= Prob( gene i is selected in a typical lab) (1)

Size: px
Start display at page:

Download "= Prob( gene i is selected in a typical lab) (1)"

Transcription

1 Supplementary Document This supplementary document is for: Reproducibility Probability Score: Incorporating Measurement Variability across Laboratories for Gene Selection (006). Lin G, He X, Ji H, Shi L, Davis R and Zhong S, Nature Biotechnology. Definition of the RPS The RPS (Reproducibility Probability Score) as developed to identify differentially expressed genes. In many aspects, the RPS behaves lie the False Discovery Rate (FDR) or the p-value in such a ay that it is correlated ith ho strong the evidence for differential expression is in the current study. Hoever, the RPS taes into consideration the variability of the expression measurement across different laboratories. The value of the RPS for a gene ill be adversely affected if the expression measurement for this gene is highly variable (not consistent) across laboratories. The exact lab-to-lab variability for a given gene is not non, and may vary from experiment to experiment. The RPS procedure estimates the gene specific measurement variability across laboratories from the data in a given experiment together ith the reference data from the MAQC proect. The computation of RPS does not require the biological samples in this given experiment to be the same as those in the reference data. The RPS for gene i is defined as the probability that gene i ill be selected if the experiment is repeated in a typical laboratory: RPSi = Prob( gene i is selected in a typical lab) () Here, a typical laboratory is a hypothetical laboratory that is equally qualified as the current laboratory here the actual experiment is conducted. A laboratory is qualified if it follos the same protocol to study the same biological materials as the original laboratory. The RPS is a mathematical evaluation of the reproducibility of a gene selection result across qualified laboratories. For simplicity of annotation, hereafter e ill suppress the subscript i. To compute

2 the RPS for a gene, the user needs to choose a gene selection procedure as ell as the threshold accompanying that procedure. For example, if the user chooses to select genes ith FDR<0. and FC (fold-change)>3, then RPS = E { I[ FDR < 0. AND FC > 3]}, () here denotes a typical laboratory, E {} i is the expectation over, I[] i is an indicator function taing values 0 or, and FDR and FC are the FDR and the FC computed from the data in laboratory. Usually a microarray experiment is performed only in a single laboratory. We use =0 (laboratory 0) to denote the laboratory here the real microarray data are generated. For all other laboratories, >0, the data are generally unavailable. It is orth noticing that hen there is a perfect correlation of the inter-laboratory measurements, Equation () reduces to: RPS = I[ FDR0 < 0. AND FC0 > 3] (3), hich is identical to applying the user chosen gene selection procedure and threshold to the data from the real laboratory (laboratory 0). We use Θ to denote the metric(s) of user chosen gene selection procedure and θ to denote the threshold(s) for Θ. For example, Equation () can be reritten as RPS = E I FDR > AND FC > {[ 0. 3]} = E {[ I Θ > θ ]} (4), FDR 0. here Θ= and θ = (5). FC 3 Equation (4) is equivalent to Equation (), but easier to use in practice. Θ> θ in Equation 4 broadly represents any gene selection procedures, and users can choose to plug in FDR, MAANOVA or any other procedure. Unless the context specifies otherise, throughout the paper e plug in FDR > 0. AND FC > 3. We ill compare some gene selection procedures in the Results section. Throughout this document, e use FC>λ to denote {FC> λ and FC< / λ, for any λ >}.

3 To compute the RPS, e use simulation to mimic the gene expression measurements across laboratories. Recall that laboratory 0 denotes the lab in hich the actual microarray data is generated. Suppose that to biological samples, A and B, are studied at this laboratory. For each sample, e utilize to sets of data to simulate the expression measurements in other laboratories. These to sets of data are: ) the actual expression data of this gene in laboratory 0 for samples A and B. ) ρ : the inter-laboratory correlation of expression measurements for this gene. The correlation ρ is not sample dependent, i.e. ρ is gene specific but not sample specific inter-laboratory correlation of the expression measurements. We estimate ρ from a mixed-effects model using reference data as described in the Methods section. The simulation procedure is also given in the Methods section. With the simulated data, the user chosen gene selection procedure Θ> θ can be applied to select genes in every simulated laboratory. From Equation (4), the RPS for a gene can be simply estimated by the average number of times that this gene satisfies the gene selection criteria over all simulated laboratories (Figure S). Statistical procedure for computing RPS Step: modeling inter-laboratory correlation from reference data. This procedure estimates a sample independent correlation of microarray measurements beteen any to typical laboratories. To achieve this estimation, e developed a mixed-effects statistical model []. Let Y ir denote the r-th replicate of the expression measurement for gene in laboratory i on sample. Before fitting the mixed-effects model, Y ir should be properly preprocessed. In our preprocessing, e log transformed the normalized expression data. For

4 simplicity, e suppress gene index and use Y hereafter. For each gene, e fit a mixed-effects model: Y = μ + L + S + ε (6), ir i ir ir here L i is the effect of the i th laboratory, and i =,,, n L. The notion of laboratory here includes other unspecified factors that change from laboratory to laboratory. For example, every laboratory in the MAQC proect had a different experimenter. The L is treated as a random effect. S is the effect of the i th sample, and =,,, n. The S is treated as a random effect as ell. S μ is the offset constant. The folloing assumptions are made: L ~ N(0, σ ) =,,,, (7) i L S ~ N(0, σ ) =,,,, (8) ir ~ N(0, ε ) s ε σ i =,,, n, =,,, (9) L, S and i n L L n S ε ir are independent for any i and. n S Based on Model (6), the correlation ρ for gene beteen any to labs can be ritten as: cov( Y, Y ) σ ρ = = var( Y )*var( ) σ + σ + σ r r s r Yr L s ε (0) The correlation ρ beteen laboratories is gene-specific. I.e. for every gene, there is a corresponding correlation ρ. simplicity of notation. is suppressed in Equation (0) for ρ represents the correlation beteen expression measurements in any to typical labs on a hypothetical sample. Here e made an assumption that the reference data comes from random biological samples. In the RPS softare pacage, e pre-computed and stored the ρ s for the five commercial microarray platforms that participated in the MAQC study. RPS softare also provides a function to compute ρ s for other reference data.

5 Step: Simulation of ne data. Let denote the ne laboratory oring on the ne samples A and B. We ill simulate the gene expression measurements in K hypothetical labs for the same samples A and B. To do the simulation, e model the expression measurements of a gene on the same sample in any to labs ith a bivariate normal distribution: Y u ~ N, Y u ρσ 0 r σ ρσ σ r (), here Y 0 r and Y r are the microarray measurements of sample from laboratory (real) and L (imaginary), respectively. r is the index for replicates. L0 ρ is the same as in Equation 0. This model entails the folloing conditional distribution: Y ( Y = y )~ N( u, σ ) r 0r 0r *0 *0 (), here and are the conditional mean and conditional variance, u *0 σ *0 respectively. Moreover, u = u+ y u) (3) *0 ρ( 0 r The observed average expression among replicates in is a natural estimate of the u and the observed sample variance in follos that: is an estimate of σ. And it σ ( ρ ) σ *0 = (4) The ρ derived from Equation (0) is used as the estimate of ρ in (4). Let R denote the number of replicates in laboratory L0 on sample, i.e r =,,, R. For each sample, e first dra a replicate from the real lab. For each dran replicate e then dra a corresponding replicate in the imaginary laboratory L using the conditional distribution (). This step is repeated for every sample and for K times to simulate the data from K imaginary

6 labs. The simulated data depends on the gene specific cross laboratory correlation ρ learnt from the reference data. It also depends on the mean and variance of the replicates in the real laboratory. Step 3: Assigning reproducibility probability score. Recall that the metric RPS (Reproducibility Probability Score) for gene defined as: RPS = Prob( gene is selected in a typical lab) is This is equivalent to RPS = Prob(gene being selected by comparing the same samples from a randomly chosen lab, given the user chosen gene selection criteria ) And therefore RPS K I( gene is selected in Lab L ) (5), K + = 0 here I () i is an indicator function. is the real laboratory. L (=,,K) are K simulated imaginary laboratories. Here e use empirical frequency to approximate the RPS. For example, if the gene selection criteria is simply selecting any genes ith p-values smaller or equal to, then formula (5) P c becomes: RPS K + K = 0 I( p P ), here is the p-value calculated from the c p th simulated laboratory, and L 0. p 0 is the p-value calculated from the real laboratory The statistical procedure above assigns a RPS to each gene. Genes ith higher RPSs are more liely to be reproduced by the same study in other labs. Reference:. Pinheiro, J.B., DM, Mixed-Effects Models in S and S-PLUS. 000: Springer.

7 Figure S: Flo chart for the computation of the RPS for every probe(set). The MAQC data and the Ne experiment data represent data from completely different laboratories and different samples. For each gene: MAQC data Model signal (Y), labs (L i ) and samples (S ) Y = μ + L + S + ε ir i ir Compute inter-lab correlation ρ σ ( σ + σ + ) = s L s ρ σ ε Ne experiment data Simulate hypothetical lab data for each sample K times RPS = E{ prob( gene i is selected in a typical lab)} K I( gene i is selected in simulated Lab L ) + K = 0

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

STATC141 Spring 2005 The materials are from Pairwise Sequence Alignment by Robert Giegerich and David Wheeler

STATC141 Spring 2005 The materials are from Pairwise Sequence Alignment by Robert Giegerich and David Wheeler STATC141 Spring 2005 The materials are from Pairise Sequence Alignment by Robert Giegerich and David Wheeler Lecture 6, 02/08/05 The analysis of multiple DNA or protein sequences (I) Sequence similarity

More information

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum 1997 19 CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION 3.0. Introduction

More information

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment Enhancing Generalization Capability of SVM Classifiers ith Feature Weight Adjustment Xizhao Wang and Qiang He College of Mathematics and Computer Science, Hebei University, Baoding 07002, Hebei, China

More information

UNCERTAINTY SCOPE OF THE FORCE CALIBRATION MACHINES. A. Sawla Physikalisch-Technische Bundesanstalt Bundesallee 100, D Braunschweig, Germany

UNCERTAINTY SCOPE OF THE FORCE CALIBRATION MACHINES. A. Sawla Physikalisch-Technische Bundesanstalt Bundesallee 100, D Braunschweig, Germany Measurement - Supports Science - Improves Technology - Protects Environment... and Provides Employment - No and in the Future Vienna, AUSTRIA, 000, September 5-8 UNCERTAINTY SCOPE OF THE FORCE CALIBRATION

More information

Minimizing and maximizing compressor and turbine work respectively

Minimizing and maximizing compressor and turbine work respectively Minimizing and maximizing compressor and turbine ork respectively Reversible steady-flo ork In Chapter 3, Work Done during a rocess as found to be W b dv Work Done during a rocess It depends on the path

More information

Bloom Filters and Locality-Sensitive Hashing

Bloom Filters and Locality-Sensitive Hashing Randomized Algorithms, Summer 2016 Bloom Filters and Locality-Sensitive Hashing Instructor: Thomas Kesselheim and Kurt Mehlhorn 1 Notation Lecture 4 (6 pages) When e talk about the probability of an event,

More information

Minimize Cost of Materials

Minimize Cost of Materials Question 1: Ho do you find the optimal dimensions of a product? The size and shape of a product influences its functionality as ell as the cost to construct the product. If the dimensions of a product

More information

Econ 201: Problem Set 3 Answers

Econ 201: Problem Set 3 Answers Econ 20: Problem Set 3 Ansers Instructor: Alexandre Sollaci T.A.: Ryan Hughes Winter 208 Question a) The firm s fixed cost is F C = a and variable costs are T V Cq) = 2 bq2. b) As seen in class, the optimal

More information

MMSE Equalizer Design

MMSE Equalizer Design MMSE Equalizer Design Phil Schniter March 6, 2008 [k] a[m] P a [k] g[k] m[k] h[k] + ṽ[k] q[k] y [k] P y[m] For a trivial channel (i.e., h[k] = δ[k]), e kno that the use of square-root raisedcosine (SRRC)

More information

1. Suppose preferences are represented by the Cobb-Douglas utility function, u(x1,x2) = Ax 1 a x 2

1. Suppose preferences are represented by the Cobb-Douglas utility function, u(x1,x2) = Ax 1 a x 2 Additional questions for chapter 7 1. Suppose preferences are represented by the Cobb-Douglas utility function ux1x2 = Ax 1 a x 2 1-a 0 < a < 1 &A > 0. Assuming an interior solution solve for the Marshallian

More information

Fundamentals of DC Testing

Fundamentals of DC Testing Fundamentals of DC Testing Aether Lee erigy Japan Abstract n the beginning of this lecture, Ohm s la, hich is the most important electric la regarding DC testing, ill be revieed. Then, in the second section,

More information

Algebra II Solutions

Algebra II Solutions 202 High School Math Contest 6 Algebra II Eam 2 Lenoir-Rhyne University Donald and Helen Schort School of Mathematics and Computing Sciences Algebra II Solutions This eam has been prepared by the folloing

More information

Announcements Wednesday, September 06

Announcements Wednesday, September 06 Announcements Wednesday, September 06 WeBWorK due on Wednesday at 11:59pm. The quiz on Friday coers through 1.2 (last eek s material). My office is Skiles 244 and my office hours are Monday, 1 3pm and

More information

Multilayer Neural Networks

Multilayer Neural Networks Pattern Recognition Lecture 4 Multilayer Neural Netors Prof. Daniel Yeung School of Computer Science and Engineering South China University of Technology Lec4: Multilayer Neural Netors Outline Introduction

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

6 Price equation and Selection in quantitative characters

6 Price equation and Selection in quantitative characters 6 Price equation and Selection in quantitative characters There are several levels of population description. At the most fundamental level, e describe all genotypes represented in the population. With

More information

Chapter 3. Systems of Linear Equations: Geometry

Chapter 3. Systems of Linear Equations: Geometry Chapter 3 Systems of Linear Equations: Geometry Motiation We ant to think about the algebra in linear algebra (systems of equations and their solution sets) in terms of geometry (points, lines, planes,

More information

arxiv: v2 [physics.gen-ph] 28 Oct 2017

arxiv: v2 [physics.gen-ph] 28 Oct 2017 A CHART FOR THE ENERGY LEVELS OF THE SQUARE QUANTUM WELL arxiv:1610.04468v [physics.gen-ph] 8 Oct 017 M. CHIANI Abstract. A chart for the quantum mechanics of a particle of mass m in a one-dimensional

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search IR models: Vector Space Model IR Models Set Theoretic Classic Models Fuzzy Extended Boolean U s e r T a s k Retrieval: Adhoc Filtering Brosing boolean vector probabilistic

More information

Modèles stochastiques II

Modèles stochastiques II Modèles stochastiques II INFO 154 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 1 http://ulbacbe/di Modéles stochastiques II p1/50 The basics of statistics Statistics starts ith

More information

Pareto-Improving Congestion Pricing on General Transportation Networks

Pareto-Improving Congestion Pricing on General Transportation Networks Transportation Seminar at University of South Florida, 02/06/2009 Pareto-Improving Congestion Pricing on General Transportation Netorks Yafeng Yin Transportation Research Center Department of Civil and

More information

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data DEGseq: an R package for identifying differentially expressed genes from RNA-seq data Likun Wang Zhixing Feng i Wang iaowo Wang * and uegong Zhang * MOE Key Laboratory of Bioinformatics and Bioinformatics

More information

5 Quantum Wells. 1. Use a Multimeter to test the resistance of your laser; Record the resistance for both polarities.

5 Quantum Wells. 1. Use a Multimeter to test the resistance of your laser; Record the resistance for both polarities. Measurement Lab 0: Resistance The Diode laser is basically a diode junction. Same as all the other semiconductor diode junctions, e should be able to see difference in resistance for different polarities.

More information

Science Degree in Statistics at Iowa State College, Ames, Iowa in INTRODUCTION

Science Degree in Statistics at Iowa State College, Ames, Iowa in INTRODUCTION SEQUENTIAL SAMPLING OF INSECT POPULATIONSl By. G. H. IVES2 Mr.. G. H. Ives obtained his B.S.A. degree at the University of Manitoba in 1951 majoring in Entomology. He thm proceeded to a Masters of Science

More information

CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS

CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS INTRODUCTION David D. Bennink, Center for NDE Anna L. Pate, Engineering Science and Mechanics Ioa State University Ames, Ioa 50011 In any ultrasonic

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

Elements of Economic Analysis II Lecture VII: Equilibrium in a Competitive Market

Elements of Economic Analysis II Lecture VII: Equilibrium in a Competitive Market Elements of Economic Analysis II Lecture VII: Equilibrium in a Competitive Market Kai Hao Yang 10/31/2017 1 Partial Equilibrium in a Competitive Market In the previous lecture, e derived the aggregate

More information

The Dot Product

The Dot Product The Dot Product 1-9-017 If = ( 1,, 3 ) and = ( 1,, 3 ) are ectors, the dot product of and is defined algebraically as = 1 1 + + 3 3. Example. (a) Compute the dot product (,3, 7) ( 3,,0). (b) Compute the

More information

SUPPORTING INFORMATION. Line Roughness. in Lamellae-Forming Block Copolymer Films

SUPPORTING INFORMATION. Line Roughness. in Lamellae-Forming Block Copolymer Films SUPPORTING INFORMATION. Line Roughness in Lamellae-Forming Bloc Copolymer Films Ricardo Ruiz *, Lei Wan, Rene Lopez, Thomas R. Albrecht HGST, a Western Digital Company, San Jose, CA 9535, United States

More information

On A Comparison between Two Measures of Spatial Association

On A Comparison between Two Measures of Spatial Association Journal of Modern Applied Statistical Methods Volume 9 Issue Article 3 5--00 On A Comparison beteen To Measures of Spatial Association Faisal G. Khamis Al-Zaytoonah University of Jordan, faisal_alshamari@yahoo.com

More information

Regression coefficients may even have a different sign from the expected.

Regression coefficients may even have a different sign from the expected. Multicolinearity Diagnostics : Some of the diagnostics e have just discussed are sensitive to multicolinearity. For example, e kno that ith multicolinearity, additions and deletions of data cause shifts

More information

First Order Differential Equations

First Order Differential Equations 2 First Order Differential Equations We have seen ho to solve simple first order differential equations using Simulin. In particular e have solved initial value problems for the equations dy dt dy dt dx

More information

Homework Set 2 Solutions

Homework Set 2 Solutions MATH 667-010 Introduction to Mathematical Finance Prof. D. A. Edards Due: Feb. 28, 2018 Homeork Set 2 Solutions 1. Consider the ruin problem. Suppose that a gambler starts ith ealth, and plays a game here

More information

A Generalization of a result of Catlin: 2-factors in line graphs

A Generalization of a result of Catlin: 2-factors in line graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 72(2) (2018), Pages 164 184 A Generalization of a result of Catlin: 2-factors in line graphs Ronald J. Gould Emory University Atlanta, Georgia U.S.A. rg@mathcs.emory.edu

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 013 Population genetics Outline of lectures 3-6 1. We ant to kno hat theory says about the reproduction of genotypes in a population. This results

More information

Max-Margin Ratio Machine

Max-Margin Ratio Machine JMLR: Workshop and Conference Proceedings 25:1 13, 2012 Asian Conference on Machine Learning Max-Margin Ratio Machine Suicheng Gu and Yuhong Guo Department of Computer and Information Sciences Temple University,

More information

Web Appendix for: On-the-Job Search and. Precautionary Savings

Web Appendix for: On-the-Job Search and. Precautionary Savings Web Appendix for: On-the-Job Search and Precautionary Savings Jeremy Lise University College London and IFS July 212 B Web Appendix (Not for Publication) B.1 Additional IID Income Uncertainty This section

More information

Lecture 3 Frequency Moments, Heavy Hitters

Lecture 3 Frequency Moments, Heavy Hitters COMS E6998-9: Algorithmic Techniques for Massive Data Sep 15, 2015 Lecture 3 Frequency Moments, Heavy Hitters Instructor: Alex Andoni Scribes: Daniel Alabi, Wangda Zhang 1 Introduction This lecture is

More information

Group-invariant solutions of nonlinear elastodynamic problems of plates and shells *

Group-invariant solutions of nonlinear elastodynamic problems of plates and shells * Group-invariant solutions of nonlinear elastodynamic problems of plates and shells * V. A. Dzhupanov, V. M. Vassilev, P. A. Dzhondzhorov Institute of mechanics, Bulgarian Academy of Sciences, Acad. G.

More information

A Modified ν-sv Method For Simplified Regression A. Shilton M. Palaniswami

A Modified ν-sv Method For Simplified Regression A. Shilton M. Palaniswami A Modified ν-sv Method For Simplified Regression A Shilton apsh@eemuozau), M Palanisami sami@eemuozau) Department of Electrical and Electronic Engineering, University of Melbourne, Victoria - 3 Australia

More information

3 - Vector Spaces Definition vector space linear space u, v,

3 - Vector Spaces Definition vector space linear space u, v, 3 - Vector Spaces Vectors in R and R 3 are essentially matrices. They can be vieed either as column vectors (matrices of size and 3, respectively) or ro vectors ( and 3 matrices). The addition and scalar

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

CALCULATION OF STEAM AND WATER RELATIVE PERMEABILITIES USING FIELD PRODUCTION DATA, WITH LABORATORY VERIFICATION

CALCULATION OF STEAM AND WATER RELATIVE PERMEABILITIES USING FIELD PRODUCTION DATA, WITH LABORATORY VERIFICATION CALCULATION OF STEAM AND WATER RELATIVE PERMEABILITIES USING FIELD PRODUCTION DATA, WITH LABORATORY VERIFICATION Jericho L. P. Reyes, Chih-Ying Chen, Keen Li and Roland N. Horne Stanford Geothermal Program,

More information

Lesson 11. Functional Genomics I: Microarray Analysis

Lesson 11. Functional Genomics I: Microarray Analysis Lesson 11 Functional Genomics I: Microarray Analysis Transcription of DNA and translation of RNA vary with biological conditions 3 kinds of microarray platforms Spotted Array - 2 color - Pat Brown (Stanford)

More information

Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields.

Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields. Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields. Mathieu Génois, Pascal Hersen, Sylvain Courrech Du Pont, Guillaume Grégoire To cite this version:

More information

Minimax strategy for prediction with expert advice under stochastic assumptions

Minimax strategy for prediction with expert advice under stochastic assumptions Minimax strategy for prediction ith expert advice under stochastic assumptions Wojciech Kotłosi Poznań University of Technology, Poland otlosi@cs.put.poznan.pl Abstract We consider the setting of prediction

More information

Principal Components Analysis (PCA) and Singular Value Decomposition (SVD) with applications to Microarrays

Principal Components Analysis (PCA) and Singular Value Decomposition (SVD) with applications to Microarrays Principal Components Analysis (PCA) and Singular Value Decomposition (SVD) with applications to Microarrays Prof. Tesler Math 283 Fall 2015 Prof. Tesler Principal Components Analysis Math 283 / Fall 2015

More information

The Application of Liquid State Machines in Robot Path Planning

The Application of Liquid State Machines in Robot Path Planning 82 JOURNAL OF COMPUTERS, VOL. 4, NO., NOVEMBER 2009 The Application of Liquid State Machines in Robot Path Planning Zhang Yanduo School of Computer Science and Engineering, Wuhan Institute of Technology,

More information

Logics for Bisimulation and Divergence

Logics for Bisimulation and Divergence Logics for Bisimulation and Divergence Xinxin Liu, Tingting Yu (B), and Wenhui Zhang State Key Laboratory of Computer Science, Institute of Softare, CAS, University of Chinese Academy of Sciences, Beijing,

More information

MÖNCH TYPE RESULTS FOR MAPS WITH WEAKLY SEQUENTIALLY CLOSED GRAPHS

MÖNCH TYPE RESULTS FOR MAPS WITH WEAKLY SEQUENTIALLY CLOSED GRAPHS Dynamic Systems and Applications 24 (2015) 129--134 MÖNCH TYPE RESULTS FOR MAPS WITH WEAKLY SEQUENTIALLY CLOSED GRAPHS DONAL O REGAN School of Mathematics, Statistics and Applied Mathematics National University

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Optimum Relay Position for Differential Amplify-and-Forward Cooperative Communications

Optimum Relay Position for Differential Amplify-and-Forward Cooperative Communications Optimum Relay Position for Differential Amplify-and-Forard Cooperative Communications Kazunori Hayashi #1, Kengo Shirai #, Thanongsak Himsoon 1, W Pam Siriongpairat, Ahmed K Sadek 3,KJRayLiu 4, and Hideaki

More information

Simultaneous Inversion of Pre-Stack Seismic Data

Simultaneous Inversion of Pre-Stack Seismic Data 6 th International Conference & Exposition on Petroleum Geophysics Kolkata 006 Summary Simultaneous Inversion of Pre-Stack Seismic Data Brian H. Russell, Daniel P. Hampson, Brad Bankhead Hampson-Russell

More information

Latent Dirichlet Allocation: Stability and Applications to Studies of User-Generated Content

Latent Dirichlet Allocation: Stability and Applications to Studies of User-Generated Content Latent Dirichlet Allocation: Stability and Applications to Studies of User-Generated Content Sergei Koltcov ul Soyuza Pechatniov, 27 St Petersburg, Russia soltsov@hseru Olessia Koltsova ul Soyuza Pechatniov,

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

IDR: Irreproducible discovery rate

IDR: Irreproducible discovery rate IDR: Irreproducible discovery rate Sündüz Keleş Department of Statistics Department of Biostatistics and Medical Informatics University of Wisconsin, Madison April 18, 2017 Stat 877 (Spring 17) 04/11-04/18

More information

Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, Metric Spaces

Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, Metric Spaces Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, 2013 1 Metric Spaces Let X be an arbitrary set. A function d : X X R is called a metric if it satisfies the folloing

More information

Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters.

Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters. Camera Calibration (Trucco, Chapter 6) What is the goal of camera calibration? -Toproduce an estimate of the extrinsic and intrinsic camera parameters. Procedure -Given the correspondences beteen a set

More information

Complex Numbers and the Complex Exponential

Complex Numbers and the Complex Exponential Complex Numbers and the Complex Exponential φ (2+i) i 2 θ φ 2+i θ 1 2 1. Complex numbers The equation x 2 + 1 0 has no solutions, because for any real number x the square x 2 is nonnegative, and so x 2

More information

Bucket handles and Solenoids Notes by Carl Eberhart, March 2004

Bucket handles and Solenoids Notes by Carl Eberhart, March 2004 Bucket handles and Solenoids Notes by Carl Eberhart, March 004 1. Introduction A continuum is a nonempty, compact, connected metric space. A nonempty compact connected subspace of a continuum X is called

More information

INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 6-7: MODELLING WEALTH DISTRIBUTION

INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 6-7: MODELLING WEALTH DISTRIBUTION January 004 INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 6-7: MODELLING WEALTH DISTRIBUTION Project in Geometry and Physics, Department of Mathematics University of California/San Diego, La Jolla, CA

More information

Validating Collective Classification Using Cohorts

Validating Collective Classification Using Cohorts Validating Collective Classification Using Cohorts Eric Bax, James Li, Abdullah Sonmez, and Zehra Cataltepe Abstract Many netorks gro by adding successive cohorts layers of nodes. Often, the nodes in each

More information

Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories

Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories //5 Neural Netors Associative memory Lecture Associative memories Associative memories The massively parallel models of associative or content associative memory have been developed. Some of these models

More information

Web Search and Text Mining. Lecture 16: Topics and Communities

Web Search and Text Mining. Lecture 16: Topics and Communities Web Search and Tet Mining Lecture 16: Topics and Communities Outline Latent Dirichlet Allocation (LDA) Graphical models for social netorks Eploration, discovery, and query-ansering in the contet of the

More information

The decrease of the critical current of coated conductors when a perpendicular magnetic field is applied : a Josephson effect point of view

The decrease of the critical current of coated conductors when a perpendicular magnetic field is applied : a Josephson effect point of view Superconductivity Centennial Conference The decrease of the critical current of coated conductors hen a perpendicular magnetic field is applied : a Josephson effect point of vie C. McLoughlin a,d, Y. Thimont

More information

JJMIE Jordan Journal of Mechanical and Industrial Engineering

JJMIE Jordan Journal of Mechanical and Industrial Engineering JJMIE Jordan Journal of Mechanical and Industrial Engineering Volume 2, Number 4, December. 2008 ISSN 995-6665 Pages 75-82 Fuzzy Genetic Prioritization in Multi-Criteria Decision Problems Ahmed Farouk

More information

Announcements Wednesday, September 06. WeBWorK due today at 11:59pm. The quiz on Friday covers through Section 1.2 (last weeks material)

Announcements Wednesday, September 06. WeBWorK due today at 11:59pm. The quiz on Friday covers through Section 1.2 (last weeks material) Announcements Wednesday, September 06 WeBWorK due today at 11:59pm. The quiz on Friday coers through Section 1.2 (last eeks material) Announcements Wednesday, September 06 Good references about applications(introductions

More information

Lecture 7 April 16, 2018

Lecture 7 April 16, 2018 Stats 300C: Theory of Statistics Spring 2018 Lecture 7 April 16, 2018 Prof. Emmanuel Candes Scribe: Feng Ruan; Edited by: Rina Friedberg, Junjie Zhu 1 Outline Agenda: 1. False Discovery Rate (FDR) 2. Properties

More information

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7.

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7. Preliminaries Linear models: the perceptron and closest centroid algorithms Chapter 1, 7 Definition: The Euclidean dot product beteen to vectors is the expression d T x = i x i The dot product is also

More information

An Improved Driving Scheme in an Electrophoretic Display

An Improved Driving Scheme in an Electrophoretic Display International Journal of Engineering and Technology Volume 3 No. 4, April, 2013 An Improved Driving Scheme in an Electrophoretic Display Pengfei Bai 1, Zichuan Yi 1, Guofu Zhou 1,2 1 Electronic Paper Displays

More information

Homework 6 Solutions

Homework 6 Solutions Homeork 6 Solutions Igor Yanovsky (Math 151B TA) Section 114, Problem 1: For the boundary-value problem y (y ) y + log x, 1 x, y(1) 0, y() log, (1) rite the nonlinear system and formulas for Neton s method

More information

Why do Golf Balls have Dimples on Their Surfaces?

Why do Golf Balls have Dimples on Their Surfaces? Name: Partner(s): 1101 Section: Desk # Date: Why do Golf Balls have Dimples on Their Surfaces? Purpose: To study the drag force on objects ith different surfaces, ith the help of a ind tunnel. Overvie

More information

AGEC 661 Note Fourteen

AGEC 661 Note Fourteen AGEC 661 Note Fourteen Ximing Wu 1 Selection bias 1.1 Heckman s two-step model Consider the model in Heckman (1979) Y i = X iβ + ε i, D i = I {Z iγ + η i > 0}. For a random sample from the population,

More information

Effect of Insertion Devices. Effect of IDs on beam dynamics

Effect of Insertion Devices. Effect of IDs on beam dynamics Effect of Insertion Devices The IDs are normally made of dipole magnets ith alternating dipole fields so that the orbit outside the device is un-altered. A simple planer undulator ith vertical sinusoidal

More information

Optimal Search of Developed Class of Modified Ratio Estimators for Estimation of Population Variance

Optimal Search of Developed Class of Modified Ratio Estimators for Estimation of Population Variance American Journal of Operational Research 05 5(4): 8-95 DOI: 0.593/j.ajor.050504.0 Optimal earch of Developed Class of Modified Ratio Estimators for Estimation of Population Variance Alok Kumar hukla heela

More information

Electromagnetics I Exam No. 3 December 1, 2003 Solution

Electromagnetics I Exam No. 3 December 1, 2003 Solution Electroagnetics Ea No. 3 Deceber 1, 2003 Solution Please read the ea carefull. Solve the folloing 4 probles. Each proble is 1/4 of the grade. To receive full credit, ou ust sho all ork. f cannot understand

More information

Multi-level selection and the issue of environmental homogeneity

Multi-level selection and the issue of environmental homogeneity Multi-level selection and the issue of environmental homogeneity Final version to be published in Biology & Philosophy Ciprian Jeler (Department of Interdisciplinary Research Humanities and Social Sciences,

More information

Supplementary Appendix to Dynamic Asset Price Jumps: the Performance of High Frequency Tests and Measures, and the Robustness of Inference

Supplementary Appendix to Dynamic Asset Price Jumps: the Performance of High Frequency Tests and Measures, and the Robustness of Inference Supplementary Appendix to Dynamic Asset Price Jumps: the Performance of High Frequency Tests and Measures, and the Robustness of Inference Worapree Maneesoonthorn, Gael M. Martin, Catherine S. Forbes August

More information

Lecture #05. Methods for local Flow Velocity Measurements. AerE 545 class notes

Lecture #05. Methods for local Flow Velocity Measurements. AerE 545 class notes AerE 545 class notes Lecture #05 Methods for local Flo Velocity Measurements Hui Hu Department of Aerospace Engineering, Ioa State University Ames, Ioa 50011, U.S.A Methods to Measure Local Flo Velocity

More information

EFFECT OF END CONNECTION RESTRAINTS ON THE STABILITY OF STEEL BEAMS IN BENDING

EFFECT OF END CONNECTION RESTRAINTS ON THE STABILITY OF STEEL BEAMS IN BENDING Advanced Steel Construction Vol. 4, No. 3, pp. 43-59 (008) 43 EFFECT OF END CONNECTION RESTRAINTS ON THE STABILITY OF STEEL BEAS IN BENDING S. Amara,*, D.E. Kerdal and J.P. Jaspart 3 Department of Civil

More information

WEIGHTED MARKOV-BERNSTEIN INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

WEIGHTED MARKOV-BERNSTEIN INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE WEIGHTED MARKOV-BERNSTEIN INEQUALITIES FOR ENTIRE FUNTIONS OF EXPONENTIAL TYPE DORON S. LUBINSKY A. We prove eighted Markov-Bernstein inequalities of the form f x p x dx σ + p f x p x dx Here satisfies

More information

N-bit Parity Neural Networks with minimum number of threshold neurons

N-bit Parity Neural Networks with minimum number of threshold neurons Open Eng. 2016; 6:309 313 Research Article Open Access Marat Z. Arslanov*, Zhazira E. Amirgalieva, and Chingiz A. Kenshimov N-bit Parity Neural Netorks ith minimum number of threshold neurons DOI 10.1515/eng-2016-0037

More information

Computation of turbulent natural convection at vertical walls using new wall functions

Computation of turbulent natural convection at vertical walls using new wall functions Computation of turbulent natural convection at vertical alls using ne all functions M. Hölling, H. Herig Institute of Thermo-Fluid Dynamics Hamburg University of Technology Denickestraße 17, 2173 Hamburg,

More information

Linear Models and Empirical Bayes Methods for. Assessing Differential Expression in Microarray Experiments

Linear Models and Empirical Bayes Methods for. Assessing Differential Expression in Microarray Experiments Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments by Gordon K. Smyth (as interpreted by Aaron J. Baraff) STAT 572 Intro Talk April 10, 2014 Microarray

More information

A Simple, Graphical Procedure for Comparing Multiple Treatment Effects

A Simple, Graphical Procedure for Comparing Multiple Treatment Effects A Simple, Graphical Procedure for Comparing Multiple Treatment Effects Brennan S. Thompson and Matthew D. Webb May 15, 2015 > Abstract In this paper, we utilize a new graphical

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is donloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Amplify-and-forard based to-ay relay ARQ system ith relay combination Author(s) Luo, Sheng; Teh, Kah Chan

More information

Measure of Distance and Similarity for Single Valued Neutrosophic Sets with Application in Multi-attribute

Measure of Distance and Similarity for Single Valued Neutrosophic Sets with Application in Multi-attribute Measure of Distance and imilarity for ingle Valued Neutrosophic ets ith pplication in Multi-attribute Decision Making *Dr. Pratiksha Tiari * ssistant Professor, Delhi Institute of dvanced tudies, Delhi,

More information

Aging and scaling of aftershocks

Aging and scaling of aftershocks Aging and scaling of aftershocks Sumiyoshi Abe 1 and Norikazu Suzuki 2 1 Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan 2 College of Science and Technology, Nihon University, Chiba

More information

EXST Regression Techniques Page 1 SIMPLE LINEAR REGRESSION WITH MATRIX ALGEBRA

EXST Regression Techniques Page 1 SIMPLE LINEAR REGRESSION WITH MATRIX ALGEBRA EXST7034 - Regression Techniques Page 1 SIMPLE LINEAR REGRESSION WITH MATRIX ALGEBRA MODEL: Y 3 = "! + "" X 3 + % 3 MATRIX MODEL: Y = XB + E Ô Y" Ô 1 X" Ô e" Y# 1 X# b! e# or Ö Ù = Ö Ù Ö Ù b ã ã ã " ã

More information

(1) Sensitivity = 10 0 g x. (2) m Size = Frequency = s (4) Slenderness = 10w (5)

(1) Sensitivity = 10 0 g x. (2) m Size = Frequency = s (4) Slenderness = 10w (5) 1 ME 26 Jan. May 2010, Homeork #1 Solution; G.K. Ananthasuresh, IISc, Bangalore Figure 1 shos the top-vie of the accelerometer. We need to determine the values of, l, and s such that the specified requirements

More information

Long run input use-input price relations and the cost function Hessian. Ian Steedman Manchester Metropolitan University

Long run input use-input price relations and the cost function Hessian. Ian Steedman Manchester Metropolitan University Long run input use-input price relations and the cost function Hessian Ian Steedman Manchester Metropolitan University Abstract By definition, to compare alternative long run equilibria is to compare alternative

More information

COS 424: Interacting with Data. Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007

COS 424: Interacting with Data. Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007 COS 424: Interacting ith Data Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007 Recapitulation of Last Lecture In linear regression, e need to avoid adding too much richness to the

More information

Accurate and Estimation Methods for Frequency Response Calculations of Hydroelectric Power Plant

Accurate and Estimation Methods for Frequency Response Calculations of Hydroelectric Power Plant Accurate and Estimation Methods for Frequency Response Calculations of Hydroelectric Poer Plant SHAHRAM JAI, ABOLFAZL SALAMI epartment of Electrical Engineering Iran University of Science and Technology

More information

Motion Models (cont) 1 2/15/2012

Motion Models (cont) 1 2/15/2012 Motion Models (cont 1 Odometry Motion Model the key to computing p( xt ut, xt 1 for the odometry motion model is to remember that the robot has an internal estimate of its pose θ x t 1 x y θ θ true poses

More information

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 Soil Mechanics Permeability of Soils and Seepage page 1 Contents of this chapter : CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 9.1 INTRODUCTION...1 9.2 DARCY S LAW...1 9.2.1 DEFINITION OF HEAD...1

More information

EARTH PRESSURES AGAINST RIGID RETAINING WALLS IN THE MODE OF ROTATION ABOUT BASE BY APPLYING ZERO-EXTENSION LINE THEORY

EARTH PRESSURES AGAINST RIGID RETAINING WALLS IN THE MODE OF ROTATION ABOUT BASE BY APPLYING ZERO-EXTENSION LINE THEORY EARTH PRESSURES AGAINST RIGID RETAINING WALLS IN THE MODE OF ROTATION ABOUT BASE BY APPLYING ZERO-EXTENSION LINE THEORY Morshedi S.M., Ghahramani A. 2, Anvar S.A. 2 and Jahanandish M. 2 Department of Geotechnical

More information

Class 4: Classification. Quaid Morris February 11 th, 2011 ML4Bio

Class 4: Classification. Quaid Morris February 11 th, 2011 ML4Bio Class 4: Classification Quaid Morris February 11 th, 211 ML4Bio Overview Basic concepts in classification: overfitting, cross-validation, evaluation. Linear Discriminant Analysis and Quadratic Discriminant

More information

Knowledge Discovery from Heterogeneous Dynamic Systems using Change-Point Correlations

Knowledge Discovery from Heterogeneous Dynamic Systems using Change-Point Correlations Knoledge Discovery from Heterogeneous Dynamic Systems using Change-Point Correlations Tsuyoshi Idé Keisuke Inoue October 4, 24 Abstract Most of the stream mining techniques presented so far have primary

More information