ESSENTIAL SET AND ANTISYMMETRIC SETS OF CARTESIAN PRODUCT OF FUNCTION ALGEBRAS. 1. Introduction

Size: px
Start display at page:

Download "ESSENTIAL SET AND ANTISYMMETRIC SETS OF CARTESIAN PRODUCT OF FUNCTION ALGEBRAS. 1. Introduction"

Transcription

1 Mathematics Today Vol.29(June-Dec-2013)25-30 ISSN ESSENTIAL SET AND ANTISYMMETRIC SETS OF CARTESIAN PRODUCT OF FUNCTION ALGEBRAS H. S. MEHTA, R. D. MEHTA AND D. R. PATEL Abstract. Let A and B be function algebras on compact spaces X and Y respectively. Then the Cartesian product A B is also a function algebra on the topological sum X + Y. In this paper, we discuss sets of antisymmetry and essential set of A B. We prove that the collection of maximal sets of antisymmetry for A B is the disjoint union of collection of maximal sets of antisymmetry for A and B. Also we prove that E A B = E A E B, where E A denotes the essential set for A. 1. Introduction A function algebra on a compact Hausdorff space X is a closed subalgebra of C(X), containing constant functions and separating the points of X. If A is a function algebra on X and B is a function algebra on Y, then as we know A B is a commutative Banach algebra with identity (1 X, 1 Y ) and norm (f, g) = max{ f, g } where 1 X and 1 Y are identities of A and B respectively and is supnorm [4]. Definition 1.1. [4] Let (X, τ X ) and (Y, τ Y ) be two topological spaces with X Y =. Then on the disjoint union X Y, the sum topology is defined as follows: τ X Y = {G X Y : G X τ X and G Y τ Y }. We denote this topological space by X + Y. If X and Y are compact and Hausdorff, then X + Y is also compact and Hausdorff [3]. Further, There is an algebra isomorphism from C(X) C(Y ) onto C(X + Y ). In fact, for f C(X) and g C(Y ), h = (f, g) C(X + Y ) is defined as f(z), if z X; h(z) = g(z), if z Y. i.e. C(X + Y ) = C(X) C(Y ) Mathematics Subject Classification. 46J10. Key words and phrases. Cartesian product of function algebras, Sets of antisymmetry, Essential set.

2 26 Mathematics Today Vol.29(June-Dec-2013)25-30 If A and B are function algebras on X and Y respectively, then it is easy to check that A B is a subalgebra of C(X + Y ) [3], it contains constants and separates the points of X + Y. Also, as h = max{ f, g } = h for h = (f, g) A B, A B is closed in C(X + Y ). Thus A B is a function algebra on X + Y. In next result, we prove that the converse is also true. Theorem 1.2. Let A and B be subalgebras of C(X) and C(Y ) respectively and A B be a function algebra on X + Y. Then A and B are function algebras on X and Y respectively. Proof. Suppose that A B is a function algebra on X + Y. Note that f (f, 0) and g (0, g) are isometries from A to A B and B to A B respectively. i.e. f = f A = (f, 0) and g = g B = (0, g). Since maximum norm is complete, A and B are complete with respect to norm. Therefore A and B are closed subalgebras of C(X) and C(Y ) respectively. It is clear that 1 X = 1 Y = constant function 1. So A and B contain the constants. To show that A and B separates the points of X and Y respectively, let x 1, x 2 X with x 1 x 2. Then h = (f, g) A B h(x 1 ) h(x 2 ). But h(x 1 ) = f(x 1 ) and h(x 2 ) = f(x 2 ). Therefore f(x 1 ) f(x 2 ). Thus, A separates the points of X. Similarly, B separates the points of Y. Hence A and B are function algebras on X and Y respectively. Now onwards, we shall assume that A and B are function algebras on X and Y respectively. For concepts regarding function algebras we refer to ([1], [2]). 2. Sets of antisymmetry We know that if A and B are function algebras on X and Y respectively, then A B is a function algebra on X + Y. In this section, we discuss the relation between sets of antisymmetry for A and B with that of A B. We recall the definition of an antisymmetric set for A. Definition 2.1. [2] Let A be a function algebra on X. A set K X is said to be a set of antisymmetry for A if f A and f K is real, then f is constant on K. A is said to be antisymmetric algebra if X is a set of antisymmetry for A.

3 H. Mehta, R. Mehta & D. Patel - Essential set and antisymmetric sets Proposition 2.2. Let K 1 X and K 2 Y be sets of antisymmetry for A and B respectively. Then K 1 and K 2 are sets of antisymmetry for A B. Proof. We prove that K 1 is a set of antisymmetry for A B. Let h = (f, g) A B be real valued on K 1. We will show that h is constant on K 1. For any z K 1, h(z) = f(z). So f is real valued on K 1. Since K 1 is a set of antisymmetry for A and f A, f is constant on K 1. But h(z) = f(z), z K 1. Therefore h is constant on K 1. Thus K 1 is a set of antisymmetry for A B. Similarly, K 2 is also a set of antisymmetry for A B. Proposition 2.3. Let K X + Y be a set of antisymmetry for A B. Then K X and K Y are sets of antisymmetry for A and B respectively. Proof. We show that K X is a set of antisymmetry for A. Let f A and f be real valued on K X. Then h = (f, 0) A B. Also h = f on K X and h = 0 on K Y. So h is real valued on K. Since K is a set of antisymmetry for A B, h is constant on K. But h(z) = f(z), z K X and therefore f is constant on K X. Thus K X is a set of antisymmetry for A. Similarly, K Y is a set of antisymmetry for B. Remark 2.4. In general, if A and B are antisymmetric algebras, then A B is not an antisymmetric algebra as the function (1, 0) A B is real valued on X + Y but it is not constant on X + Y. Proposition 2.5. Let K be a set of antisymmetry for A B. Then either K X = or K Y =. Proof. Suppose K X and K Y. Let x K X and y K Y. Consider the function h = (1, 0) A B. Then h is real valued on X + Y and hence on K, h(x) = 1 and h(y) = 0 which contradicts the fact that K is a set of antisymmetry for A B. Therefore we must have either K X = or K Y =. Let K (A) denote the collection of all maximal sets of antisymmetry for A. Theorem 2.6. K (A B) = K (A) K (B). Proof. Let K K (A). Then by Proposition 2.2, K is a set of antisymmetry for A B. Since every set of antisymmetry is contained in some maximal set of antisymmetry, there exits a maximal set of antisymmetry F X + Y for A B such that K F. Clearly K F X and by Proposition 2.3, F X is a set of antisymmetry for A. Since K

4 28 Mathematics Today Vol.29(June-Dec-2013)25-30 is maximal, we must have K = F X. Therefore by Proposition 2.5, F Y =. So F = F X = K. Hence K is a maximal set of antisymmetry for A B. i.e. K K (A B). Similarly, if K K (B), then also K K (A B). Therefore K (A) K (B) K (A B). Conversely, let K K (A B). Then by Proposition 2.5, either K X = or K Y =. Suppose K Y =. Then K = K X is a set of antisymmetry for A, by Proposition 2.3. So there exits a maximal set of antisymmetry F X for A such that K X F. Then by above discussion F K (A B). Therefore K = F. Thus K K (A). Similarly if K X =, then we get K Y = K K (B). i.e. either K K (A) or K K (B). Therefore K (A B) K (A) K (B). Hence K (A B) = K (A) K (B). 3. Essential set In this section we relate the essential set of A B with that of A and B. Recall that the essential set for A is the hull of the largest closed ideal of C(X) contained in A [2]. So first we relate closed ideals of C(X) C(Y ) and C(X +Y ). We know that any closed ideal I of C(X) is of the form I F, for some closed subset F of X, where I F = {f C(X) : f F = 0}. Also note that hull I F = F [2]. Proposition 3.1. Every closed ideal in C(X +Y ) is the product of closed ideals in C(X) and C(Y ). Proof. Let I F and I K be closed ideals of C(X) and C(Y ) respectively. Then I F I K is a closed ideal of C(X + Y ), where F and K are subsets of X and Y respectively [4]. We shall prove that I F K = I F I K. Let h = (f, g) I F K. Then h F K = 0. For every z F, f(z) = h(z) = 0 and so f I F. Similarly g I K. Thus (f, g) I F I K. Therefore I F K I F I K. Now I F I K = {(f, g) C(X + Y ) : f F = 0, g K = 0}. Let (f, g) I F I K. Then f I F and g I K. i.e. f F = 0 and g K = 0. i.e. (f, g) F K = 0. i.e. (f, g) I F K. Therefore I F I K I F K. Hence I F I K = I F K.

5 H. Mehta, R. Mehta & D. Patel - Essential set and antisymmetric sets Conversely, let I H be a closed ideal of C(X+Y ) with H be a closed subset of X+Y. Let H X = F and H Y = K. Then F and K are closed subsets of X and Y respectively. Further, I H = I (H X) (H Y ) = I F K = I F I K. Thus every closed ideal of C(X + Y ) is of the form I F I K including the case of either of F = or K =. i.e. I F = C(X) or I K = C(Y ). We shall denote by E A, the essential set for A; this means I EA = {f C(X) : f EA = 0} is the largest closed ideal of C(X) contained in A. Theorem 3.2. E A B = E A E B. Proof. By Proposition 3.1, I EA I EB clearly contained in A B. So by definition of essential set, = I (EA E B ) is a closed ideal of C(X + Y ) and it is I (EA E B ) I EA B or E A B E A E B Conversely, I EA B = I F I K (by Proposition 3.1) where F = E A B X, K = E A B Y. Further I F A and I K B, as I EA B A B. Therefore again by definition of essential set, I F I EA, and I K I EB. Therefore I EA B I EA I EB = I EA E B. Therefore E A E B E A B. Since E A = X P A, where P A is the union of all singleton maximal sets of antisymmetry for A [2], the above result can also be proved using Theorem 2.6. Remarks 3.3. (i) If A and B are essential algebras, then A B is also an essential algebra, by Theorem 3.2. (ii) Every antisymmetric algebra is essential [1], but if A and B are antisymmetric, then A B is essential but not antisymmetric. Acknowledgement: The research is supported by the SAP programme to the department by UGC.

6 30 Mathematics Today Vol.29(June-Dec-2013)25-30 References [1] Andrew Browder, Introduction to Function Algebras, W.A.Benjamin, Inc., New York, [2] G.M.Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman and Co., [3] R.D.Mehta and Nirav Shah, Chacterazation of maximal ideal space and Šilov boundary for cartesian product of commutative Banach algebras, Prajna (J. of Sardar Patel University), 17 (2009), [4] Nirav Shah, Cartesian Product of Banach Algebras, M. Phil. Dissertation, Sardar Patel University, Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar , India address: address: address:

JOINT TOPOLOGICAL ZERO DIVISORS FOR A REAL BANACH ALGEBRA H. S. Mehta 1, R.D.Mehta 2, A. N. Roghelia 3

JOINT TOPOLOGICAL ZERO DIVISORS FOR A REAL BANACH ALGEBRA H. S. Mehta 1, R.D.Mehta 2, A. N. Roghelia 3 Mathematics Today Vol.30 June & December 2014; Published in June 2015) 54-58 ISSN 0976-3228 JOINT TOPOLOGICAL ZERO DIVISORS FOR A REAL BANACH ALGEBRA H. S. Mehta 1, R.D.Mehta 2, A. N. Roghelia 3 1,2 Department

More information

Compactifications of Discrete Spaces

Compactifications of Discrete Spaces Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 22, 1079-1084 Compactifications of Discrete Spaces U. M. Swamy umswamy@yahoo.com Ch. Santhi Sundar Raj, B. Venkateswarlu and S. Ramesh Department of Mathematics

More information

FACTORIZATION IN COMMUTATIVE BANACH ALGEBRAS

FACTORIZATION IN COMMUTATIVE BANACH ALGEBRAS FACTORIZATION IN COMMUTATIVE BANACH ALGEBRAS H. G. DALES, J. F. FEINSTEIN, AND H. L. PHAM Abstract. Let A be a (non-unital) commutative Banach algebra. We consider when A has a variety of factorization

More information

TOPOLOGY TAKE-HOME CLAY SHONKWILER

TOPOLOGY TAKE-HOME CLAY SHONKWILER TOPOLOGY TAKE-HOME CLAY SHONKWILER 1. The Discrete Topology Let Y = {0, 1} have the discrete topology. Show that for any topological space X the following are equivalent. (a) X has the discrete topology.

More information

C -ALGEBRAS MATH SPRING 2015 PROBLEM SET #6

C -ALGEBRAS MATH SPRING 2015 PROBLEM SET #6 C -ALGEBRAS MATH 113 - SPRING 2015 PROBLEM SET #6 Problem 1 (Positivity in C -algebras). The purpose of this problem is to establish the following result: Theorem. Let A be a unital C -algebra. For a A,

More information

UNIQUENESS OF THE UNIFORM NORM

UNIQUENESS OF THE UNIFORM NORM proceedings of the american mathematical society Volume 116, Number 2, October 1992 UNIQUENESS OF THE UNIFORM NORM WITH AN APPLICATION TO TOPOLOGICAL ALGEBRAS S. J. BHATT AND D. J. KARIA (Communicated

More information

Applications of Homotopy

Applications of Homotopy Chapter 9 Applications of Homotopy In Section 8.2 we showed that the fundamental group can be used to show that two spaces are not homeomorphic. In this chapter we exhibit other uses of the fundamental

More information

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n Lecture 2 1.10 Cell attachments Let X be a topological space and α : S n 1 X be a map. Consider the space X D n with the disjoint union topology. Consider further the set X B n and a function f : X D n

More information

Characterizing the Equational Theory

Characterizing the Equational Theory Introduction to Kleene Algebra Lecture 4 CS786 Spring 2004 February 2, 2004 Characterizing the Equational Theory Most of the early work on Kleene algebra was directed toward characterizing the equational

More information

Stone-Čech compactification of Tychonoff spaces

Stone-Čech compactification of Tychonoff spaces The Stone-Čech compactification of Tychonoff spaces Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto June 27, 2014 1 Completely regular spaces and Tychonoff spaces A topological

More information

Spectrally Bounded Operators on Simple C*-Algebras, II

Spectrally Bounded Operators on Simple C*-Algebras, II Irish Math. Soc. Bulletin 54 (2004), 33 40 33 Spectrally Bounded Operators on Simple C*-Algebras, II MARTIN MATHIEU Dedicated to Professor Gerd Wittstock on the Occasion of his Retirement. Abstract. A

More information

MAS3706 Topology. Revision Lectures, May I do not answer enquiries as to what material will be in the exam.

MAS3706 Topology. Revision Lectures, May I do not answer  enquiries as to what material will be in the exam. MAS3706 Topology Revision Lectures, May 208 Z.A.Lykova It is essential that you read and try to understand the lecture notes from the beginning to the end. Many questions from the exam paper will be similar

More information

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication 7. Banach algebras Definition 7.1. A is called a Banach algebra (with unit) if: (1) A is a Banach space; (2) There is a multiplication A A A that has the following properties: (xy)z = x(yz), (x + y)z =

More information

Remark on a Couple Coincidence Point in Cone Normed Spaces

Remark on a Couple Coincidence Point in Cone Normed Spaces International Journal of Mathematical Analysis Vol. 8, 2014, no. 50, 2461-2468 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.49293 Remark on a Couple Coincidence Point in Cone Normed

More information

Spring -07 TOPOLOGY III. Conventions

Spring -07 TOPOLOGY III. Conventions Spring -07 TOPOLOGY III Conventions In the following, a space means a topological space (unless specified otherwise). We usually denote a space by a symbol like X instead of writing, say, (X, τ), and we

More information

Peak Point Theorems for Uniform Algebras on Smooth Manifolds

Peak Point Theorems for Uniform Algebras on Smooth Manifolds Peak Point Theorems for Uniform Algebras on Smooth Manifolds John T. Anderson and Alexander J. Izzo Abstract: It was once conjectured that if A is a uniform algebra on its maximal ideal space X, and if

More information

NEW MAXIMUM THEOREMS WITH STRICT QUASI-CONCAVITY. Won Kyu Kim and Ju Han Yoon. 1. Introduction

NEW MAXIMUM THEOREMS WITH STRICT QUASI-CONCAVITY. Won Kyu Kim and Ju Han Yoon. 1. Introduction Bull. Korean Math. Soc. 38 (2001), No. 3, pp. 565 573 NEW MAXIMUM THEOREMS WITH STRICT QUASI-CONCAVITY Won Kyu Kim and Ju Han Yoon Abstract. In this paper, we first prove the strict quasi-concavity of

More information

Some Basic Properties of D -fuzzy metric spaces and Cantor s Intersection Theorem

Some Basic Properties of D -fuzzy metric spaces and Cantor s Intersection Theorem Advances in Fuzzy Mathematics (AFM). ISSN 0973-533X Volume 13, Number 1 (2018), pp. 49 58 Research India Publications http://www.ripublication.com/afm.htm Some Basic Properties of D -fuzzy metric spaces

More information

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X.

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X. A short account of topological vector spaces Normed spaces, and especially Banach spaces, are basic ambient spaces in Infinite- Dimensional Analysis. However, there are situations in which it is necessary

More information

A Note on Generalized Topology

A Note on Generalized Topology International Mathematical Forum, Vol. 6, 2011, no. 1, 19-24 A Note on Generalized Topology Gh. Abbaspour Tabadkan and A. Taghavi Faculty of Mathematics and Computer Sciences Damghan University, Damghan,

More information

1 The Local-to-Global Lemma

1 The Local-to-Global Lemma Point-Set Topology Connectedness: Lecture 2 1 The Local-to-Global Lemma In the world of advanced mathematics, we are often interested in comparing the local properties of a space to its global properties.

More information

The structure of ideals, point derivations, amenability and weak amenability of extended Lipschitz algebras

The structure of ideals, point derivations, amenability and weak amenability of extended Lipschitz algebras Int. J. Nonlinear Anal. Appl. 8 (2017) No. 1, 389-404 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2016.493 The structure of ideals, point derivations, amenability and weak amenability

More information

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS Problem 1. Give an example of a non-metrizable topological space. Explain. Problem 2. Introduce a topology on N by declaring that open sets are, N,

More information

THEOREMS, ETC., FOR MATH 516

THEOREMS, ETC., FOR MATH 516 THEOREMS, ETC., FOR MATH 516 Results labeled Theorem Ea.b.c (or Proposition Ea.b.c, etc.) refer to Theorem c from section a.b of Evans book (Partial Differential Equations). Proposition 1 (=Proposition

More information

Multiplication Operators with Closed Range in Operator Algebras

Multiplication Operators with Closed Range in Operator Algebras J. Ana. Num. Theor. 1, No. 1, 1-5 (2013) 1 Journal of Analysis & Number Theory An International Journal Multiplication Operators with Closed Range in Operator Algebras P. Sam Johnson Department of Mathematical

More information

Chapter 1. Sets and Mappings

Chapter 1. Sets and Mappings Chapter 1. Sets and Mappings 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Solutions to Tutorial 8 (Week 9)

Solutions to Tutorial 8 (Week 9) The University of Sydney School of Mathematics and Statistics Solutions to Tutorial 8 (Week 9) MATH3961: Metric Spaces (Advanced) Semester 1, 2018 Web Page: http://www.maths.usyd.edu.au/u/ug/sm/math3961/

More information

Commutative Banach algebras 79

Commutative Banach algebras 79 8. Commutative Banach algebras In this chapter, we analyze commutative Banach algebras in greater detail. So we always assume that xy = yx for all x, y A here. Definition 8.1. Let A be a (commutative)

More information

z -FILTERS AND RELATED IDEALS IN C(X) Communicated by B. Davvaz

z -FILTERS AND RELATED IDEALS IN C(X) Communicated by B. Davvaz Algebraic Structures and Their Applications Vol. 2 No. 2 ( 2015 ), pp 57-66. z -FILTERS AND RELATED IDEALS IN C(X) R. MOHAMADIAN Communicated by B. Davvaz Abstract. In this article we introduce the concept

More information

Continuous functions with compact support

Continuous functions with compact support @ Applied General Topology c Universidad Politécnica de Valencia Volume 5, No. 1, 2004 pp. 103 113 Continuous functions with compact support S. K. Acharyya, K. C. Chattopadhyaya and Partha Pratim Ghosh

More information

Math 421, Homework #9 Solutions

Math 421, Homework #9 Solutions Math 41, Homework #9 Solutions (1) (a) A set E R n is said to be path connected if for any pair of points x E and y E there exists a continuous function γ : [0, 1] R n satisfying γ(0) = x, γ(1) = y, and

More information

Category Theory (UMV/TK/07)

Category Theory (UMV/TK/07) P. J. Šafárik University, Faculty of Science, Košice Project 2005/NP1-051 11230100466 Basic information Extent: 2 hrs lecture/1 hrs seminar per week. Assessment: Written tests during the semester, written

More information

HYPO-EP OPERATORS 1. (Received 21 May 2013; after final revision 29 November 2014; accepted 7 October 2015)

HYPO-EP OPERATORS 1. (Received 21 May 2013; after final revision 29 November 2014; accepted 7 October 2015) Indian J. Pure Appl. Math., 47(1): 73-84, March 2016 c Indian National Science Academy DOI: 10.1007/s13226-015-0168-x HYPO-EP OPERATORS 1 Arvind B. Patel and Mahaveer P. Shekhawat Department of Mathematics,

More information

René Bartsch and Harry Poppe (Received 4 July, 2015)

René Bartsch and Harry Poppe (Received 4 July, 2015) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 46 2016, 1-8 AN ABSTRACT ALGEBRAIC-TOPOLOGICAL APPROACH TO THE NOTIONS OF A FIRST AND A SECOND DUAL SPACE III René Bartsch and Harry Poppe Received 4 July, 2015

More information

Tools from Lebesgue integration

Tools from Lebesgue integration Tools from Lebesgue integration E.P. van den Ban Fall 2005 Introduction In these notes we describe some of the basic tools from the theory of Lebesgue integration. Definitions and results will be given

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Wee November 30 Dec 4: Deadline to hand in the homewor: your exercise class on wee December 7 11 Exercises with solutions Recall that every normed space X can be isometrically

More information

DERIVATIONS. Introduction to non-associative algebra. Playing havoc with the product rule? BERNARD RUSSO University of California, Irvine

DERIVATIONS. Introduction to non-associative algebra. Playing havoc with the product rule? BERNARD RUSSO University of California, Irvine DERIVATIONS Introduction to non-associative algebra OR Playing havoc with the product rule? PART VI COHOMOLOGY OF LIE ALGEBRAS BERNARD RUSSO University of California, Irvine FULLERTON COLLEGE DEPARTMENT

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES CHRISTOPHER HEIL 1. Compact Sets Definition 1.1 (Compact and Totally Bounded Sets). Let X be a metric space, and let E X be

More information

Cartan sub-c*-algebras in C*-algebras

Cartan sub-c*-algebras in C*-algebras Plan Cartan sub-c*-algebras in C*-algebras Jean Renault Université d Orléans 22 July 2008 1 C*-algebra constructions. 2 Effective versus topologically principal. 3 Cartan subalgebras in C*-algebras. 4

More information

Topological Properties of Operations on Spaces of Continuous Functions and Integrable Functions

Topological Properties of Operations on Spaces of Continuous Functions and Integrable Functions Topological Properties of Operations on Spaces of Continuous Functions and Integrable Functions Holly Renaud University of Memphis hrenaud@memphis.edu May 3, 2018 Holly Renaud (UofM) Topological Properties

More information

Algebraic Topology M3P solutions 1

Algebraic Topology M3P solutions 1 Algebraic Topology M3P21 2015 solutions 1 AC Imperial College London a.corti@imperial.ac.uk 9 th February 2015 (1) (a) Quotient maps are continuous, so preimages of closed sets are closed (preimages of

More information

Axioms of separation

Axioms of separation Axioms of separation These notes discuss the same topic as Sections 31, 32, 33, 34, 35, and also 7, 10 of Munkres book. Some notions (hereditarily normal, perfectly normal, collectionwise normal, monotonically

More information

Functional Analysis HW #3

Functional Analysis HW #3 Functional Analysis HW #3 Sangchul Lee October 26, 2015 1 Solutions Exercise 2.1. Let D = { f C([0, 1]) : f C([0, 1])} and define f d = f + f. Show that D is a Banach algebra and that the Gelfand transform

More information

Kirk s Fixed Point Theorem in Generating Spaces of Semi-Norm Family

Kirk s Fixed Point Theorem in Generating Spaces of Semi-Norm Family Gen. Math. Notes, Vol. 21, No. 2, April 2014, pp.1-13 ISSN 2219-7184; Copyright c ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in Kirk s Fixed Point Theorem in Generating

More information

COUNTEREXAMPLES TO THE COARSE BAUM-CONNES CONJECTURE. Nigel Higson. Unpublished Note, 1999

COUNTEREXAMPLES TO THE COARSE BAUM-CONNES CONJECTURE. Nigel Higson. Unpublished Note, 1999 COUNTEREXAMPLES TO THE COARSE BAUM-CONNES CONJECTURE Nigel Higson Unpublished Note, 1999 1. Introduction Let X be a discrete, bounded geometry metric space. 1 Associated to X is a C -algebra C (X) which

More information

THE UNIQUE MINIMAL DUAL REPRESENTATION OF A CONVEX FUNCTION

THE UNIQUE MINIMAL DUAL REPRESENTATION OF A CONVEX FUNCTION THE UNIQUE MINIMAL DUAL REPRESENTATION OF A CONVEX FUNCTION HALUK ERGIN AND TODD SARVER Abstract. Suppose (i) X is a separable Banach space, (ii) C is a convex subset of X that is a Baire space (when endowed

More information

Approximate identities and BSE norms for Banach function algebras. H. G. Dales, Lancaster

Approximate identities and BSE norms for Banach function algebras. H. G. Dales, Lancaster Approximate identities and BSE norms for Banach function algebras H. G. Dales, Lancaster Work with Ali Ülger, Istanbul Fields Institute, Toronto 14 April 2014 Dedicated to Dona Strauss on the day of her

More information

On hyperconnected topological spaces

On hyperconnected topological spaces An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) Tomul LXII, 2016, f. 2, vol. 1 On hyperconnected topological spaces Vinod Kumar Devender Kumar Kamboj Received: 4.X.2012 / Accepted: 12.XI.2012 Abstract It

More information

On Linear Combination of Two Generalized Skew Projection

On Linear Combination of Two Generalized Skew Projection International Mathematical Forum 5 2010 no. 58 2875-2880 On Linear Combination of Two Generalized Skew Projection S. A. Alzuraiqi Department of Mathematics Sardar Patel University Vallabh Vidyanagar 388120

More information

Bounded and continuous functions on a locally compact Hausdorff space and dual spaces

Bounded and continuous functions on a locally compact Hausdorff space and dual spaces Chapter 6 Bounded and continuous functions on a locally compact Hausdorff space and dual spaces Recall that the dual space of a normed linear space is a Banach space, and the dual space of L p is L q where

More information

Semicontinuous functions and convexity

Semicontinuous functions and convexity Semicontinuous functions and convexity Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Lattices If (A, ) is a partially ordered set and S is a subset

More information

AUTOMATIC CONTINUITY OF HOMOMORPHISMS IN TOPOLOGICAL ALGEBRAS

AUTOMATIC CONTINUITY OF HOMOMORPHISMS IN TOPOLOGICAL ALGEBRAS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 119, Number 1, September 1993 AUTOMATIC CONTINUITY OF HOMOMORPHISMS IN TOPOLOGICAL ALGEBRAS S. J. BHATT (Communicated by Palle E. T. Jorgensen) Abstract.

More information

SOME EXERCISES FOR THE MINICOURSE: BANACH REPRESENTATIONS OF DYNAMICAL SYSTEMS. Contents 1. Exercises 1 2. Some Solutions 4

SOME EXERCISES FOR THE MINICOURSE: BANACH REPRESENTATIONS OF DYNAMICAL SYSTEMS. Contents 1. Exercises 1 2. Some Solutions 4 SOME EXERCISES FOR THE MINICOURSE: BANACH REPRESENTATIONS OF DYNAMICAL SYSTEMS MICHAEL MEGRELISHVILI Contents 1. Exercises 1 2. Some Solutions 4 1. Exercises Exercise 1.1. Show that the one point compactification

More information

Boolean Algebras, Boolean Rings and Stone s Representation Theorem

Boolean Algebras, Boolean Rings and Stone s Representation Theorem Boolean Algebras, Boolean Rings and Stone s Representation Theorem Hongtaek Jung December 27, 2017 Abstract This is a part of a supplementary note for a Logic and Set Theory course. The main goal is to

More information

C p (X, Z) Kevin Michael Drees. A Dissertation

C p (X, Z) Kevin Michael Drees. A Dissertation C p (X, Z) Kevin Michael Drees A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August

More information

3 Hausdorff and Connected Spaces

3 Hausdorff and Connected Spaces 3 Hausdorff and Connected Spaces In this chapter we address the question of when two spaces are homeomorphic. This is done by examining two properties that are shared by any pair of homeomorphic spaces.

More information

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ Matthew Straughn Math 402 Homework 5 Homework 5 (p. 429) 13.3.5, 13.3.6 (p. 432) 13.4.1, 13.4.2, 13.4.7*, 13.4.9 (p. 448-449) 14.2.1, 14.2.2 Exercise 13.3.5. Let (X, d X ) be a metric space, and let f

More information

CHAPTER II THE HAHN-BANACH EXTENSION THEOREMS AND EXISTENCE OF LINEAR FUNCTIONALS

CHAPTER II THE HAHN-BANACH EXTENSION THEOREMS AND EXISTENCE OF LINEAR FUNCTIONALS CHAPTER II THE HAHN-BANACH EXTENSION THEOREMS AND EXISTENCE OF LINEAR FUNCTIONALS In this chapter we deal with the problem of extending a linear functional on a subspace Y to a linear functional on the

More information

A note on a construction of J. F. Feinstein

A note on a construction of J. F. Feinstein STUDIA MATHEMATICA 169 (1) (2005) A note on a construction of J. F. Feinstein by M. J. Heath (Nottingham) Abstract. In [6] J. F. Feinstein constructed a compact plane set X such that R(X), the uniform

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

On z -ideals in C(X) F. A z a r p a n a h, O. A. S. K a r a m z a d e h and A. R e z a i A l i a b a d (Ahvaz)

On z -ideals in C(X) F. A z a r p a n a h, O. A. S. K a r a m z a d e h and A. R e z a i A l i a b a d (Ahvaz) F U N D A M E N T A MATHEMATICAE 160 (1999) On z -ideals in C(X) by F. A z a r p a n a h, O. A. S. K a r a m z a d e h and A. R e z a i A l i a b a d (Ahvaz) Abstract. An ideal I in a commutative ring

More information

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts.

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts. RIEMANN SURFACES 2. Week 2. Basic definitions 2.1. Smooth manifolds. Complex manifolds. Let X be a topological space. A (real) chart of X is a pair (U, f : U R n ) where U is an open subset of X and f

More information

Math 203A - Solution Set 1

Math 203A - Solution Set 1 Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

More information

CORRECTIONS AND ADDITION TO THE PAPER KELLERER-STRASSEN TYPE MARGINAL MEASURE PROBLEM. Rataka TAHATA. Received March 9, 2005

CORRECTIONS AND ADDITION TO THE PAPER KELLERER-STRASSEN TYPE MARGINAL MEASURE PROBLEM. Rataka TAHATA. Received March 9, 2005 Scientiae Mathematicae Japonicae Online, e-5, 189 194 189 CORRECTIONS AND ADDITION TO THE PAPER KELLERER-STRASSEN TPE MARGINAL MEASURE PROBLEM Rataka TAHATA Received March 9, 5 Abstract. A report on an

More information

P.S. Gevorgyan and S.D. Iliadis. 1. Introduction

P.S. Gevorgyan and S.D. Iliadis. 1. Introduction MATEMATIČKI VESNIK MATEMATIQKI VESNIK 70, 2 (208), 0 9 June 208 research paper originalni nauqni rad GROUPS OF GENERALIZED ISOTOPIES AND GENERALIZED G-SPACES P.S. Gevorgyan and S.D. Iliadis Abstract. The

More information

7 Complete metric spaces and function spaces

7 Complete metric spaces and function spaces 7 Complete metric spaces and function spaces 7.1 Completeness Let (X, d) be a metric space. Definition 7.1. A sequence (x n ) n N in X is a Cauchy sequence if for any ɛ > 0, there is N N such that n, m

More information

NORMED ALGEBRAS OF DIFFERENTIABLE FUNCTIONS ON COMPACT PLANE SETS

NORMED ALGEBRAS OF DIFFERENTIABLE FUNCTIONS ON COMPACT PLANE SETS NORMED ALGEBRAS O DIERENTIABLE UNCTIONS ON COMPACT PLANE SETS H. G. DALES AND J.. EINSTEIN Abstract. We investigate the completeness and completions of the normed algebras (D (1) (X), ) for perfect, compact

More information

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1 MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION ELEMENTS OF SOLUTION Problem 1 1. Let X be a Hausdorff space and K 1, K 2 disjoint compact subsets of X. Prove that there exist disjoint open sets U 1 and

More information

Real Analysis Chapter 4 Solutions Jonathan Conder

Real Analysis Chapter 4 Solutions Jonathan Conder 2. Let x, y X and suppose that x y. Then {x} c is open in the cofinite topology and contains y but not x. The cofinite topology on X is therefore T 1. Since X is infinite it contains two distinct points

More information

Polishness of Weak Topologies Generated by Gap and Excess Functionals

Polishness of Weak Topologies Generated by Gap and Excess Functionals Journal of Convex Analysis Volume 3 (996), No. 2, 283 294 Polishness of Weak Topologies Generated by Gap and Excess Functionals Ľubica Holá Mathematical Institute, Slovak Academy of Sciences, Štefánikovà

More information

Continuous Functions on Metric Spaces

Continuous Functions on Metric Spaces Continuous Functions on Metric Spaces Math 201A, Fall 2016 1 Continuous functions Definition 1. Let (X, d X ) and (Y, d Y ) be metric spaces. A function f : X Y is continuous at a X if for every ɛ > 0

More information

The complexity of classification problem of nuclear C*-algebras

The complexity of classification problem of nuclear C*-algebras The complexity of classification problem of nuclear C*-algebras Ilijas Farah (joint work with Andrew Toms and Asger Törnquist) Nottingham, September 6, 2010 C*-algebras H: a complex Hilbert space (B(H),

More information

BANACH FUNCTION ALGEBRAS WITH DENSE INVERTIBLE GROUP

BANACH FUNCTION ALGEBRAS WITH DENSE INVERTIBLE GROUP PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 BANACH FUNCTION ALGEBRAS WITH DENSE INVERTIBLE GROUP H. G. DALES AND J. F. FEINSTEIN Abstract.

More information

Neighborhood spaces and convergence

Neighborhood spaces and convergence Volume 35, 2010 Pages 165 175 http://topology.auburn.edu/tp/ Neighborhood spaces and convergence by Tom Richmond and Josef Šlapal Electronically published on July 14, 2009 Topology Proceedings Web: http://topology.auburn.edu/tp/

More information

The Riesz representation theorem. V.S. Sunder Institute of Mathematical Sciences Madras INDIA

The Riesz representation theorem. V.S. Sunder Institute of Mathematical Sciences Madras INDIA The Riesz representation theorem V.S. Sunder Institute of Mathematical Sciences Madras 600113 INDIA April 10, 2008 1 Introduction This paper is possibly of only pedagogical interest. While giving a course

More information

Filters in Analysis and Topology

Filters in Analysis and Topology Filters in Analysis and Topology David MacIver July 1, 2004 Abstract The study of filters is a very natural way to talk about convergence in an arbitrary topological space, and carries over nicely into

More information

AN EXTENSION OF THE NOTION OF ZERO-EPI MAPS TO THE CONTEXT OF TOPOLOGICAL SPACES

AN EXTENSION OF THE NOTION OF ZERO-EPI MAPS TO THE CONTEXT OF TOPOLOGICAL SPACES AN EXTENSION OF THE NOTION OF ZERO-EPI MAPS TO THE CONTEXT OF TOPOLOGICAL SPACES MASSIMO FURI AND ALFONSO VIGNOLI Abstract. We introduce the class of hyper-solvable equations whose concept may be regarded

More information

VARIETIES OF ABELIAN TOPOLOGICAL GROUPS AND SCATTERED SPACES

VARIETIES OF ABELIAN TOPOLOGICAL GROUPS AND SCATTERED SPACES Bull. Austral. Math. Soc. 78 (2008), 487 495 doi:10.1017/s0004972708000877 VARIETIES OF ABELIAN TOPOLOGICAL GROUPS AND SCATTERED SPACES CAROLYN E. MCPHAIL and SIDNEY A. MORRIS (Received 3 March 2008) Abstract

More information

On Measurable Separable-Normal Radon Measure Manifold

On Measurable Separable-Normal Radon Measure Manifold Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 1, Number 1 (016), pp. 1095-1106 Research India Publications http://www.ripublication.com On Measurable Separable-Normal Radon Measure

More information

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI 1. Maximal Tori By a torus we mean a compact connected abelian Lie group, so a torus is a Lie group that is isomorphic to T n = R n /Z n. Definition 1.1.

More information

NUMERICAL RADIUS PRESERVING LINEAR MAPS ON BANACH ALGEBRAS. Sahand University of Technology New City of Sahand, Tabriz, 51335/1996, IRAN

NUMERICAL RADIUS PRESERVING LINEAR MAPS ON BANACH ALGEBRAS. Sahand University of Technology New City of Sahand, Tabriz, 51335/1996, IRAN International Journal of Pure and Applied Mathematics Volume 88 No. 2 2013, 233-238 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v88i2.6

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

MATH 433 Applied Algebra Lecture 14: Functions. Relations.

MATH 433 Applied Algebra Lecture 14: Functions. Relations. MATH 433 Applied Algebra Lecture 14: Functions. Relations. Cartesian product Definition. The Cartesian product X Y of two sets X and Y is the set of all ordered pairs (x,y) such that x X and y Y. The Cartesian

More information

This chapter contains a very bare summary of some basic facts from topology.

This chapter contains a very bare summary of some basic facts from topology. Chapter 2 Topological Spaces This chapter contains a very bare summary of some basic facts from topology. 2.1 Definition of Topology A topology O on a set X is a collection of subsets of X satisfying the

More information

Topologies, ring norms and algebra norms on some algebras of continuous functions.

Topologies, ring norms and algebra norms on some algebras of continuous functions. Topologies, ring norms and algebra norms on some algebras of continuous functions. Javier Gómez-Pérez Javier Gómez-Pérez, Departamento de Matemáticas, Universidad de León, 24071 León, Spain. Corresponding

More information

Final Exam Practice Problems Math 428, Spring 2017

Final Exam Practice Problems Math 428, Spring 2017 Final xam Practice Problems Math 428, Spring 2017 Name: Directions: Throughout, (X,M,µ) is a measure space, unless stated otherwise. Since this is not to be turned in, I highly recommend that you work

More information

Lecture 3: Flat Morphisms

Lecture 3: Flat Morphisms Lecture 3: Flat Morphisms September 29, 2014 1 A crash course on Properties of Schemes For more details on these properties, see [Hartshorne, II, 1-5]. 1.1 Open and Closed Subschemes If (X, O X ) is a

More information

RESTRICTED UNIFORM BOUNDEDNESS IN BANACH SPACES

RESTRICTED UNIFORM BOUNDEDNESS IN BANACH SPACES RESTRICTED UNIFORM BOUNDEDNESS IN BANACH SPACES OLAV NYGAARD AND MÄRT PÕLDVERE Abstract. Precise conditions for a subset A of a Banach space X are known in order that pointwise bounded on A sequences of

More information

A locally convex topology and an inner product 1

A locally convex topology and an inner product 1 Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016, pp. 3327-3338 Research India Publications http://www.ripublication.com/gjpam.htm A locally convex topology and

More information

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key NAME: Mathematics 205A, Fall 2008, Final Examination Answer Key 1 1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies U and V on X such that the identity map J : (X, U)

More information

Banach Journal of Mathematical Analysis ISSN: (electronic)

Banach Journal of Mathematical Analysis ISSN: (electronic) Banach J. Math. Anal. 7 (2013), no. 1, 59 72 Banach Journal of Mathematical Analysis ISSN: 1735-8787 (electronic) www.emis.de/journals/bjma/ WEIGHTED COMPOSITION OPERATORS BETWEEN VECTOR-VALUED LIPSCHITZ

More information

Rings and groups. Ya. Sysak

Rings and groups. Ya. Sysak Rings and groups. Ya. Sysak 1 Noetherian rings Let R be a ring. A (right) R -module M is called noetherian if it satisfies the maximum condition for its submodules. In other words, if M 1... M i M i+1...

More information

AW -Convergence and Well-Posedness of Non Convex Functions

AW -Convergence and Well-Posedness of Non Convex Functions Journal of Convex Analysis Volume 10 (2003), No. 2, 351 364 AW -Convergence Well-Posedness of Non Convex Functions Silvia Villa DIMA, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy villa@dima.unige.it

More information

ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS. Hyungsoo Song

ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS. Hyungsoo Song Kangweon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 161 167 ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS Hyungsoo Song Abstract. The purpose of this paper is to study and characterize the notions

More information

s P = f(ξ n )(x i x i 1 ). i=1

s P = f(ξ n )(x i x i 1 ). i=1 Compactness and total boundedness via nets The aim of this chapter is to define the notion of a net (generalized sequence) and to characterize compactness and total boundedness by this important topological

More information

Math 203A - Solution Set 1

Math 203A - Solution Set 1 Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

More information

Elliott s program and descriptive set theory I

Elliott s program and descriptive set theory I Elliott s program and descriptive set theory I Ilijas Farah LC 2012, Manchester, July 12 a, a, a, a, the, the, the, the. I shall need this exercise later, someone please solve it Exercise If A = limna

More information

COMPLEMENTED SUBALGEBRAS OF THE BAIRE-1 FUNCTIONS DEFINED ON THE INTERVAL [0,1]

COMPLEMENTED SUBALGEBRAS OF THE BAIRE-1 FUNCTIONS DEFINED ON THE INTERVAL [0,1] COMPLEMENTED SUBALGEBRAS OF THE BAIRE- FUNCTIONS DEFINED ON THE INTERVAL [0,] H. R. SHATERY Received 27 April 2004 and in revised form 26 September 2004 We prove that if the Banach algebra of bounded real

More information

TRACIAL POSITIVE LINEAR MAPS OF C*-ALGEBRAS

TRACIAL POSITIVE LINEAR MAPS OF C*-ALGEBRAS proceedings of the american mathematical society Volume 87. Number I. January 1983 TRACIAL POSITIVE LINEAR MAPS OF C*-ALGEBRAS MAN-DUEN CHOI1 AND SZE-KAI TSUI2 Abstract. A positive linear map 0: 21-33

More information

Measurable functions are approximately nice, even if look terrible.

Measurable functions are approximately nice, even if look terrible. Tel Aviv University, 2015 Functions of real variables 74 7 Approximation 7a A terrible integrable function........... 74 7b Approximation of sets................ 76 7c Approximation of functions............

More information