Complementary M H Measurements at ILC

Size: px
Start display at page:

Download "Complementary M H Measurements at ILC"

Transcription

1 Complementary M H Measurements at ILC (i) Threshold cross-section, ii) Direct reconstruction Graham W. Wilson October 26, 217 Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

2 Introduction Higgs Mass Measurements LHC is measuring, and will continue to measure M H using direct mass reconstruction in the γγ and 4-lepton channels. Current PDG average has an error of 24 MeV based on RunI data. ILC can measure the Higgs mass cleanly using the recoil mass in the dilepton channels. H2 precision estimate is 14 MeV. Sensitivity per fb 1 depends on beam spectrum. Higher s of limited utility. Today: Alternative and Complementary ILC Higgs Mass Measurements M H from the Threshold Cross-Section Direct reconstruction of M H at ILC. Assume 1M produced Higgs particles over the course of the program. Focus for now on 4l and µµ. For direct reconstruction, the issue for each channel, is can one compete statistically and systematically in terms of M H precision with LHC. M = σ M / N Typically with a factor of 1 more events at LHC, one needs ILC detector mass resolution to be 1 times better than LHC. LHC systematic wall?.1.1 σ M? Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

3 Motivation for Precise Higgs Mass Measurement Why measure M H as precisely as possible? Why not? It is naively not as important as a test of the SM as the top mass and the W mass, but it is something that is directly accessible in a relatively optimized way at the initial-stage of an ILC starting at s = 25 GeV. Parametric uncertainties from M H enter coupling determinations due to the strong phase-space related dependence in the ZZ* and WW* decays. See eg. Almeida, Lee, Pokorski, Wells, PRD89, 336 (214). ( ΓZZ Γ ZZ ( ΓWW Γ WW ) ( ) MH = 15.3 M H ) ( ) MH = 13.7 So for.1% parametric uncertainty from M H on these partial widths, need error on M H of 8 MeV. M H (1) (2) Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

4 Introduction: M H from Threshold Cross-section Nominal threshold for ZH production is M H + M Z GeV 25 Measurement of the ZH cross-section can be used to determine M H. M H will likely be known to at least 1 MeV. So no need to scan if sole model-dependence is M H Modest statistics - so statistics dominated measurement. Less need and less advantage (than WW threshold) for a (polarized) scan. cross section [fb] e + +e ZH = 125 GeV m H = 4.3 MeV Γ H = 1 MeV Γ H = 1 GeV Γ H = 1 GeV Γ H s [GeV] Optimal s GeV. How accurate? How much lumi? Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

5 Threshold Cross-section Statistical Sensitivity Study Calculate e + e ν µ ν µ H (ZH-like) cross-sections with Whizard 2.5 B(Z ν µ ν µ ) =.67 Include ISR. For now have neglected beam-spread and beam-strahlung Study various beam polarization scenarios Statistical sensitivity from signal statistics depends on the statistical error on the cross-section measurement and the slope of the cross-section dependence on M H M H = σ dσ dm H 1 1 εl Similar considerations for M W at LEP161 (unpolarized beams) led to M W = 29 MeV / εl(fb 1 ) Cross-section (fb) ZH Production (ECM=216.5 GeV) 8: MH (GeV) Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

6 Threshold Cross-section Study Method Polynomial fits to e + e ν µ ν µ H cross-section vs M H 125. GeV for each s Errors are Whizard integration errors Increase polynomial degree if resulting χ 2 lowered by more than 1 Statistical sensitivity coefficient, at M H = 125. GeV, α 1 σ dσ dm H, is given by A/ A1. Cross-section (fb) ZH Production (ECM=216.5 GeV) -8, / 6 A A A A A E-1 A E-1 A6.9448E-2 A7.1264E-1 A E-2 A E-2 A1.7765E-3 Example for (-8% e, +3% e + ) at s = GeV: α = 1.8 GeV/ fb α ZH α B(Z ν µ ν µ ) = 28 MeV/ fb σ = 3.6 fb. σ ZH = 53.3 fb MH (GeV) Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

7 Optimize s Setting Check s dependence of Higgs mass sensitivity for ZH Optimal s GeV Roughly nominal +.5 GeV (same as WW) Statistical sensitivity factor, 28 MeV/ fb, is ten times less precise (cf 29 MeV/ fb). Substantial integrated luminosity needed to target 25 MeV and below. Higgs Mass Sensitivity (GeV fb -1/2 ) Optimize Center-of-Mass Energy (m H = 125. GeV) For -8%(L) e, +3%(R) e + s (GeV) Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

8 Check e + e ν e ν e H Process has contributions from ZH and WW-fusion. WW-fusion contribution dilutes M H sensitivity significantly. (1.58 GeV/ fb cf 1.8 GeV/ fb for e + e ν µ ν µ H) Cross-section (fb) nue-nue-h Production (ECM=216.5 GeV) -8%, +3% / 12 A E A E-1 A E-1 2 A3.74E E-2 A E E Higgs Mass Sensitivity (GeV fb -1/2 ) Optimize Center-of-Mass Energy (m H = 125. GeV) MH (GeV) s (GeV) [Initial indication: e + e e + e H is ZH-like with no significant dilution from ZZ fusion] Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

9 Separating ZH from WW-fusion Events per bin 12 1 ECM=216.5 GeV. ZH. H to 4-l Entries Mean RMS Underflow Overflow Events per bin ECM=216.5 GeV. nue nue H. H to 4-l Entries Mean RMS Underflow Overflow p (GeV) Higgs p (GeV) Higgs Scope for kinematic cuts to reduce WW-fusion contribution and/or categorize events as more or less ZH-like recuperating some of the lost sensitivity It may be feasible by kinematic cuts/criteria to increase the slope of σ vs M H in some channels (suppressing ISR, mass cuts on the Z etc.) NB So far no considerations at all about background contributions NOR on event selection efficiency. Study naively assumes 1% efficiency for all channels, and no background Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

10 Higgs Sensitivity Numbers from Threshold Cross-section For various beam polarization configurations. For ZH, beam polarization is of some use. Mass Sensitivities ( s = GeV, M H = 125. GeV) Setting α HZ [MeV/ fb] M H [MeV] (5 fb 1 ) M H [MeV] (.5 ab 1 ) 8, , , , , , , , , , , , NB. Signal statistical error only. 1% efficiency, no background. Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

11 To do If you agree that this is of some interest, need some estimate of backgrounds, to clarify feasibility. Clearly need more channel-by-channel event selection procedure to keep backgrounds under control. Note that running at threshold is likely not so attractive for other measurements... Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

12 Direct Reconstruction. LHC 4-lepton mass What can we do at ILC? Can we use other channels? σ M 2. GeV Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

13 Direct Reconstruction. ILC 4-lepton mass Events per bin ECM=25 GeV. nnh. H to 4-l Entries 4 Mean RMS Underflow 641 Overflow 584 Yes indeed. An ILC detector gives mass resolution about 1 times better than LHC! m Higgs (GeV) σ M.19 GeV Estimated using PYTHIA8 events including FSR. Assumes tracking-like momentum resolution for electrons and muons. ECAL-like resolution for photons. Possibly OK for µµµµ, likely underestimate for eeµµ and eeee. Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

14 Numerology LHC cross-sections are substantial. ggfusion (8 TeV) = 21 pb ggfusion (13 TeV) = 49 pb ggfusion (14 TeV) = 55 pb. acceptance*efficiency modest - more so (I think) at 13 TeV. Backgrounds often substantial (especially γγ) Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

15 Simulations Generated Higgs events both with Whizard and Pythia8. 4-vector smearing based on ILD type tracker, ECAL, HCAL and PFA resolutions. Pythia8 samples include FSR (final-state radiation). Most promising channels appear to be Higgs decays to µ + µ and Higgs to 4 leptons (assume for now the same p resolution for e and µ...). The 2-body decay has higher momenta (worse resolution). Four-leptons have lower momenta (better resolution). Here Whizard ZH samples with NO FSR. ECM=25 GeV. ZH. H to mu-mu s=25 GeV. ZH with H 4l Events/.2 GeV Entries 1 Mean Std Dev χ 2 / ndf / 91 Constant Events/.2 GeV Entries 1 Mean Std Dev χ 2 / ndf / 8 Constant Mean Mean Sigma Sigma Di-Muon Mass (GeV) σ M =.168 GeV Four-Lepton Mass (GeV) σ M =.121 GeV Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

16 s dependence? Whizard ZH samples (No FSR) with H µµµµ. At s = 25 GeV, σ M =.121 GeV. Now s = 35 GeV and s = 5 GeV. Events/.2 GeV s=35 GeV. ZH with H 4l Entries 1 Mean Std Dev χ 2 / ndf / 83 Constant Mean Sigma Events/.2 GeV s=5 GeV. ZH with H 4l Entries 1 Mean Std Dev χ 2 / ndf / 85 Constant Mean Sigma Four-Lepton Mass (GeV) Four-Lepton Mass (GeV) σ M =.134 GeV σ M =.156 GeV This is in contrast to the recoil mass. And additionally the WW-fusion production can be utilized at high s (lower p H compared to ZH at high s) Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

17 Simulations with FSR WW-fusion events with Pythia8. These include FSR (final-state radiation). ISR photons are flagged at truth level and not included in the mass estimation. Most promising channels appear to be Higgs decays to µ + µ and Higgs to 4 leptons. The 2-body decay has higher momenta (worse resolution). Four-leptons have lower momenta (better resolution). But more leptons so more FSR. Following are µ + µ and 4l based on tracker + FSR photons (4e, 2e2µ and 4µ). Better ECAL resolution would help... Estimate σ M from Voigtian fit (BW convolved with Gaussian). Events per bin 16 Entries ECM=25 GeV. nnh. H to mu mu Mean RMS Underflow 12 Overflow Entries 1 Events per bin ECM=25 GeV. nnh. H to 4-l Mean RMS Underflow 168 Overflow (GeV) m Higgs (GeV) m Higgs σ M =.21 GeV σ M =.19 GeV Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

18 Full simulations with FSR: Work in progress Use ILD full simulation and reconstruction. Detector ILD l4 v2. ilcsoft v Two samples at s = 25 GeV with Pythia8 including FSR. ZH for decay to µ + µ and WW-fusion for decay to 4µ. First look. Use mass estimate using just the muonic system ignoring any FSR photons. Mass resolutions estimated for events where the muon tracks alone satisfy a Higgs mass constraint,(p fit >.5%). Most of rejected events will have significant FSR and will need different treatment. Events/3 MeV s = 25 GeV, Z H, H µ + µ hrecomass Entries 7597 Mean 125 Std Dev χ / ndf / 81 Constant Mean Sigma Events/3 MeV s = 25 GeV, ν e ν e H, H Z Z* 4µ hrecomass Entries 656 Mean 125 Std Dev χ / ndf / 78 Constant Mean Sigma Measured Mass (GeV) Measured Mass (GeV) σ M =.23 GeV σ M =.16 GeV Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

19 BRs, mass resolution estimates, M guesstimates Assume 1M produced (and detected) Higgs particles for ILC. Neglect background. LHC mass resolution estimate based on CMS. Mass Uncertainty Prospects Decay Mode BR (SM) LHC σ M [GeV] σ M [GeV] M H [MeV] bb.5824 X 3.1 (4.1) cc.289 X 3.1 (18.2) gg.819 X 3.1 (1.8) γγ µ + µ X µ + µ µ + µ e + e µ + µ (.19) 24.7 e + e e + e (.22) 38.6 Others X Averaging the four leptonic channels one gets an overall statistical uncertainty of 1.9 MeV. Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

20 Caveats Other M H Measurement Methods at ILC Full reconstruction of 4-jet events was studied for TESLA. Potential for direct reconstruction with H bb but this is a systematically challenging approach. Event Selection 4l channel. Common wisdom - should be straightforward. I agree. µ + µ channel. To date, ILC studies have not demonstrated efficient isolation of this signal from significant residual backgrounds. It has yet to be shown that this channel can be isolated cleanly. Studies have emphasized ν e ν e H at s >= 5 GeV. My take: I believe that ZH production at s = 25 GeV should be more tractable and deserves in-depth study for this µ + µ channel Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

21 Summary and Conclusions Threshold Threshold Cross-Section Statistical Sensitivity Factor is 28 MeV/ fb 1 M H uncertainty from threshold below 5 MeV will likely need at least 5 fb 1 Significant dedicated luminosity needed to be competitive with recoil mass Firmer conclusions would need more detailed study with event selection and background estimates Would be good to understand if threshold shape is sensitive to EFT parameters. Direct Reconstruction Direct reconstruction of the Higgs mass in golden channels looks to be very competitive with LHC and other ILC methods. One single event can give a mass resolution better than the current world average. This deserves more study with full simulation - started. Electron reconstruction (tracking) needs more attention. ECAL energy resolution is an issue for FSR reconstruction. Even better momentum resolution very valuable. Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

22 Backup Slides Graham W. Wilson Complementary M H Measurements at ILC October 26, / 21

Investigating In-Situ s Determination with mm(g)

Investigating In-Situ s Determination with mm(g) 1 Investigating In-Situ s Determination with mm(g) ILC physics capabilities will benefit from a well understood centre-of-mass energy Preferably determined from collision events. Measure precisely W, top,

More information

Enabling Precision W and Z Physics at ILC with In-Situ Center-of-Mass Energy Measurements

Enabling Precision W and Z Physics at ILC with In-Situ Center-of-Mass Energy Measurements 1 Enabling Precision W and Z Physics at ILC with In-Situ Center-of-Mass Energy Measurements (plus some comments related to accelerator design at low energy) ILC@DESY General Project Meeting Graham W. Wilson

More information

Measurement of Higgs couplings and mass in e + e collisions at CLIC in the s range of 350 GeV - 3 TeV

Measurement of Higgs couplings and mass in e + e collisions at CLIC in the s range of 350 GeV - 3 TeV Measurement of iggs couplings and mass in collisions at CLIC in the s range of 350 GeV - 3 TeV Tomáš Laštovička Institute of Physics, Academy of Sciences, Prague E-mail: lastovic@fzu.cz on behalf of The

More information

Detector Requirements for Precision Higgs Boson Physics

Detector Requirements for Precision Higgs Boson Physics Detector Requirements for Precision Higgs Boson Physics Status of Higgs property measurements Difference and complementary of pp and ee collisions Physics drivers of detector performances Jianming Qian

More information

Prospects for Precision m W Measurements at ILC

Prospects for Precision m W Measurements at ILC 1 Prospects for Precision m W Measurements at ILC ILD SiD Graham W. Wilson, University of Kansas, Snowmass EF Workshop, BNL, April 4 th 2013 Testing Nature at ILC. Precision Measurements 2 Can measure

More information

HL-LHC Physics with CMS Paolo Giacomelli (INFN Bologna) Plenary ECFA meeting Friday, November 23rd, 2012

HL-LHC Physics with CMS Paolo Giacomelli (INFN Bologna) Plenary ECFA meeting Friday, November 23rd, 2012 @ HL-LHC Physics with CMS Paolo Giacomelli (INFN Bologna) Plenary ECFA meeting Friday, November 23rd, 2012 Many thanks to several colleagues, in particular: M. Klute and J. Varela Outline Where we stand

More information

Search for the Standard Model Higgs in WW (lν)(lν)

Search for the Standard Model Higgs in WW (lν)(lν) Search for the Standard Model Higgs in WW (lν)(lν) v l v l Yanyan Gao (Fermilab) February 11, 13 HEP Lunch seminar at University of Chicago The SM Higgs Production and Decays at LHC "(pp! H+X) [pb] The

More information

Search for b Ø bz. CDF note Adam Scott, David Stuart UCSB. 1 Exotics Meeting. Blessing

Search for b Ø bz. CDF note Adam Scott, David Stuart UCSB. 1 Exotics Meeting. Blessing Search for b Ø bz CDF note 8465 Adam Scott, David Stuart UCSB Exotics Meeting Blessing 1 Exotics Meeting Analysis in a Nutshell Looking for new particles decaying to Z+jets Select Z s in the dielectron

More information

ATLAS-CONF October 15, 2010

ATLAS-CONF October 15, 2010 ATLAS-CONF-2010-096 October 15, 2010 Data-driven background estimation for the H τ + τ τ h search at 7 TeV with the ATLAS detector Ian Howley 7 December 2010 1 Motivation One of the primary LHC physics

More information

Top quark mass measurements at and above threshold at CLIC

Top quark mass measurements at and above threshold at CLIC Eur. Phys. J. C manuscript No. (will be inserted by the editor) Top quark mass measurements at and above threshold at CLIC Katja Seidel 1, Frank Simon a,1, Michal Tesař 1, Stephane Poss 2 1 Max-Planck-Institut

More information

Electroweak results. Luca Lista. INFN - Napoli. LHC Physics

Electroweak results. Luca Lista. INFN - Napoli. LHC Physics Electroweak results Luca Lista INFN - Napoli EWK processes at LHC p p W and Z production in pp collisions proceeds mainly form the scattering of a valence quark with a sea anti-quark The involved parton

More information

Discovery potential for SM Higgs with H ZZ (*) (*) 4l at CMS

Discovery potential for SM Higgs with H ZZ (*) (*) 4l at CMS Discovery potential for SM Higgs with H ZZ (*) (*) 4l at CMS Paolo Meridiani (INFN Roma1) on behalf of CMS collaboration Physics @ LHC 2006, Kracow, July 3 rd 2006 Paolo Meridiani - INFN Roma1 1 Introduction

More information

Higgs Coupling Measurements!

Higgs Coupling Measurements! Status, prospects, and interplay with searches for physics BSM Seminar University of California - Irvine April 23rd, 2014 Introduction Fantastic progress since discovery July 2012 Observation in three

More information

Early physics with Atlas at LHC

Early physics with Atlas at LHC Early physics with Atlas at LHC Bellisario Esposito (INFN-Frascati) On behalf of the Atlas Collaboration Outline Atlas Experiment Physics goals Next LHC run conditions Physics processes observable with

More information

HIGGS Bosons at the LHC

HIGGS Bosons at the LHC ATLAS HIGGS Bosons at the LHC Standard Model Higgs Boson - Search for a light Higgs at the LHC - Vector boson fusion - Comparison to the Tevatron potential Measurement of Higgs boson parameters The MSSM

More information

Top and Electroweak Physics at. the Tevatron

Top and Electroweak Physics at. the Tevatron Top and Electroweak Physics at 1 the Tevatron Graham W. Wilson University of Kansas for the CDF and DØ Collaborations April APS 2008, St. Louis, MO. April 12 th 2008 Introduction Top Physics Overview Cross-section

More information

Search for a new spin-zero resonance in diboson channels at 13 TeV with the CMS experiment

Search for a new spin-zero resonance in diboson channels at 13 TeV with the CMS experiment Search for a new spin-zero resonance in diboson channels at 3 TeV with the experiment Universite Catholique de Louvain (UCL) (BE) E-mail: alessio.magitteri@cern.ch On behalf of the Collaboration Searches

More information

CEPC Simulation: next step & Wish list to the MC Tool

CEPC Simulation: next step & Wish list to the MC Tool CEPC Simulation: next step & Wish list to the MC Tool Gang & Manqi 06/05/2014 MC4CEPC@IHEP 1 Objective: Demonstration of Physics Potential, Optimization of Detector Geometry; 06/05/2014 MC4CEPC@IHEP 2

More information

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK & SUSY Direct Search at ILC Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK Contents The ILC has access to new physics via: Precision Higgs measurements Precision top measurements

More information

CMS Higgs Results Adi Bornheim Caltech

CMS Higgs Results Adi Bornheim Caltech CMS Higgs Results Adi Bornheim Caltech 06.04.2014 1 A brief history of recent times W & Z Boson t-quark H Boson 1964 1974 1984 1994 2004 2014 Peter Higgs This talk : Summary of 29 CMS publications and

More information

Overview of the Higgs boson property studies at the LHC

Overview of the Higgs boson property studies at the LHC Overview of the Higgs boson property studies at the LHC Giada Mancini, a, Roberto Covarelli b a LNF-INFN and University of Roma Tor Vergata, b INFN and University of Torino E-mail: giada.mancini@lnf.infn.it,

More information

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor Search for Higgs Bosons at LEP Haijun Yang University of Michigan, Ann Arbor L3 On behalf of the L3 Collaboration American Physical Society Meeting(APS03), Philadelphia April 5-8, 2003 OUTLINE Introduction

More information

at the Higgs factory

at the Higgs factory eefact2018 Hong Kong, 24/09/2018 at the Higgs factory and complementarity with hadron colliders P. Giacomelli INFN Bologna Overview FCC complex and FCC-ee first stage CepC Higgs production at an e + e

More information

Detection of Z Gauge Bosons in the Di-muon Decay Mode in CMS

Detection of Z Gauge Bosons in the Di-muon Decay Mode in CMS Detection of Z Gauge Bosons in the Di-muon Decay Mode in CM Robert Cousins, Jason Mumford and Viatcheslav Valuev University of California, Los Angeles for the CM collaboration Physics at LHC Vienna, -7

More information

Top Physics in Hadron Collisions

Top Physics in Hadron Collisions Top Physics in Hadron Collisions Dirk Dammann DESY 2010-02-04 1 / 44 Outline 1 2 3 4 2 / 44 Outline Motivation Top Production Top Decay Top Physics 1 Motivation Top Production Top Decay Top Physics 2 3

More information

Studies of Higgs hadronic decay channels at CLIC. IMPRS Young Scientist Workshop at Ringberg Castle 18 th July 2014 Marco Szalay

Studies of Higgs hadronic decay channels at CLIC. IMPRS Young Scientist Workshop at Ringberg Castle 18 th July 2014 Marco Szalay Studies of Higgs hadronic decay channels at CLIC IMPRS Young Scientist Workshop at Ringberg Castle 8 th July 24 Outline Physics at e + e - colliders CLIC - collider and detectors BDT intermezzo Higgs branching

More information

Tutorial 8: Discovery of the Higgs boson

Tutorial 8: Discovery of the Higgs boson Tutorial 8: Discovery of the Higgs boson Dr. M Flowerdew May 6, 2014 1 Introduction From its inception in the 1960 s, the Standard Model was quickly established, but it took about 50 years for all of the

More information

Standard Model physics with taus in ATLAS

Standard Model physics with taus in ATLAS Standard Model physics with taus in ATLAS IFJ PAN, Cracow, Poland Why we are interested in taus? Tau leptons play an important role in the physics program of the ATLAS experiment as they are tools in many

More information

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential IL NUOVO CIMENTO 4 C (27) 8 DOI.393/ncc/i27-78-7 Colloquia: IFAE 26 Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential M. Testa LNF-INFN - Frascati (RM), Italy

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2017/094 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH211 GENEVA 23, Switzerland 18 March 2017 (v3, 20 March 2017) Recent

More information

Higgs physics at the ILC

Higgs physics at the ILC Higgs physics at the ILC Klaus Desch University of Bonn Second Linear Collider Physics School Ambleside,UK, 15/09/06 Disclaimers + Announcements Focus will be on experimental possibilities + studies with

More information

Higgs Production at LHC

Higgs Production at LHC Higgs Production at LHC Vittorio Del Duca INFN LNF WONP-NURT La Habana 5 february 2013 CERN North Jura ATLAS Sketch of LHC North Ring 26,6 Km long and 3,8 m of diameter, made of 8 arches connected by 8

More information

Application of the Tau Identification Capability of CMS in the Detection of Associated Production of MSSM Heavy Neutral Higgs Bosons Souvik Das

Application of the Tau Identification Capability of CMS in the Detection of Associated Production of MSSM Heavy Neutral Higgs Bosons Souvik Das Application of the Tau Identification Capability of CMS in the Detection of Associated Production of MSSM Heavy Neutral Higgs Bosons Souvik Das Cornell University (September 11, 2006) Decays of the Tau

More information

ATLAS Discovery Potential of the Standard Model Higgs Boson

ATLAS Discovery Potential of the Standard Model Higgs Boson ATLAS Discovery Potential of the Standard Model Higgs Boson Christian Weiser University of Freiburg (on behalf of the ATLAS Collaboration) 14th Lomonosov Conference on Elementary Particle Physics Moscow,

More information

Discovery potential of the SM Higgs with ATLAS

Discovery potential of the SM Higgs with ATLAS Discovery potential of the SM Higgs with P. Fleischmann On behalf of the Collaboration st October Abstract The discovery potential of the Standard Model Higgs boson with the experiment at the Large Hadron

More information

CLEO c. Anders Ryd Cornell University June 7, e e cc D D. D K,D K e

CLEO c. Anders Ryd Cornell University June 7, e e cc D D. D K,D K e CLEOc Cornell University June 7, 25 e e cc D D D K,D K e K K e 1 Outline CLEOc experiment and the physics program Some early results D> Absolute hadronic branching fractions Semileptonic decays 2 Testing

More information

Higgs Boson Searches at ATLAS

Higgs Boson Searches at ATLAS Higgs Boson Searches at ATLAS Jianming Qian University of Michigan October 5, 2011 Maryland/John Hopkins Joint Seminar, October 5, 2011 Jianming Qian (University of Michigan) 1 Standard Model Standard

More information

Higgs Search with the CMS detector at LHC. Satyaki Bhattacharya

Higgs Search with the CMS detector at LHC. Satyaki Bhattacharya Higgs Search with the CMS detector at LHC Satyaki Bhattacharya data taking starts 2007 Startup Luminosity 2X10 33 cm -2 /s that is: 20 fb -1 per year Silicon Tracker δ p T p T 15 p ( TeV)% T PbWO 4 ECAL

More information

First studies towards top-quark pair. dilepton channel at s = 13 TeV with the CMS detector

First studies towards top-quark pair. dilepton channel at s = 13 TeV with the CMS detector First studies towards topquark pair differential cross section measurement in the dilepton channel at s = 13 TeV with the CMS detector Mykola Savitskyi, Maria Aldaya, Carmen Diez Pardos et al. DESYCMS

More information

STANDARD MODEL AND HIGGS BOSON

STANDARD MODEL AND HIGGS BOSON PHENIICS DAYS Title : Search for the Higgs boson decaying to two photons and produced in association with a pair of top quarks in the CMS experiment at LHC Thématique : Particle physics Encadrant CEA -

More information

Searching for the Higgs at the Tevatron

Searching for the Higgs at the Tevatron Searching for the Higgs at the Tevatron 5 th May 2009 Particle Physics Seminar, Oxford Outline Introduction The challenges and analysis strategies Low mass SM Higgs searches High mass SM Higgs searches

More information

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS Felix Yu Johannes Gutenberg University, Mainz U. of Massachusetts, Amherst, Amherst Center for Fundamental Interactions The CP Nature of the

More information

Physics at Tevatron. Koji Sato KEK Theory Meeting 2005 Particle Physics Phenomenology March 3, Contents

Physics at Tevatron. Koji Sato KEK Theory Meeting 2005 Particle Physics Phenomenology March 3, Contents Physics at Tevatron Contents Koji Sato KEK Theory Meeting 5 Particle Physics Phenomenology March 3, 5 mass measurement Top physics cross section Top mass measurement SM Higgs search Tevatron Run II Started

More information

Higgs Searches at CMS

Higgs Searches at CMS Higgs Searches at CMS Ashok Kumar Department of Physics and Astrophysics University of Delhi 110007 Delhi, India 1 Introduction A search for the Higgs boson in the Standard Model (SM) and the Beyond Standard

More information

Higgs search in WW * and ZZ *

Higgs search in WW * and ZZ * Higgs search in WW * and ZZ * Emanuele Di Marco on behalf of CMS collaboration La Sapienza Università di Roma & INFN Roma1 July, 29 2011 1 Higgs production at LHC gluon fusion (gg H) gg H is the dominant

More information

Nicolas Berger SLAC, Menlo Park, California, U.S.A.

Nicolas Berger SLAC, Menlo Park, California, U.S.A. SLAC-PUB-11414 August 25 Frascati Physics Series Vol. VVVVVV (xxxx), pp. - DAΦNE 24: Physics at meson factories Frascati, June. 7-11, 24 Selected Contribution in Plenary Session INCLUSIVE HADRONIC RESULTS

More information

CDF top quark " $ )(! # % & '

CDF top quark  $ )(! # % & ' $% CDF quark 7 3 5 ( "#! Tevatron Run II Started Spring 1. proton-antiproton collider with (Run I :. antiproton recycler commissioning electron cooling operational by Summer 5. increase in luminosity.

More information

Precise measurements of the W mass at the Tevatron and indirect constraints on the Higgs mass. Rencontres de Moriond QCD and High Energy Interactions

Precise measurements of the W mass at the Tevatron and indirect constraints on the Higgs mass. Rencontres de Moriond QCD and High Energy Interactions Precise measurements of the W mass at the evatron and indirect constraints on the Higgs mass Rafael Lopes de Sá for the CDF and DØ Collaborations March 11, 212 Rencontres de Moriond QCD and High Energy

More information

in Section The H ZZ 4l channel

in Section The H ZZ 4l channel 14 Events / 2 GeV Events - Fitted bkg 10000 8000 6000 4000 2000 500 400 300 200 100 0-100 -200 ATLAS -1 s = 7 TeV Ldt = 4.8 fb -1 s = 8 TeV Ldt = 20.7 fb Data 2011+2012 SM Higgs boson m =126.8 GeV (fit)

More information

Future ATLAS Higgs Studies Ben Smart, On behalf of the ATLAS collaboration

Future ATLAS Higgs Studies Ben Smart, On behalf of the ATLAS collaboration Future ATLAS Higgs Studies, On behalf of the ATLAS collaboration The Plan For The Future: LHC To improve our measurements and searches, the LHC and ATLAS will be upgraded: The LHC will become the High-Luminosity-LHC,

More information

Higgs Prospects for future (HL)LHC runs

Higgs Prospects for future (HL)LHC runs ATLAS & CMS Higgs Prospects for future (HL)LHC runs L 3000 fb-1 Rencontres du Vietnam 2014 O. Arnaez CERN tme 1/21 Introduction Search and discovery of the Brout-Englert-HiggsGuralnik-Hagen-Kibble boson,

More information

Measurements of the tt Cross Section and Top Mass at CDF

Measurements of the tt Cross Section and Top Mass at CDF Measurements of the tt Cross Section and Top Mass at University of Chicago / LBNL For the Collaboration HCP 2004, 06/15/04, p. 1 Studying the tt Cross Section Main question: is top quark adequately described

More information

VBF SM Higgs boson searches with ATLAS

VBF SM Higgs boson searches with ATLAS VBF SM Higgs boson searches with Stefania Xella (for the collaboration) Niels Bohr Institute, Copenhagen University, Denmark E-mail: xella@nbi.dk The observation of a Standard Model Higgs boson produced

More information

The W-mass Measurement at CDF

The W-mass Measurement at CDF 2010-05 - 10 The W-mass Measurement at CDF Ilija Bizjak, University College London 1/33 Outline 1) Motivation for a W mass measurement Implications for the EW constraints on Higgs mass 2) Measurement of

More information

Search for the SM Higgs boson in the decay channel H ZZ ( * ) 4l in ATLAS

Search for the SM Higgs boson in the decay channel H ZZ ( * ) 4l in ATLAS Search for the SM Higgs boson in the decay channel H ZZ ( * ) 4l in ATLAS Luis R Flores Castillo University of Wisconsin-Madison On behalf of the ATLAS Collaboration Higgs Hunting 2012 July 19, 2012 Orsay

More information

Higgs and Z τ + τ in CMS

Higgs and Z τ + τ in CMS Higgs and Z τ + τ in CMS Christian Veelken for the CMS Collaboration Moriond EWK Conference, March 14 th 2011 Z τ + τ - Production @ 7 TeV τ + Z τ - CMS Measurement of Z/γ* l + l -, l = e/µ: σ BR(Z/γ*

More information

Light Charged Higgs Discovery Potential of CMS in. A. Nikitenko, M. Hashemi, Imperial College, IPM & Sharif Univ. of Tech.

Light Charged Higgs Discovery Potential of CMS in. A. Nikitenko, M. Hashemi, Imperial College, IPM & Sharif Univ. of Tech. Light Charged Higgs Discovery Potential of CMS in the H ± τν Decay A. Nikitenko, M. Hashemi, Imperial College, IPM & Sharif Univ. of Tech. London Tehran Outline: Signal and background identification Signal

More information

PoS(CKM2016)117. Recent inclusive tt cross section measurements. Aruna Kumar Nayak

PoS(CKM2016)117. Recent inclusive tt cross section measurements. Aruna Kumar Nayak Recent inclusive tt cross section measurements Institute of Physics, Bhubaneswar, India E-mail: Aruna.Nayak@cern.ch Results of the recent measurements for the inclusive tt production cross section in the

More information

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration Higgs couplings and mass measurements with ATLAS CERN On behalf of the ATLAS Collaboration July observation: qualitative picture A single state observed around ~125 GeV Qualitatively all observations consistent

More information

Measurement of Observed Cross Sections for e + e hadrons non-d D. Charmonium Group Meeting

Measurement of Observed Cross Sections for e + e hadrons non-d D. Charmonium Group Meeting Measurement of Observed Cross Sections for e + e hadrons non-d D YI FANG, GANG RONG Institute of High Energy Physics, Beijing 0049, People s Republic of China March 22, 207 Charmonium Group Meeting Y.

More information

Why I never believed the Tevatron Higgs sensitivity claims for Run 2ab Michael Dittmar

Why I never believed the Tevatron Higgs sensitivity claims for Run 2ab Michael Dittmar Why I never believed the Tevatron Higgs sensitivity claims for Run 2ab Michael Dittmar 18.03.09 Why I never believed the Tevatron Higgs sensitivity claims for Run 2ab Michael Dittmar 18.03.09 How to judge

More information

Higgs-related SM Measurements at ATLAS

Higgs-related SM Measurements at ATLAS Higgs-related SM Measurements at ATLAS Junjie Zhu University of Michigan 2 nd MCTP Spring Symposium on Higgs Boson Physics Outline Introduction Isolated γγ cross section (37 pb -1, Phys. Rev. D 85, 012003

More information

Top Quark Measurements at the ILC. Akimasa Ishikawa (Tohoku University)

Top Quark Measurements at the ILC. Akimasa Ishikawa (Tohoku University) Top Quark Measurements at the ILC Akimasa Ishikawa (Tohoku University) Introduction Top quark is the heaviest elementary particle. m t = 173.1 ± 0.9GeV The mass is close to EW scale v/ 2 = 174GeV (y t

More information

The HL-LHC physics program

The HL-LHC physics program 2013/12/16 Workshop on Future High Energy Circular Collider 1 The HL-LHC physics program Takanori Kono (KEK/Ochanomizu University) for the ATLAS & CMS Collaborations Workshop on Future High Energy Circular

More information

HIGGS STUDIES IN ATLAS AND CMS

HIGGS STUDIES IN ATLAS AND CMS HIGGS STUDIES IN ATLAS AND CMS Nicola De Filippis Politecnico & INFN, Bari and LPC-FNAL, Batavia On behalf of the ATLAS and CMS collaborations N. De Filippis Aug. 31 - Sept. 9, 2018 1 Outline SM Higgs

More information

Search for the Standard Model Higgs Boson in H WW lν lν with the ATLAS experiment

Search for the Standard Model Higgs Boson in H WW lν lν with the ATLAS experiment Search for the Standard Model Higgs Boson in H WW lν lν with the ATLAS experiment MCTP Symposium 2012, University of Michigan, Ann Arbor, US Outline SM Higgs Boson production and decay Analysis based on

More information

Status of the LHCb experiment and minimum bias physics

Status of the LHCb experiment and minimum bias physics Status of the LHCb experiment and minimum bias physics Sebastian Bachman Heidelberg University on behalf of the LHCb collaboration 6/19/2010 Sebastian Bachmann 1 Beauty and Charm at the LHC LHC is a factory

More information

Measuring the top quark Yukawa coupling at the ILC at s = 500 GeV

Measuring the top quark Yukawa coupling at the ILC at s = 500 GeV Measuring the top quark Yukawa coupling at the ILC at s = GeV Phys. Rev. D 84, 1433 (11) Katsumasa Ikematsu (Uni Siegen) for Ryo Yonamine (Sokendai/KEK), Tomohiko Tanae (Univ. of Tokyo), Keisuke Fujii

More information

From the TeVatron to the LHC UK HEP Forum, 7-8 May 2009 Emily Nurse

From the TeVatron to the LHC UK HEP Forum, 7-8 May 2009 Emily Nurse From the TeVatron to the LHC UK HEP Forum, 7-8 May 2009 0 σ(tt) M t single t helicity σ(/z) A (Y) Y Z M Jets Γ Z A FB di-bosons Z p T 1 This talk Craig Buttar σ(tt) M t single t helicity σ(/z) A (Y) Y

More information

LHC State of the Art and News

LHC State of the Art and News LHC State of the Art and News ATL-GEN-SLIDE-2010-139 16 June 2010 Arno Straessner TU Dresden on behalf of the ATLAS Collaboration FSP 101 ATLAS Vulcano Workshop 2010 Frontier Objects in Astrophysics and

More information

Search for a Standard Model Higgs boson in the H ZZ ( ) * decay channel with the ATLAS Experiment at CERN

Search for a Standard Model Higgs boson in the H ZZ ( ) * decay channel with the ATLAS Experiment at CERN Search for a Standard Model Higgs boson in the H ZZ ( ) * 4l decay channel with the ATLAS Experiment at CERN Giacomo Artoni Seminario Finale Dottorato XXV Ciclo 5// Thesis Advisor: Prof. Carlo Dionisi

More information

Georges Aad For the ATLAS and CMS Collaboration CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Georges Aad For the ATLAS and CMS Collaboration CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France Georges Aad For the ATLAS and CMS Collaboration CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France 5th Large Hadron Collider Physics Conference May 2017, Shanghai Jiao Tong University, Shanghai

More information

Search for a heavy gauge boson W e

Search for a heavy gauge boson W e Search for a heavy gauge boson W e Cornell University LEPP Journal Club Seminar April 1, 2011 The LHC Machine 2 The beginning of the LHC era First collisions at 7 TeV confirmed on March 30, 2010 There

More information

PDF Studies at LHCb! Simone Bifani. On behalf of the LHCb collaboration. University of Birmingham (UK)

PDF Studies at LHCb! Simone Bifani. On behalf of the LHCb collaboration. University of Birmingham (UK) PDF Studies at LHCb! Simone Bifani University of Birmingham (UK) On behalf of the LHCb collaboration MENU 213 Rome 3th September - 4th October 213 Outline Introduction Analyses» Z/γ* ll, l =, e, τ#» W

More information

The ILC and its complementarity to the LHC

The ILC and its complementarity to the LHC The ILC and its complementarity to the LHC Outline: 1. ILC physics motivation 2. ILC LHC synergy 31 st Johns Hopkins Workshop Heidelberg 2007 3. LHC ILC implications Klaus Desch Universität Bonn The Terascale

More information

Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector

Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector ATLAS Geneva physics meeting Andrée Robichaud-Véronneau Outline Motivation Theoretical background for J/ψ hadroproduction

More information

Top Quark Precision Physics at Linear Colliders

Top Quark Precision Physics at Linear Colliders Top Quark Precision Physics at Linear Colliders Frank Simon 1 on behalf of the ILC Physics and Detector Study and the CLICdp Collaboration 1 Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München,

More information

Observation of a New Particle with a Mass of 125 GeV

Observation of a New Particle with a Mass of 125 GeV Observation of a New Particle with a Mass of 125 GeV CMS Experiment, CERN 4 July 2012 Summary In a joint seminar today at CERN and the ICHEP 2012 conference[1] in Melbourne, researchers of the Compact

More information

Seaches fo log-lived paticles with displaced signatues at the LHC. Daniela Salvatore (INFN Cosenza) on behalf of the ATLAS and CMS Collaborations

Seaches fo log-lived paticles with displaced signatues at the LHC. Daniela Salvatore (INFN Cosenza) on behalf of the ATLAS and CMS Collaborations Seaches fo log-lived paticles with displaced signatues at the LHC Daniela Salvatore (INFN Cosenza) on behalf of the ATLAS and CMS Collaborations Outline A review of the most recent results from ATLAS &

More information

CEPC Detector Optimization & Key analysis

CEPC Detector Optimization & Key analysis CEPC Detector Optimization & Key analysis 1 Outline Key Analysis: Br(H->WW/ZZ) Optimization: VTX: Inner most radius, flavor tagging & Br(H->bb, cc, gg) measurements Calorimeter: Performance wi/wo active

More information

Higgs Boson in Lepton Decay Modes at the CMS Experiment

Higgs Boson in Lepton Decay Modes at the CMS Experiment Higgs Boson in Lepton Decay Modes at the Experiment Somnath Choudhury 1 for the collaboration 1 DESY - Hamburg, Germany DOI: http://dx.doi.org/1.34/desy-proc-14-4/1 The results on the standard model Higgs

More information

Digital Calorimetry for Future Linear Colliders. Tony Price University of Birmingham University of Birmingham PPE Seminar 13 th November 2013

Digital Calorimetry for Future Linear Colliders. Tony Price University of Birmingham University of Birmingham PPE Seminar 13 th November 2013 Digital Calorimetry for Future Linear Colliders Tony Price University of Birmingham University of Birmingham PPE Seminar 13 th November 2013 Overview The ILC Digital Calorimetry The TPAC Sensor Electromagnetic

More information

The production of additional bosons and the impact on the Large Hadron Collider

The production of additional bosons and the impact on the Large Hadron Collider The production of additional bosons and the impact on the Large Hadron Collider presented by Alan S. Cornell for the HEP group, University of the Witwatersrand With N.Chakrabarty, T.Mandal and B.Mukhopadhyaya

More information

Search for the Higgs Boson In HWW and HZZ final states with CMS detector. Dmytro Kovalskyi (UCSB)

Search for the Higgs Boson In HWW and HZZ final states with CMS detector. Dmytro Kovalskyi (UCSB) Search for the Higgs Boson In HWW and HZZ final states with CMS detector Dmytro Kovalskyi (UCSB) Introduction WW and ZZ finals states dominate Higgs searches at Higgs Mass WW 2L2ν has best sensitivity

More information

Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group

Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group Search for Exotic and Rare Higgs Decays at CEPC Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group Outline Introduction Motivation Higgs Exotic Decays H Invisible H bb χ0χ0 H bbbb H μτ, eτ Higgs

More information

Search for high mass resonances in the diphoton and Zγ channels at LHC

Search for high mass resonances in the diphoton and Zγ channels at LHC Search for high mass resonances in the diphoton and Zγ channels at LHC Matteo Bauce, Riccardo Paramatti Univ. Sapienza & INFN Roma Diphoton and flavor anomalies 23 rd May 2016 LHC Run2 started one year

More information

CEPC NOTE CEPC-RECO April 1, Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR. CEPC Simulation Group

CEPC NOTE CEPC-RECO April 1, Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR. CEPC Simulation Group CEPC NOTE CEPC-RECO-218-2 April 1, 218 Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR CEPC Simulation Group Abstract Using the CEPC software chain, the reconstruction performance

More information

1. a) What does one mean by running of the strong coupling, and by asymptotic freedom of QCD? (1p)

1. a) What does one mean by running of the strong coupling, and by asymptotic freedom of QCD? (1p) FYSH300 Particle physics 2. half-course exam (2. välikoe) 19.12.2012: 4 problems, 4 hours. Return the the question sheet and particle tables together with your answer sheets remember to write down your

More information

Prospects and challenges for future ee and ep colliders

Prospects and challenges for future ee and ep colliders Prospects and challenges for future ee and ep colliders Marcin Chrzaszcz mchrzasz@cern.ch Physik-Insitut, University of Zurich Instiute of Nuclear Physics, Polish Academy of Sciences Neutrinos at the High

More information

Hadronic D Decays and the D Meson Decay Constant with CLEO c

Hadronic D Decays and the D Meson Decay Constant with CLEO c Hadronic D Decays and the D Meson Decay Constant with CLEO c representing the CLEO Collaboration presented at the 3nd International Conference on High Energy Physics, Beijing, China, Aug. 16, 004 This

More information

SUSY Search Strategies at Atlas and CMS

SUSY Search Strategies at Atlas and CMS 1 SUSY Search Strategies at Atlas and CMS (Universität Hamburg) for the Atlas and CMS Collaborations All-hadronic SUSY search Leptonic Inclusive SUSY search Reach in the msugra plane supported by: SUSY

More information

Last Friday: pp(bar) Physics Intro, the TeVatron

Last Friday: pp(bar) Physics Intro, the TeVatron Last Friday: pp(bar) Physics Intro, the TeVatron Today: The Large Hadron Collider (LHC) The Large Hadron Collider (LHC) 7 TeV + 7 TeV Protons Protons 10 11 Protons per bunch Bunch Crossings 4x10 7 Hz Proton

More information

Physics at Hadron Colliders Part II

Physics at Hadron Colliders Part II Physics at Hadron Colliders Part II Marina Cobal Università di Udine 1 The structure of an event One incoming parton from each of the protons enters the hard process, where then a number of outgoing particles

More information

Searches for rare radiative Higgs boson decays to light mesons with ATLAS

Searches for rare radiative Higgs boson decays to light mesons with ATLAS Searches for rare radiative Higgs boson decays to light mesons with ICHEP 2018 (Seoul) 5th July 2018 Andy Chisholm (CERN and University of Birmingham) on behalf of the collaboration Motivation - Why search

More information

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay i.e. what do we know about the Higgs Marco Grassi The Discovery of a New Boson Evidence of a new boson with 5

More information

Precision of Higgs Couplings at CEPC

Precision of Higgs Couplings at CEPC Precision of Higgs Couplings at CEPC M. Ruan & G. Li for the CEPC Simulation Study Group CEPC-SPPC Electron-positron collision phase Higgs factory: collision at ~240-250 GeV center-of-mass energy, Instant

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

Study of Diboson Physics with the ATLAS Detector at LHC

Study of Diboson Physics with the ATLAS Detector at LHC Study of Diboson Physics with the ATLAS Detector at LHC Hai-Jun Yang University of Michigan (for the ATLAS Collaboration) APS April Meeting St. Louis, April 12-15, 2008 The Large Hadron Collider at CERN

More information

Recent ATLAS measurements in Higgs to diboson channels

Recent ATLAS measurements in Higgs to diboson channels Recent ATLAS measurements in Higgs to diboson channels Yusheng Wu University of Michigan Institute of Physics, Academia Sinica On behalf of the ATLAS collaboration August 31 st - Higgs Hunting 2016 Introduction

More information

Dark matter searches and prospects at the ATLAS experiment

Dark matter searches and prospects at the ATLAS experiment Dark matter searches and prospects at the ATLAS experiment Wendy Taylor (York University) for the ATLAS Collaboration TeVPA 2017 Columbus, Ohio, USA August 7-11, 2017 Dark Matter at ATLAS Use 13 TeV proton-proton

More information