System Identification

Size: px
Start display at page:

Download "System Identification"

Transcription

1 System Identification Lecture 4: Transfer function averaging and smoothing Roy Smith Averaging Multiple estimates Multiple experiments: u r pk, y r pk, r,..., R, and k,..., K. Multiple estimates (ETFE): Ĝ r pe jω n Y rpe jω n U r pe jω n (drop the N from the Y N pe jω n notation) Averaging to improve the estimate. Ĝpe jω n α r Ĝ r pe jω n, r How to choose α r? with α r. r The average is calculated with α r {R

2 Averaging Optimal weighted average If the variance of Ĝrpe jω n is σrpe 2 jω n (with uncorrelated errors and identical means), then, jω variance Ĝpe n variance α r pe jω n Ĝrpe jω n This is minimized by r αrσ 2 rpe 2 jω n r α r pe jω n {σ2 rpe jω n. {σrpe 2 jω n r If variance Ĝr pe jω n φ vpe jω n N U rpe jω n 2 then α r pe jω n U rpe jω n 2. U r pe jω n 2 r Averaging Variance reduction Best result: ˇˇU r pe jω n ˇˇ is the same for all r,..., R. This gives, jω variance Ĝpe n variance Ĝr pe jω n. R If the estimates are biased we will not get as much variance reduction. (The method of splitting the data record and averaging the periodograms is attributed to Bartlett (948, 9).)

3 Averaging example (noisy data) Splitting the data record: K 72, R 3, N 24, upk ypk y pk y 2 pk y 3 pk Averaging example (noisy data) Estimates: Ĝ r pe jω n, r, 2, 3 and the weighted average, Ĝavgpe jω n. Magnitude Gpe jω Ĝ avg pe jω n Ĝ 3 pe jω n Ĝ pe jω n π log ω (rad/sample) Ĝ 2 pe jω n

4 Averaging example (noisy data) Estimates: Ĝ r pe jω n, r, 2, 3 and the weighted average, Ĝavgpe jω n. Errors: E r pe jω n Gpe jω n Ĝrpe jω n. Magnitude E 2 pe jω n E 3 pe jω n E pe jω n π log ω (rad/sample). E avg pe jω n Averaging with periodic signals Splitting the data record: K 72, N 24, R 3, upk has period M 24. upk ypk y pk y 2 pk y 3 pk (not really periodic: upk for k ă )

5 Averaging with periodic signals Estimates: Ĝ r pe jω n and Ĝavgpe jω n Ĝ2 pe jω n ` Ĝ3pe jω n {2 Magnitude Gpe jω Ĝ avg pe jω n Ĝ 2 pe jω n Ĝ 3 pe jω n π log ω (rad/sample) Averaging with periodic signals Estimates: Ĝ r pe jω n and Ĝavgpe jω n Ĝ2 pe jω n ` Ĝ3pe jω n {2 Errors: E r pe jω n Gpe jω n Ĝrpe jω n. Magnitude π log ω (rad/sample). E 2 pe jω n E 3 pe jω n E avg pe jω n

6 Averaging with periodic signals Estimates: Ĝ r pe jω n and Ĝavgpe jω n Ĝ2 pe jω n ` Ĝ3pe jω n {2 Errors: E r pe jω n Gpe jω n Ĝrpe jω n. Magnitude E avg pe jω n (non-periodic) π log ω (rad/sample). E 2 pe jω n E 3 pe jω n E avg pe jω n Bias-variance trade-offs in data record splitting Bartlett s procedure Divide a (long) data record into smaller parts for averaging. Data: tupk, ypku k,..., K with K very large. Choose R records, and calculation a length: N, NR ď K. u r pn uprn ` n, r,..., R, n,..., N. And average the resulting estimates: Gpe jω n R ÿ r α r Ĝ r pe jω n R ÿ r α r Ŷ r pe jω n Û r pe jω n. Bias and variance effects As R increases: The number of points calculated, N, decreases (so NR ď K); The variance decreases (by up to {R); The bias increases (due to non-periodicity transients)

7 Bias-variance trade-offs in data record splitting Mean-suare error MSE bias 2 ` variance. Transient bias grows linearly with the number of data splits. Variance decays with a rate of up to /(number of averages). Optimal bias-variance trade-off Error MSE Bias error Variance error 2 number of records, R Smoothing transfer function estimates What if we have no option of running periodic input experiments? The system will not tolerate periodic inputs; or The data has already been taken and given to us. More data just gives more freuencies (with the same error variance). Exploit the assumed smoothness of the underlying system Gpe jω is assumed to be a low order (smooth) system. E! ) pgpe jω n ĜN pe jω n pgpe jω s ĜN pe jω s ÝÑ pn s, (asymptotically at least)

8 Smoothing the ETFE Smooth transfer function assumption Assume the true system to be close to constant for a range of freuencies. Gpe jω n`r «Gpe jω n for r,, 2,..., R. Smooth minimum variance estimate The minimum variance smoothed estimate is, G N pe jω n α r Ĝ N pe jω n`r r R, α r α r r R N ˇ ˇU N pe jω n`r ˇˇ2. φ v pe jω n`r (Here we smooth over 2R ` points) Smoothing the ETFE If N is large (many closely spaced freuencies), the summation can be approximated by an integral, G N pe jω n α r Ĝ N pe jω n`r r R r R α r «ż ωn`r ω n r ż ωn`r ω n r αpe jξ ĜN pe jξ dξ αpe jξ dξ, with αpe jξ N ˇ ˇUN pe jξ ˇˇ2. φ v pe jξ

9 Smoothing the ETFE Smoothing window G N pe jω n ż π W γ pe jpξ ωn αpe jξ ĜN pe jξ dξ 2π π ż π, W γ pe jpξ ωn αpe jξ dξ 2π π with αpe jξ N ˇ ˇU N pe jξ ˇˇ2. φ v pe jξ The {2π scaling will make it easier to derived time-domain windows later Smoothing the ETFE Assumptions on φ v pe jω Assume φ v pe jω is also a smooth (and flat) function of freuency. ż π W γ pe jpξ ωn 2π ˇ φ v pe jξ φ v pe jω n ˇ dξ «. Then use, π αpe jξ N ˇ ˇUN pe jξ ˇˇ2, φ v pe jω n to get, ż π W γ pe jpξ ωn ˇ ˇU N pe jξ ˇ ˇ2 Ĝ N pe jξ dξ G N pe jω n 2π π N ż π W γ pe jpξ ωn. ˇ ˇU N pe jξ ˇ ˇ2 dξ 2π π N

10 Weighting functions Typical window (Hann) as a function of the width parameter, γ. W γ pe jωn 2 γ 2 N 26 γ γ γ π π{2 π{2 π Discrete freuency: ω Weighting functions Freuency smoothing window characteristics: width (specified by γ parameter) The wider the freuency window (i.e. decreasing γ)... the more adjacent freuencies included in the smoothed estimate, the smoother the result, the lower the noise induced variance, the higher the bias

11 Weighting functions Window characteristics: shape Some common choices: Bartlett: W γ pe jω γ ˆ 2 sin γω{2 sin ω{2 Hann: W γ pe jω D 2 γpω ` D 4 γpω π{γ ` D 4 γpω ` π{γ sin ωpγ `. where D γ pω sin ω{2 Others include: Hamming, Parzen, Kaiser,... The differences are mostly in the leakage properties of the energy to adjacent freuencies. And the ability to resolve close freuency peaks Weighting functions Example freuency domain windows. W γ pe jωn γ N 26 Welch Hann Hamming Bartlett π π{2 π{2 π Discrete freuency: ω

12 ETFE smoothing example: Matlab calculations U = fft(u); Y = fft(y); Gest = Y./U; Gs = *Gest; [omega,wg] = WfHann(gamma,N); zidx = find(omega==); omega = [omega(zidx:n);omega(:zidx-)]; Wg = [Wg(zidx:N);Wg(:zidx-)]; a = U.*conj(U); % calculate N point FFTs % ETFE estimate % smoothed estimate % window (centered) % shift to start at zero % freuency grid % variance weighting for wn = :N, Wnorm = ; for xi = :N, widx = mod(xi-wn,n)+; Gs(wn) = Gs(wn) +... Wg(widx) * Gest(xi) * a(xi); Wnorm = Wnorm + Wg(widx) * a(xi); end Gs(wn) = Gs(wn)/Wnorm; end % reset normalisation % wrap window index % weight normalisation Window properties Properties and characteristic values of window functions 2π ż π π ż π π W γ pe jξ dξ (Normalised) ξw γ pe jξ dξ ( Even sort of) Mpγ : ż π W pγ : 2π π ż π ξ 2 W γ pe jξ dξ (bias effect) π Wγ 2 pe jξ dξ (variance effect) Bartlett: Mpγ 2.78 γ, W pγ «.67γ (for γ ą ) Hamming: Mpγ π2 2γ 2, W pγ «.7γ (for γ ą )

13 Smoothed estimate properties Asymptotic bias properties!! )) E Gpe jω n E Gpe jω n Mpγ! ) E Gpe jω n Gpe jω n ˆ 2 G2 pe jω n ` G pe jω n φ upe jωn φ u pe jω n Increasing γ: makes the freuency window narrower; averages over fewer freuency values; makes M pγ smaller; and ` OpC 3 pγ loooomoooon ÝÑ as γ ÝÑ 8 reduces the bias of the smoothed estimate, Gpe jω n. ` O {? N looooomooooon ÝÑ as N ÝÑ Smoothed estimate properties Asymptotic variance properties "! ) 2* E Gpe jω n E Gpe jω n N W pγ φ vpe jω n φ u pe jω n Increasing γ: makes the freuency window narrower; averages over fewer freuency values; makes W pγ larger; and increases the variance of the smoothed estimate, Gpe jω n. ` o ` W pγ{n loooooomoooooon ÝÑ as γ ÝÑ 8 N ÝÑ 8 γ{n ÝÑ

14 Smoothed estimate properties Asymptotic MSE properties jω E "ˇˇˇ Gpe n Gpe jω n ˇ ˇ2* «M 2 pγ F pe jω n 2 ` N W pγ φ vpe jωn, φ u pe jω n where F pe jω n 2 G2 pe jω n ` G pe jω n φ upe jω n φ u pe jω n If Mpγ M{γ 2 and W pγ W γ then MSE is minimised by, and γ optimal ˆ 4M 2 F pe jω n 2 φ u pe jω n { N W {. φ v pe jω n MSE at γ optimal «CN 4{ Bibliography Windowing and ETFE smoothing P. Stoica & R. Moses, Introduction to Spectral Analysis (see Chapters and 2), Prentice-Hall, 997. Lennart Ljung, System Identification; Theory for the User, (see Section 6.4) Prentice-Hall, 2nd Ed., 999. M.S. Bartlett, Smoothing Periodograms from Time-Series with Continuous Spectra, Nature, vol. 6(496), pp , 948. M.S. Bartlett, Periodogram analysis and continuous spectra, Biometrika, vol. 37, pp. 6,

Chapter 6: Nonparametric Time- and Frequency-Domain Methods. Problems presented by Uwe

Chapter 6: Nonparametric Time- and Frequency-Domain Methods. Problems presented by Uwe System Identification written by L. Ljung, Prentice Hall PTR, 1999 Chapter 6: Nonparametric Time- and Frequency-Domain Methods Problems presented by Uwe System Identification Problems Chapter 6 p. 1/33

More information

System Identification

System Identification System Identification Lecture : Statistical properties of parameter estimators, Instrumental variable methods Roy Smith 8--8. 8--8. Statistical basis for estimation methods Parametrised models: G Gp, zq,

More information

II. Nonparametric Spectrum Estimation for Stationary Random Signals - Non-parametric Methods -

II. Nonparametric Spectrum Estimation for Stationary Random Signals - Non-parametric Methods - II. onparametric Spectrum Estimation for Stationary Random Signals - on-parametric Methods - - [p. 3] Periodogram - [p. 12] Periodogram properties - [p. 23] Modified periodogram - [p. 25] Bartlett s method

More information

6.435, System Identification

6.435, System Identification System Identification 6.435 SET 3 Nonparametric Identification Munther A. Dahleh 1 Nonparametric Methods for System ID Time domain methods Impulse response Step response Correlation analysis / time Frequency

More information

Non-parametric identification

Non-parametric identification Non-parametric Non-parametric Transient Step-response using Spectral Transient Correlation Frequency function estimate Spectral System Identification, SSY230 Non-parametric 1 Non-parametric Transient Step-response

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 7 8 onparametric identification (continued) Important distributions: chi square, t distribution, F distribution Sampling distributions ib i Sample mean If the variance

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.34: Discrete-Time Signal Processing OpenCourseWare 006 ecture 8 Periodogram Reading: Sections 0.6 and 0.7

More information

Laboratory Project 2: Spectral Analysis and Optimal Filtering

Laboratory Project 2: Spectral Analysis and Optimal Filtering Laboratory Project 2: Spectral Analysis and Optimal Filtering Random signals analysis (MVE136) Mats Viberg and Lennart Svensson Department of Signals and Systems Chalmers University of Technology 412 96

More information

Bispectral resolution and leakage effect of the indirect bispectrum estimate for different types of 2D window functions

Bispectral resolution and leakage effect of the indirect bispectrum estimate for different types of 2D window functions Bispectral resolution and leakage effect of the indirect bispectrum estimate for different types of D window functions Teofil-Cristian OROIAN, Constantin-Iulian VIZITIU, Florin ŞERBAN Communications and

More information

Design Criteria for the Quadratically Interpolated FFT Method (I): Bias due to Interpolation

Design Criteria for the Quadratically Interpolated FFT Method (I): Bias due to Interpolation CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS DEPARTMENT OF MUSIC, STANFORD UNIVERSITY REPORT NO. STAN-M-4 Design Criteria for the Quadratically Interpolated FFT Method (I): Bias due to Interpolation

More information

SPECTRUM. Deterministic Signals with Finite Energy (l 2 ) Deterministic Signals with Infinite Energy N 1. n=0. N N X N(f) 2

SPECTRUM. Deterministic Signals with Finite Energy (l 2 ) Deterministic Signals with Infinite Energy N 1. n=0. N N X N(f) 2 SPECTRUM Deterministic Signals with Finite Energy (l 2 ) Energy Spectrum: S xx (f) = X(f) 2 = 2 x(n)e j2πfn n= Deterministic Signals with Infinite Energy DTFT of truncated signal: X N (f) = N x(n)e j2πfn

More information

Practical Spectral Estimation

Practical Spectral Estimation Digital Signal Processing/F.G. Meyer Lecture 4 Copyright 2015 François G. Meyer. All Rights Reserved. Practical Spectral Estimation 1 Introduction The goal of spectral estimation is to estimate how the

More information

Time series models in the Frequency domain. The power spectrum, Spectral analysis

Time series models in the Frequency domain. The power spectrum, Spectral analysis ime series models in the Frequency domain he power spectrum, Spectral analysis Relationship between the periodogram and the autocorrelations = + = ( ) ( ˆ α ˆ ) β I Yt cos t + Yt sin t t= t= ( ( ) ) cosλ

More information

Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation. Bhaskar D Rao University of California, San Diego

Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation. Bhaskar D Rao University of California, San Diego Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation Bhaskar D Rao University of California, San Diego Email: brao@ucsd.edu Reference Books 1. Optimum Array Processing, H. L. Van Trees 2.

More information

-Digital Signal Processing- FIR Filter Design. Lecture May-16

-Digital Signal Processing- FIR Filter Design. Lecture May-16 -Digital Signal Processing- FIR Filter Design Lecture-17 24-May-16 FIR Filter Design! FIR filters can also be designed from a frequency response specification.! The equivalent sampled impulse response

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Virtually all practical signals have finite length (e.g., sensor data, audio records, digital images, stock values, etc). Rather than considering such signals to be zero-padded

More information

Basic Design Approaches

Basic Design Approaches (Classic) IIR filter design: Basic Design Approaches. Convert the digital filter specifications into an analog prototype lowpass filter specifications. Determine the analog lowpass filter transfer function

More information

Chapter 2: The Fourier Transform

Chapter 2: The Fourier Transform EEE, EEE Part A : Digital Signal Processing Chapter Chapter : he Fourier ransform he Fourier ransform. Introduction he sampled Fourier transform of a periodic, discrete-time signal is nown as the discrete

More information

LAB 6: FIR Filter Design Summer 2011

LAB 6: FIR Filter Design Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 6: FIR Filter Design Summer 011

More information

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering Advanced Digital Signal rocessing (18-792) Spring Fall Semester, 201 2012 Department of Electrical and Computer Engineering ROBLEM SET 8 Issued: 10/26/18 Due: 11/2/18 Note: This problem set is due Friday,

More information

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang 1-1 Course Description Emphases Delivering concepts and Practice Programming Identification Methods using Matlab Class

More information

Filter Design Problem

Filter Design Problem Filter Design Problem Design of frequency-selective filters usually starts with a specification of their frequency response function. Practical filters have passband and stopband ripples, while exhibiting

More information

Complement on Digital Spectral Analysis and Optimal Filtering: Theory and Exercises

Complement on Digital Spectral Analysis and Optimal Filtering: Theory and Exercises Complement on Digital Spectral Analysis and Optimal Filtering: Theory and Exercises Random Processes With Applications (MVE 135) Mats Viberg Department of Signals and Systems Chalmers University of Technology

More information

Data Processing and Analysis

Data Processing and Analysis Data Processing and Analysis Rick Aster and Brian Borchers September 10, 2013 Energy and Power Spectra It is frequently valuable to study the power distribution of a signal in the frequency domain. For

More information

On the Frequency-Domain Properties of Savitzky-Golay Filters

On the Frequency-Domain Properties of Savitzky-Golay Filters On the Frequency-Domain Properties of Savitzky-Golay Filters Ronald W Schafer HP Laboratories HPL-2-9 Keyword(s): Savitzky-Golay filter, least-squares polynomial approximation, smoothing Abstract: This

More information

On Moving Average Parameter Estimation

On Moving Average Parameter Estimation On Moving Average Parameter Estimation Niclas Sandgren and Petre Stoica Contact information: niclas.sandgren@it.uu.se, tel: +46 8 473392 Abstract Estimation of the autoregressive moving average (ARMA)

More information

Statistical errors in the estimation of time-averaged acoustic energy density using the two-microphone method

Statistical errors in the estimation of time-averaged acoustic energy density using the two-microphone method Statistical errors in the estimation of time-averaged acoustic energy density using the two-microphone method Short title: Statistical errors in acoustic energy density Justin Ghan, Ben Cazzolato, and

More information

IMPROVEMENTS IN MODAL PARAMETER EXTRACTION THROUGH POST-PROCESSING FREQUENCY RESPONSE FUNCTION ESTIMATES

IMPROVEMENTS IN MODAL PARAMETER EXTRACTION THROUGH POST-PROCESSING FREQUENCY RESPONSE FUNCTION ESTIMATES IMPROVEMENTS IN MODAL PARAMETER EXTRACTION THROUGH POST-PROCESSING FREQUENCY RESPONSE FUNCTION ESTIMATES Bere M. Gur Prof. Christopher Niezreci Prof. Peter Avitabile Structural Dynamics and Acoustic Systems

More information

Fourier Analysis of Stationary and Non-Stationary Time Series

Fourier Analysis of Stationary and Non-Stationary Time Series Fourier Analysis of Stationary and Non-Stationary Time Series September 6, 2012 A time series is a stochastic process indexed at discrete points in time i.e X t for t = 0, 1, 2, 3,... The mean is defined

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Problem Set 9 Solutions EE23: Digital Signal Processing. From Figure below, we see that the DTFT of the windowed sequence approaches the actual DTFT as the window size increases. Gibb s phenomenon is absent

More information

Lecture 14: Windowing

Lecture 14: Windowing Lecture 14: Windowing ECE 401: Signal and Image Analysis University of Illinois 3/29/2017 1 DTFT Review 2 Windowing 3 Practical Windows Outline 1 DTFT Review 2 Windowing 3 Practical Windows DTFT Review

More information

EE531 (Semester II, 2010) 6. Spectral analysis. power spectral density. periodogram analysis. window functions 6-1

EE531 (Semester II, 2010) 6. Spectral analysis. power spectral density. periodogram analysis. window functions 6-1 6. Spectral analysis EE531 (Semester II, 2010) power spectral density periodogram analysis window functions 6-1 Wiener-Khinchin theorem: Power Spectral density if a process is wide-sense stationary, the

More information

Lecture 4 - Spectral Estimation

Lecture 4 - Spectral Estimation Lecture 4 - Spectral Estimation The Discrete Fourier Transform The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier Transform for signals known only at N instants separated

More information

Chirp Transform for FFT

Chirp Transform for FFT Chirp Transform for FFT Since the FFT is an implementation of the DFT, it provides a frequency resolution of 2π/N, where N is the length of the input sequence. If this resolution is not sufficient in a

More information

Direction of Arrival Estimation: Subspace Methods. Bhaskar D Rao University of California, San Diego

Direction of Arrival Estimation: Subspace Methods. Bhaskar D Rao University of California, San Diego Direction of Arrival Estimation: Subspace Methods Bhaskar D Rao University of California, San Diego Email: brao@ucsdedu Reference Books and Papers 1 Optimum Array Processing, H L Van Trees 2 Stoica, P,

More information

(Refer Slide Time: 01:28 03:51 min)

(Refer Slide Time: 01:28 03:51 min) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture 40 FIR Design by Windowing This is the 40 th lecture and our topic for

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Fourier Analysis of Signals Using the DFT

Fourier Analysis of Signals Using the DFT Fourier Analysis of Signals Using the DFT ECE 535 Lecture April 29, 23 Overview: Motivation Many applications require analyzing the frequency content of signals Speech processing study resonances of vocal

More information

If every Bounded Input produces Bounded Output, system is externally stable equivalently, system is BIBO stable

If every Bounded Input produces Bounded Output, system is externally stable equivalently, system is BIBO stable 1. External (BIBO) Stability of LTI Systems If every Bounded Input produces Bounded Output, system is externally stable equivalently, system is BIBO stable g(n) < BIBO Stability Don t care about what unbounded

More information

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Forecasting 1. Let X and Y be two random variables such that E(X 2 ) < and E(Y 2 )

More information

Parametric Method Based PSD Estimation using Gaussian Window

Parametric Method Based PSD Estimation using Gaussian Window International Journal of Engineering Trends and Technology (IJETT) Volume 29 Number 1 - November 215 Parametric Method Based PSD Estimation using Gaussian Window Pragati Sheel 1, Dr. Rajesh Mehra 2, Preeti

More information

SNR Calculation and Spectral Estimation [S&T Appendix A]

SNR Calculation and Spectral Estimation [S&T Appendix A] SR Calculation and Spectral Estimation [S&T Appendix A] or, How not to make a mess of an FFT Make sure the input is located in an FFT bin 1 Window the data! A Hann window works well. Compute the FFT 3

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

On Identification of Cascade Systems 1

On Identification of Cascade Systems 1 On Identification of Cascade Systems 1 Bo Wahlberg Håkan Hjalmarsson Jonas Mårtensson Automatic Control and ACCESS, School of Electrical Engineering, KTH, SE-100 44 Stockholm, Sweden. (bo.wahlberg@ee.kth.se

More information

DATA IN SERIES AND TIME I. Several different techniques depending on data and what one wants to do

DATA IN SERIES AND TIME I. Several different techniques depending on data and what one wants to do DATA IN SERIES AND TIME I Several different techniques depending on data and what one wants to do Data can be a series of events scaled to time or not scaled to time (scaled to space or just occurrence)

More information

Contents. Digital Signal Processing, Part II: Power Spectrum Estimation

Contents. Digital Signal Processing, Part II: Power Spectrum Estimation Contents Digital Signal Processing, Part II: Power Spectrum Estimation 5. Application of the FFT for 7. Parametric Spectrum Est. Filtering and Spectrum Estimation 7.1 ARMA-Models 5.1 Fast Convolution 7.2

More information

EDISP (NWL3) (English) Digital Signal Processing DFT Windowing, FFT. October 19, 2016

EDISP (NWL3) (English) Digital Signal Processing DFT Windowing, FFT. October 19, 2016 EDISP (NWL3) (English) Digital Signal Processing DFT Windowing, FFT October 19, 2016 DFT resolution 1 N-point DFT frequency sampled at θ k = 2πk N, so the resolution is f s/n If we want more, we use N

More information

Introduction. Spectral Estimation Overview Periodogram Bias, variance, and distribution Blackman-Tukey Method Welch-Bartlett Method Others

Introduction. Spectral Estimation Overview Periodogram Bias, variance, and distribution Blackman-Tukey Method Welch-Bartlett Method Others Spectral Estimation Overview Periodogram Bias, variance, and distribution Blackman-Tukey Method Welch-Bartlett Method Others Introduction R x (e jω ) r x (l)e jωl l= Most stationary random processes have

More information

Experimental verification of different models of the ADC transfer function. Petr Suchanek, David Slepicka, Vladimir Haasz

Experimental verification of different models of the ADC transfer function. Petr Suchanek, David Slepicka, Vladimir Haasz Experimental verification of different models of the ADC transfer function Petr Suchanek, David Slepicka, Vladimir Haasz Czech Technical University in Prague, Faculty of Electrical Engineering Technická,

More information

DFT & Fast Fourier Transform PART-A. 7. Calculate the number of multiplications needed in the calculation of DFT and FFT with 64 point sequence.

DFT & Fast Fourier Transform PART-A. 7. Calculate the number of multiplications needed in the calculation of DFT and FFT with 64 point sequence. SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING UNIT I DFT & Fast Fourier

More information

Final Exam January 31, Solutions

Final Exam January 31, Solutions Final Exam January 31, 014 Signals & Systems (151-0575-01) Prof. R. D Andrea & P. Reist Solutions Exam Duration: Number of Problems: Total Points: Permitted aids: Important: 150 minutes 7 problems 50 points

More information

ESS 265 Spring Quarter 2005 Time Series Analysis: Linear Regression

ESS 265 Spring Quarter 2005 Time Series Analysis: Linear Regression ESS 265 Spring Quarter 2005 Time Series Analysis: Linear Regression Lecture 11 May 10, 2005 Multivariant Regression A multi-variant relation between a dependent variable y and several independent variables

More information

Detection and Quantification of the Influence of Time-Variation in Frequency Response Function Measurements Using Arbitrary Excitations

Detection and Quantification of the Influence of Time-Variation in Frequency Response Function Measurements Using Arbitrary Excitations Detection and Quantification of the Influence of Time-Variation in Frequency Response Function Measurements Using Arbitrary Excitations R. Pintelon, E. Louarroudi, and J. Lataire, Vrije Universiteit Brussel,

More information

Further Results on Model Structure Validation for Closed Loop System Identification

Further Results on Model Structure Validation for Closed Loop System Identification Advances in Wireless Communications and etworks 7; 3(5: 57-66 http://www.sciencepublishinggroup.com/j/awcn doi:.648/j.awcn.735. Further esults on Model Structure Validation for Closed Loop System Identification

More information

Complement on Digital Spectral Analysis and Optimal Filtering: Theory and Exercises

Complement on Digital Spectral Analysis and Optimal Filtering: Theory and Exercises Complement on Digital Spectral Analysis and Optimal Filtering: Theory and Exercises Random Signals Analysis (MVE136) Mats Viberg Department of Signals and Systems Chalmers University of Technology 412

More information

Subspace-based Identification

Subspace-based Identification of Infinite-dimensional Multivariable Systems from Frequency-response Data Department of Electrical and Electronics Engineering Anadolu University, Eskişehir, Turkey October 12, 2008 Outline 1 2 3 4 Noise-free

More information

Lecture 11: Spectral Analysis

Lecture 11: Spectral Analysis Lecture 11: Spectral Analysis Methods For Estimating The Spectrum Walid Sharabati Purdue University Latest Update October 27, 2016 Professor Sharabati (Purdue University) Time Series Analysis October 27,

More information

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS 5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS 5.1 Object The objects of this experiment are to measure the spectral density of the noise current output of a JFET, to compare the measured spectral density

More information

Voiced Speech. Unvoiced Speech

Voiced Speech. Unvoiced Speech Digital Speech Processing Lecture 2 Homomorphic Speech Processing General Discrete-Time Model of Speech Production p [ n] = p[ n] h [ n] Voiced Speech L h [ n] = A g[ n] v[ n] r[ n] V V V p [ n ] = u [

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6B. Notes on the Fourier Transform Magnitude

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6B. Notes on the Fourier Transform Magnitude SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6B. Notes on the Fourier Transform Magnitude By Tom Irvine Introduction Fourier transforms, which were introduced in Unit 6A, have a number of potential

More information

Robust Implementation of the MUSIC algorithm Zhang, Johan Xi; Christensen, Mads Græsbøll; Dahl, Joachim; Jensen, Søren Holdt; Moonen, Marc

Robust Implementation of the MUSIC algorithm Zhang, Johan Xi; Christensen, Mads Græsbøll; Dahl, Joachim; Jensen, Søren Holdt; Moonen, Marc Aalborg Universitet Robust Implementation of the MUSIC algorithm Zhang, Johan Xi; Christensen, Mads Græsbøll; Dahl, Joachim; Jensen, Søren Holdt; Moonen, Marc Published in: I E E E International Conference

More information

Relationship Between λ and Q in RDO

Relationship Between λ and Q in RDO Jmspeex Journal of Dubious Theoretical Results July 6, 015 Abstract This is a log of theoretical calculations and approximations that are used in some of the Daala code. Some approximations are likely

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

sine wave fit algorithm

sine wave fit algorithm TECHNICAL REPORT IR-S3-SB-9 1 Properties of the IEEE-STD-57 four parameter sine wave fit algorithm Peter Händel, Senior Member, IEEE Abstract The IEEE Standard 57 (IEEE-STD-57) provides algorithms for

More information

Heteroskedasticity and Autocorrelation Consistent Standard Errors

Heteroskedasticity and Autocorrelation Consistent Standard Errors NBER Summer Institute Minicourse What s New in Econometrics: ime Series Lecture 9 July 6, 008 Heteroskedasticity and Autocorrelation Consistent Standard Errors Lecture 9, July, 008 Outline. What are HAC

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Ultrasound is a widely used, nonionizing, and costeffective

Ultrasound is a widely used, nonionizing, and costeffective 340 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 2, February 2010 Trade-Offs in Data Acquisition and Processing Parameters for Backscatter and Scatterer Size Estimations

More information

Wiener-Khintchine Theorem. White Noise. Wiener-Khintchine Theorem. Power Spectrum Estimation

Wiener-Khintchine Theorem. White Noise. Wiener-Khintchine Theorem. Power Spectrum Estimation Wiener-Khintchine Theorem Let x(n) be a WSS random process with autocorrelation sequence r xx (m) =E[x(n + m)x (n)] The power spectral density is defined as the Discrete Time Fourier Transform of the autocorrelation

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Basics of System Identification Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC) EECE574 - Basics of

More information

OSE801 Engineering System Identification. Lecture 09: Computing Impulse and Frequency Response Functions

OSE801 Engineering System Identification. Lecture 09: Computing Impulse and Frequency Response Functions OSE801 Engineering System Identification Lecture 09: Computing Impulse and Frequency Response Functions 1 Extracting Impulse and Frequency Response Functions In the preceding sections, signal processing

More information

The Discrete Fourier Transform (DFT) Properties of the DFT DFT-Specic Properties Power spectrum estimate. Alex Sheremet.

The Discrete Fourier Transform (DFT) Properties of the DFT DFT-Specic Properties Power spectrum estimate. Alex Sheremet. 4. April 2, 27 -order sequences Measurements produce sequences of numbers Measurement purpose: characterize a stochastic process. Example: Process: water surface elevation as a function of time Parameters:

More information

STK-IN4300 Statistical Learning Methods in Data Science

STK-IN4300 Statistical Learning Methods in Data Science Outline of the lecture Linear Methods for Regression Linear Regression Models and Least Squares Subset selection STK-IN4300 Statistical Learning Methods in Data Science Riccardo De Bin debin@math.uio.no

More information

STK-IN4300 Statistical Learning Methods in Data Science

STK-IN4300 Statistical Learning Methods in Data Science STK-IN4300 Statistical Learning Methods in Data Science Riccardo De Bin debin@math.uio.no STK-IN4300: lecture 2 1/ 38 Outline of the lecture STK-IN4300 - Statistical Learning Methods in Data Science Linear

More information

Identification, Model Validation and Control. Lennart Ljung, Linköping

Identification, Model Validation and Control. Lennart Ljung, Linköping Identification, Model Validation and Control Lennart Ljung, Linköping Acknowledgment: Useful discussions with U Forssell and H Hjalmarsson 1 Outline 1. Introduction 2. System Identification (in closed

More information

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Elec461 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis Dr. D. S. Taubman May 3, 011 In this last chapter of your notes, we are interested in the problem of nding the instantaneous

More information

Time domain identification, frequency domain identification. Equivalencies! Differences?

Time domain identification, frequency domain identification. Equivalencies! Differences? Time domain identification, frequency domain identification. Equivalencies! Differences? J. Schoukens, R. Pintelon, and Y. Rolain Vrije Universiteit Brussel, Department ELEC, Pleinlaan, B5 Brussels, Belgium

More information

Linear models. Chapter Overview. Linear process: A process {X n } is a linear process if it has the representation.

Linear models. Chapter Overview. Linear process: A process {X n } is a linear process if it has the representation. Chapter 2 Linear models 2.1 Overview Linear process: A process {X n } is a linear process if it has the representation X n = b j ɛ n j j=0 for all n, where ɛ n N(0, σ 2 ) (Gaussian distributed with zero

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 10 - System identification as a model building tool Experiment design Examination and prefiltering of data Model structure selection Model validation Lecture

More information

Econ 582 Nonparametric Regression

Econ 582 Nonparametric Regression Econ 582 Nonparametric Regression Eric Zivot May 28, 2013 Nonparametric Regression Sofarwehaveonlyconsideredlinearregressionmodels = x 0 β + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β The assume

More information

Multidimensional digital signal processing

Multidimensional digital signal processing PSfrag replacements Two-dimensional discrete signals N 1 A 2-D discrete signal (also N called a sequence or array) is a function 2 defined over thex(n set 1 of, n 2 ordered ) pairs of integers: y(nx 1,

More information

Frequency estimation by DFT interpolation: A comparison of methods

Frequency estimation by DFT interpolation: A comparison of methods Frequency estimation by DFT interpolation: A comparison of methods Bernd Bischl, Uwe Ligges, Claus Weihs March 5, 009 Abstract This article comments on a frequency estimator which was proposed by [6] and

More information

Expressions for the covariance matrix of covariance data

Expressions for the covariance matrix of covariance data Expressions for the covariance matrix of covariance data Torsten Söderström Division of Systems and Control, Department of Information Technology, Uppsala University, P O Box 337, SE-7505 Uppsala, Sweden

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 IT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete all 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. assachusetts

More information

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d!

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d! Summary of lecture I Continuous time: FS X FS [n] for periodic signals, FT X (i!) for non-periodic signals. II Discrete time: DTFT X T (e i!t ) III Poisson s summation formula: describes the relationship

More information

Lecture 7 Discrete Systems

Lecture 7 Discrete Systems Lecture 7 Discrete Systems EE 52: Instrumentation and Measurements Lecture Notes Update on November, 29 Aly El-Osery, Electrical Engineering Dept., New Mexico Tech 7. Contents The z-transform 2 Linear

More information

The Local Polynomial Method for nonparametric system identification: improvements and experimentation

The Local Polynomial Method for nonparametric system identification: improvements and experimentation The Local Polynomial Method for nonparametric system identification: improvements and experimentation Michel Gevers, Rik Pintelon and Johan Schoukens Abstract The Local Polynomial Method (LPM) is a recently

More information

Effects of data windows on the methods of surrogate data

Effects of data windows on the methods of surrogate data Effects of data windows on the methods of surrogate data Tomoya Suzuki, 1 Tohru Ikeguchi, and Masuo Suzuki 1 1 Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo

More information

Class of waveform coders can be represented in this manner

Class of waveform coders can be represented in this manner Digital Speech Processing Lecture 15 Speech Coding Methods Based on Speech Waveform Representations ti and Speech Models Uniform and Non- Uniform Coding Methods 1 Analog-to-Digital Conversion (Sampling

More information

System Identification in the Short-Time Fourier Transform Domain

System Identification in the Short-Time Fourier Transform Domain System Identification in the Short-Time Fourier Transform Domain Electrical Engineering Department Technion - Israel Institute of Technology Supervised by: Prof. Israel Cohen Outline Representation Identification

More information

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET. Questions AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET. Questions AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET The Problem Identification of Linear and onlinear Dynamical Systems Theme : Curve Fitting Division of Automatic Control Linköping University Sweden Data from Gripen Questions How do the control surface

More information

Acomplex-valued harmonic with a time-varying phase is a

Acomplex-valued harmonic with a time-varying phase is a IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998 2315 Instantaneous Frequency Estimation Using the Wigner Distribution with Varying and Data-Driven Window Length Vladimir Katkovnik,

More information

Enhancement of Noisy Speech. State-of-the-Art and Perspectives

Enhancement of Noisy Speech. State-of-the-Art and Perspectives Enhancement of Noisy Speech State-of-the-Art and Perspectives Rainer Martin Institute of Communications Technology (IFN) Technical University of Braunschweig July, 2003 Applications of Noise Reduction

More information

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE37 Advanced Analog Circuits INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com NLCOTD: Level Translator VDD > VDD2, e.g. 3-V logic? -V logic VDD < VDD2, e.g. -V logic? 3-V

More information

! Spectral Analysis with DFT. ! Windowing. ! Effect of zero-padding. ! Time-dependent Fourier transform. " Aka short-time Fourier transform

! Spectral Analysis with DFT. ! Windowing. ! Effect of zero-padding. ! Time-dependent Fourier transform.  Aka short-time Fourier transform Lecture Outline ESE 531: Digital Signal Processing Spectral Analysis with DFT Windowing Lec 24: April 18, 2019 Spectral Analysis Effect of zero-padding Time-dependent Fourier transform " Aka short-time

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

III.C - Linear Transformations: Optimal Filtering

III.C - Linear Transformations: Optimal Filtering 1 III.C - Linear Transformations: Optimal Filtering FIR Wiener Filter [p. 3] Mean square signal estimation principles [p. 4] Orthogonality principle [p. 7] FIR Wiener filtering concepts [p. 8] Filter coefficients

More information

Adaptive Filtering. Squares. Alexander D. Poularikas. Fundamentals of. Least Mean. with MATLABR. University of Alabama, Huntsville, AL.

Adaptive Filtering. Squares. Alexander D. Poularikas. Fundamentals of. Least Mean. with MATLABR. University of Alabama, Huntsville, AL. Adaptive Filtering Fundamentals of Least Mean Squares with MATLABR Alexander D. Poularikas University of Alabama, Huntsville, AL CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

STAD57 Time Series Analysis. Lecture 23

STAD57 Time Series Analysis. Lecture 23 STAD57 Time Series Analysis Lecture 23 1 Spectral Representation Spectral representation of stationary {X t } is: 12 i2t Xt e du 12 1/2 1/2 for U( ) a stochastic process with independent increments du(ω)=

More information

O Combining cross-validation and plug-in methods - for kernel density bandwidth selection O

O Combining cross-validation and plug-in methods - for kernel density bandwidth selection O O Combining cross-validation and plug-in methods - for kernel density selection O Carlos Tenreiro CMUC and DMUC, University of Coimbra PhD Program UC UP February 18, 2011 1 Overview The nonparametric problem

More information