID STATICS II. FLUID STATICS From a force analysis on a triangular fluid element at rest, the following three concepts are easily developed: For a continuous, hydrostatic, shear free fluid: 1. Pressure is constant

More information

1 Fluid Statics. 1.1 Fluid Properties. Fluid

1 Fluid Statics. 1.1 Fluid Properties. Fluid 1 Fluid Statics 1.1 Fluid Properties Fluid A fluid is a substance, which deforms when subjected to a force. A fluid can offer no permanent resistance to any force causing change of shape. Fluid flow under

More information

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chapter / Fluid Statics CHPTER Fluid Statics FE-type Eam Review Problems: Problems - to -9. (C). (D). (C).4 ().5 () The pressure can be calculated using: p = γ h were h is the height of mercury. p= γ h=

More information

AMME2261: Fluid Mechanics 1 Course Notes

AMME2261: Fluid Mechanics 1 Course Notes Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter.

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter. .4. Determination of the enthaly of solution of anhydrous and hydrous sodium acetate by anisothermal calorimeter, and the enthaly of melting of ice by isothermal heat flow calorimeter Theoretical background

More information

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook.

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook. Lecture Notes CHE 31 Fluid Mechanics (Fall 010) 9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook. Basics (pressure head, efficiency, working point, stability) Pumps

More information

PH1011 Tut 4: Forces, Momentum and Impulse

PH1011 Tut 4: Forces, Momentum and Impulse PH1011 Tut 4: Forces, Momentum and Impulse 1) [ A J86/II/8] When a body moves through a fluid, a retarding force due to turbulence may be experienced. In the case of a sphere of radius r moving with speed

More information

All questions are of equal value. No marks are subtracted for wrong answers.

All questions are of equal value. No marks are subtracted for wrong answers. (1:30 PM 4:30 PM) Page 1 of 6 All questions are of equal value. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will look

More information

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh Chater 10: Flow in Conduits By Dr Ali Jawarneh Hashemite University 1 Outline In this chater we will: Analyse the shear stress distribution across a ie section. Discuss and analyse the case of laminar

More information

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002 Notes on ressure coordinates Robert Lindsay Korty October 1, 2002 Obviously, it makes no difference whether the quasi-geostrohic equations are hrased in height coordinates (where x, y,, t are the indeendent

More information

Theory of turbomachinery. Chapter 1

Theory of turbomachinery. Chapter 1 Theory of turbomachinery Chater Introduction: Basic Princiles Take your choice of those that can best aid your action. (Shakeseare, Coriolanus) Introduction Definition Turbomachinery describes machines

More information

Lecture 8 Equilibrium and Elasticity

Lecture 8 Equilibrium and Elasticity Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6113 DEPARTMENT: CIVIL SUB.CODE/ NAME: CE6303/ MECHANICS OF FLUIDS SEMESTER: III UNIT-1 FLUID PROPERTIES TWO MARK QUESTIONS AND ANSWERS 1. Define fluid mechanics.(auc

More information

Phy 212: General Physics II. Daniel Bernoulli ( )

Phy 212: General Physics II. Daniel Bernoulli ( ) Phy 1: General Physics II Chapter 14: Fluids Lecture Notes Daniel Bernoulli (1700-178) Swiss merchant, doctor & mathematician Worked on: Vibrating strings Ocean tides Kinetic theory Demonstrated that as

More information

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one-, two-, or three-dimensional, and why. ii) Whether the flow

More information

Drag Force. Drag is a mechanical force generated when a solid moves through a fluid. Is Air fluid?

Drag Force. Drag is a mechanical force generated when a solid moves through a fluid. Is Air fluid? Feline Pesematology Drag Force Drag is a mechanical force generated when a solid moves through a fluid. Is Air fluid? Drag factors Does drag increase/decrease with 1. Density of fluid? 2. Velocity of the

More information

Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

More information

First law of thermodynamics (Jan 12, 2016) page 1/7. Here are some comments on the material in Thompkins Chapter 1

First law of thermodynamics (Jan 12, 2016) page 1/7. Here are some comments on the material in Thompkins Chapter 1 First law of thermodynamics (Jan 12, 2016) age 1/7 Here are some comments on the material in Thomkins Chater 1 1) Conservation of energy Adrian Thomkins (eq. 1.9) writes the first law as: du = d q d w

More information

Useful concepts associated with the Bernoulli equation. Dynamic

Useful concepts associated with the Bernoulli equation. Dynamic Useful concets associated with the Bernoulli equation - Static, Stagnation, and Dynamic Pressures Bernoulli eq. along a streamline + ρ v + γ z = constant (Unit of Pressure Static (Thermodynamic Dynamic

More information

Liquid water static energy page 1/8

Liquid water static energy page 1/8 Liquid water static energy age 1/8 1) Thermodynamics It s a good idea to work with thermodynamic variables that are conserved under a known set of conditions, since they can act as assive tracers and rovide

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.06 Fluid Dynamics, Spring 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.06 Fluid Dynamics, Spring 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.06 Fluid Dynamics, Spring 2013 Quiz 1 April 25, 2013 Instructions: Closed Book, no crib sheets, no Phones, no Laptops, no Ipads.

More information

The online of midterm-tests of Fluid Mechanics 1

The online of midterm-tests of Fluid Mechanics 1 The online of midterm-tests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.

More information