surface area per unit time is w(x, t). Derive the partial differential

Size: px
Start display at page:

Download "surface area per unit time is w(x, t). Derive the partial differential"

Transcription

1 1.2 Conduction of Heat in One-Dimension Derive the diffusion equation for a chemical pollutant. (a) Consider the total amount of the chemical in a thin region between x and x + Ax. (b) Consider the total amount of the chemical between x = a and x = b Derive an equation for the concentration u(x, t) of a chemical pollutant if the chemical is produced due to chemical reaction at the rate of au(,3 - u) per unit volume Suppose that the specific heat is a function of position and temperature, c(x, u). (a) Show that the heat energy per unit mass necessary to raise the temperature of a thin slice of thickness Ax from 0 to u(x, t) is not c(x)u(x, t), but instead fo c(x, u) du. (b) Rederive the heat equation in this case. Show that (1.2.3) remains unchanged Consider conservation of thermal energy (1.2.4) for any segment of a onedimensional rod a < x < b. By using the fundamental theorem of calculus, a jb f (x) dx = f (b), ab derive the heat equation (1.2.9). * If u(x, t) is known, give an expression for the total thermal energy contained in a rod (0 < x < L) Consider a thin one-dimensional rod without sources of thermal energy whose lateral surface area is not insulated. (a) Assume that the heat energy flowing out of the lateral sides per unit surface area per unit time is w(x, t). Derive the partial differential equation for the temperature u(x, t). (b) Assume that w(x, t) is proportional to the temperature difference between the rod u(x, t) and a known outside temperature -y(x, t). Derive that cp at ax (Ko e / - A [u(x, t) - y(x, t))h(x), (1.2.15) where h(x) is a positive x-/dependent proportionality, P is the lateral perimeter, and A is the cross-sectional area. (c) Compare (1.2.15) to the equation for a one-dimensional rod whose lateral surfaces are insulated, but with heat sources. (d) Specialize (1.2.15) to a rod of circular cross section with constant thermal properties and 0 outside temperature.

2 18 Chapter 1. Heat Equation for any constant C2. Unlike the first example (with fixed temperatures at both ends), here there is not a unique equilibrium temperature. Any constant temperature is an equilibrium temperature distribution for insulated boundary conditions. Thus, for the time-dependent initial value problem, we expect slim u(x, t) = C2; 00 if we wait long enough, a rod with insulated ends should approach a constant temperature. This seems physically quite reasonable. However, it does not make sense that the solution should approach an arbitrary constant; we ought to know what constant it approaches. In this case, the lack of uniqueness was caused by the complete neglect of the initial condition. In general, the equilibrium solution will not satisfy the initial condition. However, the particular constant equilibrium solution is determined by considering the initial condition for the time-dependent problem (1.4.11). Since both ends are insulated, the total thermal energy is constant. This follows from the integral conservation of thermal energy of the entire rod [see (1.2.4)1: Since both ends are insulated, d /' L 8 au cpu dx = -Ko 87x (0, t) + Ko (L, t). ( ) dt f 8x 0 L cpu dx = constant. (1.4.20) 1 One implication of (1.4.20) is that the initial thermal energy must equal the final (limt.,,,) thermal energy. The initial thermal energy is ep f L f (x) dx since u(x, 0) = f (x), while the equilibrium thermal energy is cp LL C2 dx = cpc2l since the equilibrium temperature distribution is a constant u(x, t) = C2. The constant C2 is determined by equating these two expressions for the constant total thermal energy, cp fl f (x) dx = cpc2l. Solving for C2 shows that the desired unique steady-state solution should be t u(x) = C2 = L J f (x) dx, 0 (1.4.21) the average of the initial temperature distribution. It is as though the initial condition is not entirely forgotten. Later we will find a u(x, t) that satisfies ( ) and show that limt.,,. u(x, t) is given by (1.4.21). EXERCISES Determine the equilibrium temperature distribution for a one-dimensional rod with constant thermal properties with the following sources and boundary conditions:

3 1.4. Equilibrium Temperature Distribution 19 * (a) Q = 0, u(0) = 0, (b) Q = 0, u(0) = T, (c) Q = 0, (0) = 0, * (d) Q = 0, u(0) = T, (e) Ko = 1, u(0) = T1, u(l) = T2 * (f) Qc = x2, u(0) = T, 8 (L) = 0 (g) Q = 0, u(0) = T, ax (L) + u(l) = 0 *(h) Q=0, 8 (0)-[u(0)-TJ=0, ax(l)-a In these you may assume that u(x, 0) = f (x) Consider the equilibrium temperature distribution for a uniform one-dimensional rod with sources Q/Ko = x of thermal energy, subject to the boundary conditions u(0) = 0 and u(l) = 0. *(a) Determine the heat energy generated per unit time inside the entire rod. (b) Determine the heat energy flowing out of the rod per unit time at x = 0 and at x = L. (c) What relationships should exist between the answers in parts (a) and (b)? Determine the equilibrium temperature distribution for a one-dimensional rod composed of two different materials in perfect thermal contact at x = 1. For 0 < x < 1, there is one material (cp = 1, Ko = 1) with a constant source (Q = 1), whereas for the other 1 < x < 2 there are no sources (Q = 0, cp = 2, Ko = 2) (see Exercise 1.3.2) with u(o) = 0 and u(2) = If both ends of a rod are insulated, derive from the partial differential equation that the total thermal energy in the rod is constant Consider a one-dimensional rod 0 < x < L of known length and known constant thermal properties without sources. Suppose that the temperature is an unknoum constant T at x = L. Determine T if we know (in the steady state) both the temperature and the heat flow at x = The two ends of a uniform rod of length L are insulated. There is a constant source of thermal energy Qo 54 0, and the temperature is initially u(x, 0) _ f (x)-

4 20 Chapter 1. Heat Equation (a) Show mathematically that there does not exist any equilibrium temperature distribution. Briefly explain physically. (b) Calculate the total thermal energy in the entire rod For the following problems, determine an equilibrium temperature distribution (if one exists). For what values of,3 are there solutions? Explain physically. * (a) at z 8xz + 1, u x, 0 ) = A X ), ) =, 8x (L, a ( At 1 t) = Q (b) au 192U = 8xz, x, 0) = f ( x u ( ), au ax (0 t) = 1,, 8u (L, t) = Q ax ( c) & = 02U + 0) = P 8 (0 t = 0 8x ( L t z u ( x, X),, ),, ) Express the integral conservation law for the entire rod with constant thermal properties. Assume the heat flow is known to be different constants at both ends By integrating with respect to time, determine the total thermal energy in the rod. (Hint: use the initial condition.) (a) Assume there are no sources. (b) Assume the sources of thermal energy are constant Derive the integral conservation law for the entire rod with constant thermal properties by integrating the heat equation (1.2.10) (assuming no sources). Show the result is equivalent to (1.2.4) Suppose = e + 4, u(x, 0) = f (x), Ou (0, t) = 5, "u (L, t) = 6. Calculate the total thermal energy in the one-dimensional rod (as a function of time) Suppose = s + x, u(x, 0) = f (x), Ou (0, t) = Q, &u (L, t) = 7. (a) Calculate the total thermal energy in the one-dimensional rod (as a function of time). (b) From part (a), determine a value of Q for which an equilibrium exists. For this value of Q, determine lim u(x, t). t Suppose the concentration u(x, t) of a chemical satisfies Fick's law (1.2.13), and the initial concentration is given u(x, 0) = f (x). Consider a region 0 < x < L in which the flow is specified at both ends -kou (0, t) = a and -kou (L, t) _ 0. Assume a and # are constants. (a) Express the conservation law for the entire region. (b) Determine the total amount of chemical in the region as a function of time (using the initial condition). = 0

5 1.5. Heat Equation in Two or Three Dimensions 29 x=l Area magnified EXERCISES 1.5 Figure Spherical coordinates Let c(x, y, z, t) denote the concentration of a pollutant (the amount per unit volume). (a) What is an expression for the total amount of pollutant in the region R? (b) Suppose that the flow J of the pollutant is proportional to the gradient of the concentration. (Is this reasonable?) Express conservation of the pollutant. (c) Derive the partial differential equation governing the diffusion of the pollutant. * For conduction of thermal energy, the heat flux vector is 4 _ -KoVu. If in addition the molecules move at an average velocity V, a process called convection, then briefly explain why 0 _ -KoVu + cpuv. Derive the corresponding equation for heat flow, including both conduction and convection of thermal energy (assuming constant thermal properties with no sources) Consider the polar coordinates x=rcos9 y = r sin 9. (a) Since r2 = x2 + y2, show that O = cos 0, = sing, " = Tycos B and 8B sin 9 r ' 8x r (b) Show that r = cos Bi + sin 03 and B = - sin 0 + cos 63. (c) Using the chain rule, show that V = r" ar + 9,i- g and hence Vu = r"+ -r 8e 9. (d) If A = ArT + Ae6, show that r Tr_ (rar) + r 8 (AB), since 8r" /8B = 9 and 86/80 = -f follows from part (b).

6 30 Chapter 1. Heat Equation (e) Show that V2u = 1 r Or (r a;`) + 3 ae Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the special case of Exercise 1.5.3(e) if u(r) only Assume that the temperature is circularly symmetric: u = u(r, t), where r2 = x2 + y2. We will derive the heat equation for this problem. Consider any circular annulus a < r < b. (a) Show that the total heat energy is 21r fq cpur dr. (b) Show that the flow of heat energy per unit time out of the annulus at r = h is --21rbKoau/ar 1,=b. A similar result holds at r = a. (c) Use parts (a) and (b) to derive the circularly symmetric heat equation without sources: au -k a r aul at r ar ' a, _ J Modify Exercise if the thermal properties depend on r Derive the heat equation in two dimensions by using Green's theorem, (1.5.16), the two-dimensional form of the divergence theorem If Laplace's equation is satisfied in three dimensions, show that Vu-ft ds = 0 Use for any closed surface. (Hint: the divergence theorem.) Give a physical interpretation of this result (in the context of heat flow) Determine the equilibrium temperature distribution inside a circular annulus (rl < r < r2): *(a) if the outer radius is at temperature T2 and the inner at T1 (b) if the outer radius is insulated and the inner radius is at temperature Ti Determine the equilibrium temperature distribution inside a circle (r < ro) if the boundary is fixed at temperature To. * Consider subject to at u ( r, 0) = f (r), _r 5T Crar) z a<r<b au au ar (a, t) = f3, and (b, t) = 1. 19r Using physical reasoning, for what value(s) of 0 does an equilibrium temperature distribution exist?

7 1.5. Heat Equation in Two or Three Dimensions Assume that the temperature is spherically symmetric, u = u(r, t), where r is the distance from a fixed point (r2 = x2 + y2 + z2). Consider the heat flow (without sources) between any two concentric spheres of radii a and b. (a) Show that the total heat energy is 47r fo cpur2 dr. (b) Show that the flow of heat energy per unit time out of the spherical shell at r = b is -4irb2Ko 8u/8r Ir=b. A similar result holds at r = a. (c) Use parts (a) and (b) to derive the spherically symmetric heat equation 8u k 8 T28u 8t r2 8r C? * Determine the steady-state temperature distribution between two concentric spheres with radii 1 and 4, respectively, if the temperature of the outer sphere is maintained at 80 and the inner sphere at 0 (see Exercise ) Isobars are lines of constant temperature. Show that isobars are perpendicular to any part of the boundary that is insulated Derive the heat equation in three dimensions assuming constant thermal properties and no sources Express the integral conservation law for any three-dimensional object. Assume there are no sources. Also assume the heat flow is specified, g(x, y, z), on the entire boundary and does not depend on time. By integrating with respect to time, determine the total thermal energy. (Hint: Use the initial condition.) Derive the integral conservation law for any three dimensional object (with constant thermal properties) by integrating the heat equation (1.5.11) (assuming no sources). Show that the result is equivalent to (1.5.1). Orthogonal curvilinear coordinates. A coordinate system (u, v, w) may be introduced and defined by x = x(u, v, w), y = y(u, v, w) and z = z(u, v, w). The radial vector r =_ At + yj + A. Partial derivatives of r with respect to a coordinate are in the direction of the coordinate. Thus, for example, a vector in the u-direction 8r/8u can be made a unit vector e in the u-direction by dividing by its length h = I8r/8ul called the scale factor: cu = - er/au Determine the scale factors for cylindrical coordinates Determine the scale factors for spherical coordinates The gradient of a scalar can be expressed in terms of the new coordinate system Vg = a 6)r/8u + b 8r/(7v + c Or/Ow, where you will determine the scalars a, b, c. Using dg = V9 dr, derive that the gradient in an orthogonal curvilinear coordinate system is given by Vg = 1 8g _ 1 8g 1 8g T" T. eu + h 8; e + hu, 8w ( )

My Math 322 Applied Mathematical Analysis Fall 2016, University of Wisconsin, Madison

My Math 322 Applied Mathematical Analysis Fall 2016, University of Wisconsin, Madison My Math 3 Applied Mathematical Analysis Fall 16, University of Wisconsin, Madison Nasser M. Abbasi Fall 16 compiled on Sunday December 5, 16 at 7:3 PM [public] Contents 1 Introduction 5 1.1 syllabus..........................................

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

MATH20411 PDEs and Vector Calculus B

MATH20411 PDEs and Vector Calculus B MATH2411 PDEs and Vector Calculus B Dr Stefan Güttel Acknowledgement The lecture notes and other course materials are based on notes provided by Dr Catherine Powell. SECTION 1: Introctory Material MATH2411

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

Q ( q(m, t 0 ) n) S t.

Q ( q(m, t 0 ) n) S t. THE HEAT EQUATION The main equations that we will be dealing with are the heat equation, the wave equation, and the potential equation. We use simple physical principles to show how these equations are

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li Summary for Vector alculus and omplex alculus (Math 321) By Lei Li 1 Vector alculus 1.1 Parametrization urves, surfaces, or volumes can be parametrized. Below, I ll talk about 3D case. Suppose we use e

More information

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS

MATH 18.01, FALL PROBLEM SET # 6 SOLUTIONS MATH 181, FALL 17 - PROBLEM SET # 6 SOLUTIONS Part II (5 points) 1 (Thurs, Oct 6; Second Fundamental Theorem; + + + + + = 16 points) Let sinc(x) denote the sinc function { 1 if x =, sinc(x) = sin x if

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

g(t) = f(x 1 (t),..., x n (t)).

g(t) = f(x 1 (t),..., x n (t)). Reading: [Simon] p. 313-333, 833-836. 0.1 The Chain Rule Partial derivatives describe how a function changes in directions parallel to the coordinate axes. Now we shall demonstrate how the partial derivatives

More information

Diffusion - The Heat Equation

Diffusion - The Heat Equation Chapter 6 Diffusion - The Heat Equation 6.1 Goal Understand how to model a simple diffusion process and apply it to derive the heat equation in one dimension. We begin with the fundamental conservation

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. V9. Surface Integrals Surface

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial ifferential Equations «Viktor Grigoryan 3 Green s first identity Having studied Laplace s equation in regions with simple geometry, we now start developing some tools, which will lead

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #1. February 20, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #1. February 20, 2014 Circle one: Div. 1 (Prof. Choi) Div. 2 (Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #1 February 20, 2014 Instructions: Write your name on each page Write

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 94 5. - Gradient, Divergence, Curl Page 5. 5. The Gradient Operator A brief review is provided here for the gradient operator in both Cartesian and orthogonal non-cartesian coordinate systems. Sections

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

Summary of various integrals

Summary of various integrals ummary of various integrals Here s an arbitrary compilation of information about integrals Moisés made on a cold ecember night. 1 General things o not mix scalars and vectors! In particular ome integrals

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Connection to Laplacian in spherical coordinates (Chapter 13)

Connection to Laplacian in spherical coordinates (Chapter 13) Connection to Laplacian in spherical coordinates (Chapter 13) We might often encounter the Laplace equation and spherical coordinates might be the most convenient 2 u(r, θ, φ) = 0 We already saw in Chapter

More information

Homework for Math , Fall 2016

Homework for Math , Fall 2016 Homework for Math 5440 1, Fall 2016 A. Treibergs, Instructor November 22, 2016 Our text is by Walter A. Strauss, Introduction to Partial Differential Equations 2nd ed., Wiley, 2007. Please read the relevant

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 3424 4 Partial Differentiation Page 4-01 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Fall 2011 FINAL EXAM REVIEW The final exam will be held on Wednesday 14 December from 10:30am 12:30pm in our regular classroom. You will be allowed both sides of an 8.5 11

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Chapter 4. Electric Fields in Matter

Chapter 4. Electric Fields in Matter Chapter 4. Electric Fields in Matter 4.1.2 Induced Dipoles What happens to a neutral atom when it is placed in an electric field E? The atom now has a tiny dipole moment p, in the same direction as E.

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

4 The matrix approach

4 The matrix approach 4 The matrix approach 4. Introduction It is not a coincidence that the finite element method blossomed at the time when computers were being developed, because it calls for a vast amount of computation

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) 1D Heat Equation: Derivation Current Semester 1 / 19 Introduction The derivation of the heat

More information

Mathematical Methods - Lecture 9

Mathematical Methods - Lecture 9 Mathematical Methods - Lecture 9 Yuliya Tarabalka Inria Sophia-Antipolis Méditerranée, Titane team, http://www-sop.inria.fr/members/yuliya.tarabalka/ Tel.: +33 (0)4 92 38 77 09 email: yuliya.tarabalka@inria.fr

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

My signature below certifies that I have complied with the University of Pennsylvania s Code of Academic Integrity in completing this exam.

My signature below certifies that I have complied with the University of Pennsylvania s Code of Academic Integrity in completing this exam. My signature below certifies that I have complied with the University of Pennsylvania s Code of Academic Integrity in completing this exam. Signature Printed Name Math 241 Exam 1 Jerry Kazdan Feb. 17,

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

Plot of temperature u versus x and t for the heat conduction problem of. ln(80/π) = 820 sec. τ = 2500 π 2. + xu t. = 0 3. u xx. + u xt 4.

Plot of temperature u versus x and t for the heat conduction problem of. ln(80/π) = 820 sec. τ = 2500 π 2. + xu t. = 0 3. u xx. + u xt 4. 10.5 Separation of Variables; Heat Conduction in a Rod 579 u 20 15 10 5 10 50 20 100 30 150 40 200 50 300 x t FIGURE 10.5.5 Example 1. Plot of temperature u versus x and t for the heat conduction problem

More information

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

SOME PROBLEMS YOU SHOULD BE ABLE TO DO OME PROBLEM YOU HOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

A-Level Mathematics DIFFERENTIATION I. G. David Boswell - Math Camp Typeset 1.1 DIFFERENTIATION OF POLYNOMIALS. d dx axn = nax n 1, n!

A-Level Mathematics DIFFERENTIATION I. G. David Boswell - Math Camp Typeset 1.1 DIFFERENTIATION OF POLYNOMIALS. d dx axn = nax n 1, n! A-Level Mathematics DIFFERENTIATION I G. David Boswell - Math Camp Typeset 1.1 SET C Review ~ If a and n are real constants, then! DIFFERENTIATION OF POLYNOMIALS Problems ~ Find the first derivative of

More information

Lecture notes: Introduction to Partial Differential Equations

Lecture notes: Introduction to Partial Differential Equations Lecture notes: Introduction to Partial Differential Equations Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 Classification of Partial Differential

More information

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2 Name Gauss s Law I. The Law:, where ɛ 0 = 8.8510 12 C 2 (N?m 2 1. Consider a point charge q in three-dimensional space. Symmetry requires the electric field to point directly away from the charge in all

More information

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface Electric flux Electric Fields and Gauss s Law Electric flux is a measure of the number of field lines passing through a surface. The flux is the product of the magnitude of the electric field and the surface

More information

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018 APPM 2 Final Exam 28 points Monday December 7, 7:am am, 28 ON THE FONT OF YOU BLUEBOOK write: () your name, (2) your student ID number, () lecture section/time (4) your instructor s name, and () a grading

More information

Figure 1: Functions Viewed Optically. Math 425 Lecture 4. The Chain Rule

Figure 1: Functions Viewed Optically. Math 425 Lecture 4. The Chain Rule Figure 1: Functions Viewed Optically Math 425 Lecture 4 The Chain Rule The Chain Rule in the One Variable Case We explain the chain rule in the one variable case. To do this we view a function f as a impossible

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep

More information

Midterm Solution

Midterm Solution 18303 Midterm Solution Problem 1: SLP with mixed boundary conditions Consider the following regular) Sturm-Liouville eigenvalue problem consisting in finding scalars λ and functions v : [0, b] R b > 0),

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

MATH107 Vectors and Matrices

MATH107 Vectors and Matrices School of Mathematics, KSU 20/11/16 Vector valued functions Let D be a set of real numbers D R. A vector-valued functions r with domain D is a correspondence that assigns to each number t in D exactly

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

f. D that is, F dr = c c = [2"' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2"' dt = 2

f. D that is, F dr = c c = [2' (-a sin t)( -a sin t) + (a cos t)(a cost) dt = f2' dt = 2 SECTION 16.4 GREEN'S THEOREM 1089 X with center the origin and radius a, where a is chosen to be small enough that C' lies inside C. (See Figure 11.) Let be the region bounded by C and C'. Then its positively

More information

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electromagnetic I Chapter 3 Vector Calculus Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Differential Length, Area, and Volume This chapter deals with integration

More information

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv 1. Matching. Fill in the appropriate letter. 1. ds for a surface z = g(x, y) A. r u r v du dv 2. ds for a surface r(u, v) B. r u r v du dv 3. ds for any surface C. G x G z, G y G z, 1 4. Unit normal N

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B Sample Final Questions: Solutions Math 2B, Winter 23. Evaluate the following integrals: tan a) y y dy; b) x dx; c) 3 x 2 + x dx. a) We use partial fractions: y y 3 = y y ) + y)) = A y + B y + C y +. Putting

More information

Spotlight on Laplace s Equation

Spotlight on Laplace s Equation 16 Spotlight on Laplace s Equation Reference: Sections 1.1,1.2, and 1.5. Laplace s equation is the undriven, linear, second-order PDE 2 u = (1) We defined diffusivity on page 587. where 2 is the Laplacian

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 214 (R1) Winter 2008 Intermediate Calculus I Solutions to Problem Set #8 Completion Date: Friday March 14, 2008 Department of Mathematical and Statistical Sciences University of Alberta Question 1.

More information

Physics 114 Exam 1 Fall 2016

Physics 114 Exam 1 Fall 2016 Physics 114 Exam 1 Fall 2016 Name: For grading purposes (do not write here): Question 1. 1. 2. 2. 3. 3. Problem Answer each of the following questions and each of the problems. Points for each question

More information

Lecture 2: Review of Vector Calculus

Lecture 2: Review of Vector Calculus 1 Lecture 2: Review of Vector Calculus Instructor: Dr. Gleb V. Tcheslavski Contact: gleb@ee.lamar.edu Office Hours: Room 2030 Class web site: www.ee.lamar.edu/gleb/em/in dex.htm 2 Vector norm Foran n-dimensional

More information

2 A brief interruption to discuss boundary value/intial value problems

2 A brief interruption to discuss boundary value/intial value problems The lecture of 1/9/2013 1 The one dimensional heat equation The punchline from the derivation of the heat equation notes (either the posted file, or equivalently what is in the text) is that given a rod

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2b-22 Ver 1.1: Ling KV, October 22, 2006 Ver 1.0: Ling KV, Jul 2005 EE2007/Ling KV/Aug 2006 EE2007:

More information

Exploring Substitution

Exploring Substitution I. Introduction Exploring Substitution Math Fall 08 Lab We use the Fundamental Theorem of Calculus, Part to evaluate a definite integral. If f is continuous on [a, b] b and F is any antiderivative of f

More information

MATH 124B Solution Key HW 03

MATH 124B Solution Key HW 03 6.1 LAPLACE S EQUATION MATH 124B Solution Key HW 03 6.1 LAPLACE S EQUATION 4. Solve u x x + u y y + u zz = 0 in the spherical shell 0 < a < r < b with the boundary conditions u = A on r = a and u = B on

More information

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a Physics 7B Midterm 2 - Fall 207 Professor R. Birgeneau Total Points: 00 ( Problems) This exam is out of 00 points. Show all your work and take particular care to explain your steps. Partial credit will

More information

Chapter 2. Vector Calculus. 2.1 Directional Derivatives and Gradients. [Bourne, pp ] & [Anton, pp ]

Chapter 2. Vector Calculus. 2.1 Directional Derivatives and Gradients. [Bourne, pp ] & [Anton, pp ] Chapter 2 Vector Calculus 2.1 Directional Derivatives and Gradients [Bourne, pp. 97 104] & [Anton, pp. 974 991] Definition 2.1. Let f : Ω R be a continuously differentiable scalar field on a region Ω R

More information

Chapter 1. Vector Algebra and Vector Space

Chapter 1. Vector Algebra and Vector Space 1. Vector Algebra 1.1. Scalars and vectors Chapter 1. Vector Algebra and Vector Space The simplest kind of physical quantity is one that can be completely specified by its magnitude, a single number, together

More information

Expansion of 1/r potential in Legendre polynomials

Expansion of 1/r potential in Legendre polynomials Expansion of 1/r potential in Legendre polynomials In electrostatics and gravitation, we see scalar potentials of the form V = K d Take d = R r = R 2 2Rr cos θ + r 2 = R 1 2 r R cos θ + r R )2 Use h =

More information

Math review. Math review

Math review. Math review Math review 1 Math review 3 1 series approximations 3 Taylor s Theorem 3 Binomial approximation 3 sin(x), for x in radians and x close to zero 4 cos(x), for x in radians and x close to zero 5 2 some geometry

More information

Physics Lecture: 09

Physics Lecture: 09 Physics 2113 Jonathan Dowling Physics 2113 Lecture: 09 Flux Capacitor (Schematic) Gauss Law II Carl Friedrich Gauss 1777 1855 Gauss Law: General Case Consider any ARBITRARY CLOSED surface S -- NOTE: this

More information

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2 MATH 3A: MIDTERM REVIEW JOE HUGHES 1. Curvature 1. Consider the curve r(t) = x(t), y(t), z(t), where x(t) = t Find the curvature κ(t). 0 cos(u) sin(u) du y(t) = Solution: The formula for curvature is t

More information

EE2007: Engineering Mathematics II Vector Calculus

EE2007: Engineering Mathematics II Vector Calculus EE2007: Engineering Mathematics II Vector Calculus Ling KV School of EEE, NTU ekvling@ntu.edu.sg Rm: S2-B2a-22 Ver: August 28, 2010 Ver 1.6: Martin Adams, Sep 2009 Ver 1.5: Martin Adams, August 2008 Ver

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

MULTIVARIABLE CALCULUS

MULTIVARIABLE CALCULUS MULTIVARIABLE CALCULUS JOHN QUIGG Contents 13.1 Three-Dimensional Coordinate Systems 2 13.2 Vectors 3 13.3 The Dot Product 5 13.4 The Cross Product 6 13.5 Equations of Lines and Planes 7 13.6 Cylinders

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Directional Derivative and the Gradient Operator

Directional Derivative and the Gradient Operator Chapter 4 Directional Derivative and the Gradient Operator The equation z = f(x, y) defines a surface in 3 dimensions. We can write this as z f(x, y) = 0, or g(x, y, z) = 0, where g(x, y, z) = z f(x, y).

More information

Suggested Solution to Assignment 7

Suggested Solution to Assignment 7 MATH 422 (25-6) partial diferential equations Suggested Solution to Assignment 7 Exercise 7.. Suppose there exists one non-constant harmonic function u in, which attains its maximum M at x. Then by the

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Final exam (practice 1) UCLA: Math 32B, Spring 2018 Instructor: Noah White Date: Final exam (practice 1) UCLA: Math 32B, Spring 218 This exam has 7 questions, for a total of 8 points. Please print your working and answers neatly. Write your solutions in

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Questions Chapter 23 Gauss' Law

Questions Chapter 23 Gauss' Law Questions Chapter 23 Gauss' Law 23-1 What is Physics? 23-2 Flux 23-3 Flux of an Electric Field 23-4 Gauss' Law 23-5 Gauss' Law and Coulomb's Law 23-6 A Charged Isolated Conductor 23-7 Applying Gauss' Law:

More information

Math 46, Applied Math (Spring 2009): Final

Math 46, Applied Math (Spring 2009): Final Math 46, Applied Math (Spring 2009): Final 3 hours, 80 points total, 9 questions worth varying numbers of points 1. [8 points] Find an approximate solution to the following initial-value problem which

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 344 4 Partial Differentiation Page 4-0 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep Copyright

More information

Read this cover page completely before you start.

Read this cover page completely before you start. I affirm that I have worked this exam independently, without texts, outside help, integral tables, calculator, solutions, or software. (Please sign legibly.) Read this cover page completely before you

More information

Concentric Circles Puzzle

Concentric Circles Puzzle In the image above, the inner circle has a circumference of 10 and the distance between the inner and outer circles is 3. If the circumference of the inner circle is increased to 11, and the distance between

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

F11AE1 1. C = ρν r r. r u z r

F11AE1 1. C = ρν r r. r u z r F11AE1 1 Question 1 20 Marks) Consider an infinite horizontal pipe with circular cross-section of radius a, whose centre line is aligned along the z-axis; see Figure 1. Assume no-slip boundary conditions

More information

Fall 2004 Physics 3 Tu-Th Section

Fall 2004 Physics 3 Tu-Th Section Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 9: 21 Oct. 2004 Web page: http://hep.ucsb.edu/people/claudio/ph3-04/ 1 Last time: Gauss's Law To formulate Gauss's law, introduced a few new

More information

CS Tutorial 5 - Differential Geometry I - Surfaces

CS Tutorial 5 - Differential Geometry I - Surfaces 236861 Numerical Geometry of Images Tutorial 5 Differential Geometry II Surfaces c 2009 Parameterized surfaces A parameterized surface X : U R 2 R 3 a differentiable map 1 X from an open set U R 2 to R

More information

Homework 4: Hard-Copy Homework Due Wednesday 2/17

Homework 4: Hard-Copy Homework Due Wednesday 2/17 Homework 4: Hard-Copy Homework Due Wednesday 2/17 Special instructions for this homework: Please show all work necessary to solve the problems, including diagrams, algebra, calculus, or whatever else may

More information

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt Partial Derivatives for Math 229 Our puropose here is to explain how one computes partial derivatives. We will not attempt to explain how they arise or why one would use them; that is left to other courses

More information