On Composite Quantum Hypothesis Testing

Size: px
Start display at page:

Download "On Composite Quantum Hypothesis Testing"

Transcription

1 University of York 7 November 207 On Composite Quantum Hypothesis Testing Mario Berta Department of Computing with Fernando Brandão and Christoph Hirche arxiv:

2 Overview Introduction 2 Composite Hypothesis Testing 3 Proof Idea 4 Examples 5 Conclusion

3 Introduction: Hypothesis Testing Discriminate between two sequences of quantum states ρ n, σ n on H n null and alternative hypothesis with two outcome POVM {M n, M n}. M n is associated with accepting ρ n and M n with accepting σ n. This leads to two types of errors α nm n := Tr [ ρ n M n ] Type error β nm n := Tr [ σ nm n ] Type 2 error. Symmetric setting for ρ n = ρ n, σ n = σ n with leads to ξ nρ, σ := inf 0 M n α nm n 2 + βnmn 2 Quantum Chernoff bound [Audenaert et al., PRL 07] log ξnρ, σ ξρ, σ := lim = log min n n Tr [ ρ s σ s]. 0 s

4 Introduction: Asymmetric Hypothesis Testing Same two type of errors α nm n, β nm n and ρ n = ρ n, σ n = σ n but asymmetric setting with βε n ρ, σ := inf { βnmn α nm n ε }. 0 M n leads to asymptotic error exponent Quantum Stein s lemma [Hiai and Petz, CMP 9] βρ, σ := lim log βn ερ, σ n n ε 0 = Dρ σ := Tr [ ρ log ρ log σ ]. Note: this led to the definition of the quantum relative entropy Dρ σ. Motivation: fundamental task in quantum statistics + underlying technical core problem for many applications in QIT as, e.g., quantum channel coding, quantum illumination, quantum reading, etc. [very many references].

5 Composite Hypothesis Testing: Setup Composite null and alternative hypotheses { } { } S n := ρ n dν ρ S vs. T n := σ n dµ σ T } {{ } } {{ } =:ρ nν =:σ nµ with S, T sets of quantum states and ν, µ measures on S, T, resp. For the asymmetric setting we define { βε n S, T := inf sup Tr [M nσ nµ] 0 M n sup Tr [ M nρ nν] ν S }{{}}{{} =:β nm n =:α nm n This leads to the definition of the composite asymptotic error exponent βs, T := lim log βn εs, T. n n ε 0 } ε.

6 Composite Hypothesis Testing: Classical Case If all involved quantum states pairwise commute classical setting probability distributions P, Q we have Composite Stein s lemma [Levitan and Merhav, IEEE 02] βs, T = inf P S Q T βp, Q = inf DP Q with Kulback-Leibler divergence. P S Q T Question: does this hold in the general non-commutative case as well? Yes, if T = {σ}, i.e., only composite null hypothesis [Hayashi, JPA 02]. Some related cases are understood as well [Brandão and Plenio, CMP 0] + [Hayashi and Tomamichel, JMP 6]. However, the general case remained open see also [Bjelaković et al., CMP 05]. Motivation: fundamental task in quantum statistics, composite version of applications in QIT e.g., network quantum Shannon theory.

7 Composite Hypothesis Testing: Quantum Case Our main result is regularized formula Composite quantum Stein s lemma [this talk] βs, T = lim n n inf ρ S D ρ n σ n dµσ inf ρ S σ T Dρ σ in general. Hence, in general D ρ n σ n dµσ n inf σ T Dρ σ. Converse: βs, T RHS based on MONO of quantum relative entropy under quantum channels [Hiai and Petz, CMP 9]. Achievability: βs, T RHS via measure: post-measurement probability distributions 2 apply classical composite Stein s lemma 3 mathematical properties of quantum entropy Regularization: examples + novel quantum entropy inequalities.

8 Proof Idea: Classical Strategy βs, T := lim lim log βn εs, T ε 0 n n For n N, ε 0,, and POVM N n with P n := N nρ n, Q n := N nσ n composite Stein s lemma for probability distributions gives achievability bound log β n εs, T inf ρ S σ T D N nρ n Nnσ n inf ν S D N nρ nν N nσ nµ. Optimizing over all POVM N n we find the measured relative entropy D N ρ σ as introduced by [Donald, CMP 86] log βn ε S, T n n sup inf N n ν S minimax = n inf ν S D N nρ nν N nσ nµ sup D N nρ nν N nσ nµ. N n }{{} =:D N ρ nν σ nµ

9 Proof Idea: Properties of Quantum Entropy Hence, so far we have βs, T lim n n inf ν S and it remains to prove that asymptotically n inf ν S D N ρ nν σ nµ i n inf ν S D N ρ nν σ nµ Dρ ii nν σ nµ n inf D ρ n σ nµ. ρ S Using asymptotic spectral pinching [Hayashi, JPA 02] + [Sutter et al., CMP 7] it can be shown D N ρ σ Dρ σ log specσ MONO: D N ρ σ Dρ σ. However, since σ nµ = σ n dµσ is permutation invariant, we have by Schur-Weyl duality specσ nµ polyn and step i follows. Step ii is deduced from the quasi-convexity of the von Neumann entropy.

10 Examples Composite quantum Stein s lemma [this talk] βs, T = lim n n inf ρ S D ρ n σ n dµσ inf ρ S σ T Dρ σ in general. When do we get single-letter formula? From [Hayashi, JPA 02] we have β S, T = {σ} = inf ρ S Dρ σ. An example for composite alternative hypotheses: relative entropy of coherence [Baumgratz et al., PRL 4] D C ρ := inf Dρ σ for set of states C diagonal in a fixed basis { c }. σ C

11 Examples: Relative Entropy of Coherence Goal: discrimination problem with asymptotic error exponent given by the relative entropy of coherence D C ρ := inf Dρ σ for set of states C diagonal in a fixed basis { c }. σ C Null hypothesis: the fixed states ρ n Alternative hypothesis: convex sets of iid coherent states C n := { σ n dµσ σ C } β {ρ}, C = lim ρ n n inf D n µ C σ n dµσ = D C ρ. More examples possible, e.g., quantum mutual information for product state testing cf. [Hayashi and Tomamichel, JMP 6].

12 Examples: Regularization and Entropy Inequalities I Goal: give discrimination problem such that lim n n inf D ρ n σ n dµσ inf Dρ σ ρ S ρ S σ T Quantum Markov testing see also [Cooney et al., PRA 6] Null hypothesis: the fixed state ρ n ABC Alternative hypothesis: the { convex sets of quantum Markov iid states } R n := IA R C BC ρ AC n dµr with R C BC local quantum channels For this example we claim that our formula does not become single-letter β {ρ ABC }, R = lim n n inf D ρ n IA µ R ABC R C BC ρ AC n dµr inf R D ρ ABC I A R C BC ρ AC.

13 Examples: Regularization and Entropy Inequalities II lim n n inf D ρ n IA µ R ABC R C BC ρ AC n dµr inf R D ρ ABC I A R C BC ρ AC. We show improved lower bound on quantum conditional mutual information CQMI [Sutter et al., CMP 7], relaxed to see also [Brandão et al., PRL 5] I A : B C ρ := Dρ ABC ρ A ρ BC Dρ AC ρ A ρ C lim n n inf D ρ n IA µ R ABC R C BC ρ AC n dµr. However, [Fazwi and Fawzi, arxiv 7] give explicit quantum state ρ ABC with I A : B C ρ inf R D ρ ABC I A R C BC ρ AC. Note: use of additive CQMI nicely allows to circumvent asymptotics.

14 Conclusion Composite quantum Stein s lemma [this talk] βs, T = lim n n inf ρ S D ρ n σ n dµσ inf ρ S σ T Dρ σ in general. Single-letter examples possible, even with refinements: Hoeffding bound, strong converse exponent, second-order expansion as in [Hayashi and Tomamichel, JMP 6] + [Tomamichel and Hayashi, arxiv 5]. Symmetric setting: open question about composite quantum Chernoff bound ξρ, σ = log min Tr [ ρ s σ s] ξs, T =? inf ξρ, σ 0 s ρ S σ T only known up to a factor of two [Audenaert and Mosonyi, JMP 4]. Applications in QIT, e.g., network quantum Shannon theory [Qi et al., arxiv 7]?

15 Extra: Entropy inequalities CQMI bounds [Junge et al., arxiv 5], [Sutter et al., CMP 7], [this talk] For any quantum state ρ ABC the CQMI is lower bounded by the incomparable bounds I A : B C ρ I A : B C ρ D N ρ ABC I A : B C ρ lim sup n β 0 t log ρabc σ [t] 2 ABC dt β 0 tσ [t] ABC dt n D ρ n ABC β 0 t σ [t] n ABC dt, where β 0 t := π 2 coshπt + is a universal probability distribution and σ [t] ABC := I A R [t] C BC ρ AC with R [t] C BC := ρ +it 2 BC are rotated Petz local recovery quantum channels. ρc it 2 ρc +it 2 it 2 ρbc

Multivariate Trace Inequalities

Multivariate Trace Inequalities Multivariate Trace Inequalities Mario Berta arxiv:1604.03023 with Sutter and Tomamichel (to appear in CMP) arxiv:1512.02615 with Fawzi and Tomamichel QMath13 - October 8, 2016 Mario Berta (Caltech) Multivariate

More information

Multivariate trace inequalities. David Sutter, Mario Berta, Marco Tomamichel

Multivariate trace inequalities. David Sutter, Mario Berta, Marco Tomamichel Multivariate trace inequalities David Sutter, Mario Berta, Marco Tomamichel What are trace inequalities and why we should care. Main difference between classical and quantum world are complementarity and

More information

Correlation Detection and an Operational Interpretation of the Rényi Mutual Information

Correlation Detection and an Operational Interpretation of the Rényi Mutual Information Correlation Detection and an Operational Interpretation of the Rényi Mutual Information Masahito Hayashi 1, Marco Tomamichel 2 1 Graduate School of Mathematics, Nagoya University, and Centre for Quantum

More information

Quantum Sphere-Packing Bounds and Moderate Deviation Analysis for Classical-Quantum Channels

Quantum Sphere-Packing Bounds and Moderate Deviation Analysis for Classical-Quantum Channels Quantum Sphere-Packing Bounds and Moderate Deviation Analysis for Classical-Quantum Channels (, ) Joint work with Min-Hsiu Hsieh and Marco Tomamichel Hao-Chung Cheng University of Technology Sydney National

More information

Universal recoverability in quantum information theory

Universal recoverability in quantum information theory Universal recoverability in quantum information theory Mark M. Wilde Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State

More information

Classical and Quantum Channel Simulations

Classical and Quantum Channel Simulations Classical and Quantum Channel Simulations Mario Berta (based on joint work with Fernando Brandão, Matthias Christandl, Renato Renner, Joseph Renes, Stephanie Wehner, Mark Wilde) Outline Classical Shannon

More information

A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks

A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks Marco Tomamichel, Masahito Hayashi arxiv: 1208.1478 Also discussing results of: Second Order Asymptotics for Quantum

More information

Recoverability in quantum information theory

Recoverability in quantum information theory Recoverability in quantum information theory Mark M. Wilde Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State University,

More information

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing arxiv:uant-ph/9906090 v 24 Jun 999 Tomohiro Ogawa and Hiroshi Nagaoka Abstract The hypothesis testing problem of two uantum states is

More information

Converse bounds for private communication over quantum channels

Converse bounds for private communication over quantum channels Converse bounds for private communication over quantum channels Mark M. Wilde (LSU) joint work with Mario Berta (Caltech) and Marco Tomamichel ( Univ. Sydney + Univ. of Technology, Sydney ) arxiv:1602.08898

More information

A Holevo-type bound for a Hilbert Schmidt distance measure

A Holevo-type bound for a Hilbert Schmidt distance measure Journal of Quantum Information Science, 205, *,** Published Online **** 204 in SciRes. http://www.scirp.org/journal/**** http://dx.doi.org/0.4236/****.204.***** A Holevo-type bound for a Hilbert Schmidt

More information

Different quantum f-divergences and the reversibility of quantum operations

Different quantum f-divergences and the reversibility of quantum operations Different quantum f-divergences and the reversibility of quantum operations Fumio Hiai Tohoku University 2016, September (at Budapest) Joint work with Milán Mosonyi 1 1 F.H. and M. Mosonyi, Different quantum

More information

On asymmetric quantum hypothesis testing

On asymmetric quantum hypothesis testing On asymmetric quantum hypothesis testing JMP, Vol 57, 6, 10.1063/1.4953582 arxiv:1612.01464 Cambyse Rouzé (Cambridge) Joint with Nilanjana Datta (University of Cambridge) and Yan Pautrat (Paris-Saclay)

More information

Second-Order Asymptotics in Information Theory

Second-Order Asymptotics in Information Theory Second-Order Asymptotics in Information Theory Vincent Y. F. Tan (vtan@nus.edu.sg) Dept. of ECE and Dept. of Mathematics National University of Singapore (NUS) National Taiwan University November 2015

More information

DISCRIMINATING two distributions is treated as a fundamental problem in the field of statistical inference. This problem

DISCRIMINATING two distributions is treated as a fundamental problem in the field of statistical inference. This problem Discrimination of two channels by adaptive methods and its application to quantum system Masahito Hayashi 1 arxiv:0804.0686v1 [quant-ph] 4 Apr 2008 Abstract The optimal exponential error rate for adaptive

More information

Lecture 19 October 28, 2015

Lecture 19 October 28, 2015 PHYS 7895: Quantum Information Theory Fall 2015 Prof. Mark M. Wilde Lecture 19 October 28, 2015 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS

LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS Michael J. Kastoryano November 14 2016, QuSoft Amsterdam CONTENTS Local recovery maps Exact recovery and approximate recovery Local recovery for many

More information

Semidefinite programming strong converse bounds for quantum channel capacities

Semidefinite programming strong converse bounds for quantum channel capacities Semidefinite programming strong converse bounds for quantum channel capacities Xin Wang UTS: Centre for Quantum Software and Information Joint work with Runyao Duan and Wei Xie arxiv:1610.06381 & 1601.06888

More information

Generalized Neyman Pearson optimality of empirical likelihood for testing parameter hypotheses

Generalized Neyman Pearson optimality of empirical likelihood for testing parameter hypotheses Ann Inst Stat Math (2009) 61:773 787 DOI 10.1007/s10463-008-0172-6 Generalized Neyman Pearson optimality of empirical likelihood for testing parameter hypotheses Taisuke Otsu Received: 1 June 2007 / Revised:

More information

Strong converse theorems using Rényi entropies

Strong converse theorems using Rényi entropies Strong converse theorems using Rényi entropies Felix Leditzky joint work with Mark M. Wilde and Nilanjana Datta arxiv:1506.02635 5 January 2016 Table of Contents 1 Weak vs. strong converse 2 Rényi entropies

More information

arxiv: v1 [quant-ph] 31 Aug 2007

arxiv: v1 [quant-ph] 31 Aug 2007 arxiv:0708.4282v1 [quant-ph] 31 Aug 2007 Asymptotic Error Rates in Quantum Hypothesis Testing K.M.R. Audenaert 1,2, M. Nussbaum 3, A. Szkoła 4, F. Verstraete 5 1 Institute for Mathematical Sciences, Imperial

More information

Approximate reversal of quantum Gaussian dynamics

Approximate reversal of quantum Gaussian dynamics Approximate reversal of quantum Gaussian dynamics L. Lami, S. Das, and M.M. Wilde arxiv:1702.04737 or how to compute Petz maps associated with Gaussian states and channels. Motivation: data processing

More information

Strong converse theorems using Rényi entropies

Strong converse theorems using Rényi entropies Strong converse theorems using Rényi entropies Felix Leditzky a, Mark M. Wilde b, and Nilanjana Datta a a Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge C3

More information

Schur-Weyl duality, quantum data compression, tomography

Schur-Weyl duality, quantum data compression, tomography PHYSICS 491: Symmetry and Quantum Information April 25, 2017 Schur-Weyl duality, quantum data compression, tomography Lecture 7 Michael Walter, Stanford University These lecture notes are not proof-read

More information

Law of Cosines and Shannon-Pythagorean Theorem for Quantum Information

Law of Cosines and Shannon-Pythagorean Theorem for Quantum Information In Geometric Science of Information, 2013, Paris. Law of Cosines and Shannon-Pythagorean Theorem for Quantum Information Roman V. Belavkin 1 School of Engineering and Information Sciences Middlesex University,

More information

A diamagnetic inequality for semigroup differences

A diamagnetic inequality for semigroup differences A diamagnetic inequality for semigroup differences (Irvine, November 10 11, 2001) Barry Simon and 100DM 1 The integrated density of states (IDS) Schrödinger operator: H := H(V ) := 1 2 + V ω =: H(0, V

More information

Convergence of Quantum Statistical Experiments

Convergence of Quantum Statistical Experiments Convergence of Quantum Statistical Experiments M!d!lin Gu"! University of Nottingham Jonas Kahn (Paris-Sud) Richard Gill (Leiden) Anna Jen#ová (Bratislava) Statistical experiments and statistical decision

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Quantum to Classical Randomness Extractors

Quantum to Classical Randomness Extractors Quantum to Classical Randomness Extractors Mario Berta, Omar Fawzi, Stephanie Wehner - Full version preprint available at arxiv: 1111.2026v3 08/23/2012 - CRYPTO University of California, Santa Barbara

More information

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Entropy Since this course is about entropy maximization,

More information

Coherence, Discord, and Entanglement: Activating one resource into another and beyond

Coherence, Discord, and Entanglement: Activating one resource into another and beyond 586. WE-Heraeus-Seminar Quantum Correlations beyond Entanglement Coherence, Discord, and Entanglement: Activating one resource into another and beyond Gerardo School of Mathematical Sciences The University

More information

Entropy, Inference, and Channel Coding

Entropy, Inference, and Channel Coding Entropy, Inference, and Channel Coding Sean Meyn Department of Electrical and Computer Engineering University of Illinois and the Coordinated Science Laboratory NSF support: ECS 02-17836, ITR 00-85929

More information

Quantum Bilinear Optimisation

Quantum Bilinear Optimisation Quantum Bilinear Optimisation ariv:1506.08810 Mario Berta (IQIM Caltech), Omar Fawzi (ENS Lyon), Volkher Scholz (Ghent University) March 7th, 2016 Louisiana State University Quantum Bilinear Optimisation

More information

Attempting to reverse the irreversible in quantum physics

Attempting to reverse the irreversible in quantum physics Attempting to reverse the irreversible in quantum physics Mark M. Wilde Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

Markovian Marginals. Isaac H. Kim. Oct. 9, arxiv: IBM T.J. Watson Research Center

Markovian Marginals. Isaac H. Kim. Oct. 9, arxiv: IBM T.J. Watson Research Center Markovian Marginals Isaac H. Kim IBM T.J. Watson Research Center Oct. 9, 2016 arxiv:1609.08579 Marginal Problem Consider a physical system I. Given { I 0}, istherea 0 such that I = I 8I? If yes, the marginals

More information

Quantum Achievability Proof via Collision Relative Entropy

Quantum Achievability Proof via Collision Relative Entropy Quantum Achievability Proof via Collision Relative Entropy Salman Beigi Institute for Research in Fundamental Sciences (IPM) Tehran, Iran Setemper 8, 2014 Based on a joint work with Amin Gohari arxiv:1312.3822

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and Estimation I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 22, 2015

More information

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London Gerardo Adesso University of Nottingham Davide Girolami University of Nottingham Alessio Serafini University College London arxiv:1203.5116; Phys. Rev. Lett. (in press) A family of useful additive entropies

More information

CS286.2 Lecture 13: Quantum de Finetti Theorems

CS286.2 Lecture 13: Quantum de Finetti Theorems CS86. Lecture 13: Quantum de Finetti Theorems Scribe: Thom Bohdanowicz Before stating a quantum de Finetti theorem for density operators, we should define permutation invariance for quantum states. Let

More information

Information-theoretic treatment of tripartite systems and quantum channels. Patrick Coles Carnegie Mellon University Pittsburgh, PA USA

Information-theoretic treatment of tripartite systems and quantum channels. Patrick Coles Carnegie Mellon University Pittsburgh, PA USA Information-theoretic treatment of tripartite systems and quantum channels Patrick Coles Carnegie Mellon University Pittsburgh, PA USA ArXiv: 1006.4859 a c b Co-authors Li Yu Vlad Gheorghiu Robert Griffiths

More information

1 Quantum states and von Neumann entropy

1 Quantum states and von Neumann entropy Lecture 9: Quantum entropy maximization CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: February 15, 2016 1 Quantum states and von Neumann entropy Recall that S sym n n

More information

Arimoto-Rényi Conditional Entropy. and Bayesian M-ary Hypothesis Testing. Abstract

Arimoto-Rényi Conditional Entropy. and Bayesian M-ary Hypothesis Testing. Abstract Arimoto-Rényi Conditional Entropy and Bayesian M-ary Hypothesis Testing Igal Sason Sergio Verdú Abstract This paper gives upper and lower bounds on the minimum error probability of Bayesian M-ary hypothesis

More information

Capacity Estimates of TRO Channels

Capacity Estimates of TRO Channels Capacity Estimates of TRO Channels arxiv: 1509.07294 and arxiv: 1609.08594 Li Gao University of Illinois at Urbana-Champaign QIP 2017, Microsoft Research, Seattle Joint work with Marius Junge and Nicholas

More information

CONVEX FUNCTIONS AND MATRICES. Silvestru Sever Dragomir

CONVEX FUNCTIONS AND MATRICES. Silvestru Sever Dragomir Korean J. Math. 6 (018), No. 3, pp. 349 371 https://doi.org/10.11568/kjm.018.6.3.349 INEQUALITIES FOR QUANTUM f-divergence OF CONVEX FUNCTIONS AND MATRICES Silvestru Sever Dragomir Abstract. Some inequalities

More information

Signed Measures and Complex Measures

Signed Measures and Complex Measures Chapter 8 Signed Measures Complex Measures As opposed to the measures we have considered so far, a signed measure is allowed to take on both positive negative values. To be precise, if M is a σ-algebra

More information

Nullity of Measurement-induced Nonlocality. Yu Guo

Nullity of Measurement-induced Nonlocality. Yu Guo Jul. 18-22, 2011, at Taiyuan. Nullity of Measurement-induced Nonlocality Yu Guo (Joint work with Pro. Jinchuan Hou) 1 1 27 Department of Mathematics Shanxi Datong University Datong, China guoyu3@yahoo.com.cn

More information

On Third-Order Asymptotics for DMCs

On Third-Order Asymptotics for DMCs On Third-Order Asymptotics for DMCs Vincent Y. F. Tan Institute for Infocomm Research (I R) National University of Singapore (NUS) January 0, 013 Vincent Tan (I R and NUS) Third-Order Asymptotics for DMCs

More information

SHARED INFORMATION. Prakash Narayan with. Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe

SHARED INFORMATION. Prakash Narayan with. Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe SHARED INFORMATION Prakash Narayan with Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe 2/40 Acknowledgement Praneeth Boda Himanshu Tyagi Shun Watanabe 3/40 Outline Two-terminal model: Mutual

More information

A Matrix Expander Chernoff Bound

A Matrix Expander Chernoff Bound A Matrix Expander Chernoff Bound Ankit Garg, Yin Tat Lee, Zhao Song, Nikhil Srivastava UC Berkeley Vanilla Chernoff Bound Thm [Hoeffding, Chernoff]. If X 1,, X k are independent mean zero random variables

More information

On Improved Bounds for Probability Metrics and f- Divergences

On Improved Bounds for Probability Metrics and f- Divergences IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES On Improved Bounds for Probability Metrics and f- Divergences Igal Sason CCIT Report #855 March 014 Electronics Computers Communications

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

Least squares under convex constraint

Least squares under convex constraint Stanford University Questions Let Z be an n-dimensional standard Gaussian random vector. Let µ be a point in R n and let Y = Z + µ. We are interested in estimating µ from the data vector Y, under the assumption

More information

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities.

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities. Chapter 6 Quantum entropy There is a notion of entropy which quantifies the amount of uncertainty contained in an ensemble of Qbits. This is the von Neumann entropy that we introduce in this chapter. In

More information

Semidefinite approximations of the matrix logarithm

Semidefinite approximations of the matrix logarithm 1/26 Semidefinite approximations of the matrix logarithm Hamza Fawzi DAMTP, University of Cambridge Joint work with James Saunderson (Monash University) and Pablo Parrilo (MIT) April 5, 2018 2/26 Logarithm

More information

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA)

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA) The circular law Lewis Memorial Lecture / DIMACS minicourse March 19, 2008 Terence Tao (UCLA) 1 Eigenvalue distributions Let M = (a ij ) 1 i n;1 j n be a square matrix. Then one has n (generalised) eigenvalues

More information

SHARED INFORMATION. Prakash Narayan with. Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe

SHARED INFORMATION. Prakash Narayan with. Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe SHARED INFORMATION Prakash Narayan with Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe 2/41 Outline Two-terminal model: Mutual information Operational meaning in: Channel coding: channel

More information

Fundamental work cost of quantum processes

Fundamental work cost of quantum processes 1607.03104 1709.00506 Fundamental work cost of quantum processes Philippe Faist 1,2, Renato Renner 1 1 Institute for Theoretical Physics, ETH Zurich 2 Institute for Quantum Information and Matter, Caltech

More information

Entropic Formulation of Heisenberg s Measurement-Disturbance Relation

Entropic Formulation of Heisenberg s Measurement-Disturbance Relation Entropic Formulation of Heisenberg s Measurement-Disturbance Relation arxiv:1311.7637 QPL 2014, Kyoto, 6. June 2014 Fabian Furrer Joint work with: Patrick Coles @ Different Uncertainty Trade-Offs Uncertainty

More information

Lecture 11: Quantum Information III - Source Coding

Lecture 11: Quantum Information III - Source Coding CSCI5370 Quantum Computing November 25, 203 Lecture : Quantum Information III - Source Coding Lecturer: Shengyu Zhang Scribe: Hing Yin Tsang. Holevo s bound Suppose Alice has an information source X that

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

Soft Covering with High Probability

Soft Covering with High Probability Soft Covering with High Probability Paul Cuff Princeton University arxiv:605.06396v [cs.it] 20 May 206 Abstract Wyner s soft-covering lemma is the central analysis step for achievability proofs of information

More information

A Tight Upper Bound on the Second-Order Coding Rate of Parallel Gaussian Channels with Feedback

A Tight Upper Bound on the Second-Order Coding Rate of Parallel Gaussian Channels with Feedback A Tight Upper Bound on the Second-Order Coding Rate of Parallel Gaussian Channels with Feedback Vincent Y. F. Tan (NUS) Joint work with Silas L. Fong (Toronto) 2017 Information Theory Workshop, Kaohsiung,

More information

Operator norm convergence for sequence of matrices and application to QIT

Operator norm convergence for sequence of matrices and application to QIT Operator norm convergence for sequence of matrices and application to QIT Benoît Collins University of Ottawa & AIMR, Tohoku University Cambridge, INI, October 15, 2013 Overview Overview Plan: 1. Norm

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

Free probability and quantum information

Free probability and quantum information Free probability and quantum information Benoît Collins WPI-AIMR, Tohoku University & University of Ottawa Tokyo, Nov 8, 2013 Overview Overview Plan: 1. Quantum Information theory: the additivity problem

More information

Lebesgue-Radon-Nikodym Theorem

Lebesgue-Radon-Nikodym Theorem Lebesgue-Radon-Nikodym Theorem Matt Rosenzweig 1 Lebesgue-Radon-Nikodym Theorem In what follows, (, A) will denote a measurable space. We begin with a review of signed measures. 1.1 Signed Measures Definition

More information

Some applications of matrix inequalities in Rényi entropy

Some applications of matrix inequalities in Rényi entropy Some applications of matrix inequalities in Rényi entropy arxiv:608.03362v [math-ph] Aug 206 Hadi Reisizadeh, and S. Mahmoud Manjegani 2, Department of Electrical and Computer Engineering, 2 Department

More information

Approximate quantum Markov chains

Approximate quantum Markov chains David Sutter arxiv:80.05477v [quant-ph] 5 Feb 08 Approximate quantum Markov chains February 6, 08 Springer Acknowledgements First and foremost, I would like to thank my advisor Renato Renner for his encouragement

More information

Contraction Coefficients for Noisy Quantum Channels

Contraction Coefficients for Noisy Quantum Channels Contraction Coefficients for Noisy Quantum Channels Mary Beth Ruskai ruskai@member.ams.org joint work with F. Hiai Daejeon February, 2016 1 M. B. Ruskai Contraction of Quantum Channels Recall Relative

More information

arxiv: v4 [cs.it] 17 Oct 2015

arxiv: v4 [cs.it] 17 Oct 2015 Upper Bounds on the Relative Entropy and Rényi Divergence as a Function of Total Variation Distance for Finite Alphabets Igal Sason Department of Electrical Engineering Technion Israel Institute of Technology

More information

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013).

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013). 1 / 24 Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, 032324 (2013). G. Tóth 1,2,3 and D. Petz 4,5 1 Theoretical Physics, University of the Basque Country UPV/EHU,

More information

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Vincent Y. F. Tan (Joint work with Silas L. Fong) National University of Singapore (NUS) 2016 International Zurich Seminar on

More information

Quantum Information Processing with Finite Resources

Quantum Information Processing with Finite Resources Marco Tomamichel arxiv:1504.00233v3 [quant-ph] 18 Oct 2015 Quantum Information Processing with Finite Resources Mathematical Foundations October 18, 2015 Springer Acknowledgements I was introduced to

More information

Lecture 21: HSP via the Pretty Good Measurement

Lecture 21: HSP via the Pretty Good Measurement Quantum Computation (CMU 5-859BB, Fall 205) Lecture 2: HSP via the Pretty Good Measurement November 8, 205 Lecturer: John Wright Scribe: Joshua Brakensiek The Average-Case Model Recall from Lecture 20

More information

Quantum Stein s Lemma. July 2, 2015

Quantum Stein s Lemma. July 2, 2015 Quantum Stein s Lemma July 2, 205 Contents Introduction 3. Motivation............................................. 3.2 Histrical Remark......................................... 5 2 Quantum Stein s Lemma

More information

Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities Vincent Y. F. Tan Dept. of ECE and Dept. of Mathematics National University of Singapore (NUS) September 2014 Vincent Tan

More information

Quantum rate distortion, reverse Shannon theorems, and source-channel separation

Quantum rate distortion, reverse Shannon theorems, and source-channel separation Quantum rate distortion, reverse Shannon theorems, and source-channel separation ilanjana Datta, Min-Hsiu Hsieh, Mark Wilde (1) University of Cambridge,U.K. (2) McGill University, Montreal, Canada Classical

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Information Recovery from Pairwise Measurements

Information Recovery from Pairwise Measurements Information Recovery from Pairwise Measurements A Shannon-Theoretic Approach Yuxin Chen, Changho Suh, Andrea Goldsmith Stanford University KAIST Page 1 Recovering data from correlation measurements A large

More information

Distinguishing multi-partite states by local measurements

Distinguishing multi-partite states by local measurements Distinguishing multi-partite states by local measurements Guillaume Aubrun / Andreas Winter Université Claude Bernard Lyon 1 / Universitat Autònoma de Barcelona Cécilia Lancien UCBL1 / UAB Madrid OA and

More information

A NOTE ON SUMS OF INDEPENDENT RANDOM MATRICES AFTER AHLSWEDE-WINTER

A NOTE ON SUMS OF INDEPENDENT RANDOM MATRICES AFTER AHLSWEDE-WINTER A NOTE ON SUMS OF INDEPENDENT RANDOM MATRICES AFTER AHLSWEDE-WINTER 1. The method Ashwelde and Winter [1] proposed a new approach to deviation inequalities for sums of independent random matrices. The

More information

Holographic Second Laws of Black Hole Thermodynamics

Holographic Second Laws of Black Hole Thermodynamics Holographic Second Laws of Black Hole Thermodynamics Federico Galli Gauge/Gravity Duality 018, Würzburg, 31 July 018 Based on arxiv: 1803.03633 with A. Bernamonti, R. Myers and J. Oppenheim Second Law

More information

On Power Series Analytic in the Open Unit Disk with Finite Doble-Logarithmic Order

On Power Series Analytic in the Open Unit Disk with Finite Doble-Logarithmic Order Applied Mathematical Sciences, Vol 2, 2008, no 32, 549-569 On Power Series Analytic in the Open Unit Disk with Finite Doble-Logarithmic Order Mehmet Açıkgöz University of Gaziantep, Faculty of Science

More information

Semidefinite programming strong converse bounds for quantum channel capacities

Semidefinite programming strong converse bounds for quantum channel capacities Semidefinite programming strong converse bounds for quantum channel capacities Xin Wang UTS: Centre for Quantum Software and Information Joint work with Wei Xie, Runyao Duan (UTS:QSI) QIP 2017, Microsoft

More information

Classical communication over classical channels using non-classical correlation. Will Matthews University of Waterloo

Classical communication over classical channels using non-classical correlation. Will Matthews University of Waterloo Classical communication over classical channels using non-classical correlation. Will Matthews IQC @ University of Waterloo 1 Classical data over classical channels Q F E n Y X G ˆQ Finite input alphabet

More information

Convexity/Concavity of Renyi Entropy and α-mutual Information

Convexity/Concavity of Renyi Entropy and α-mutual Information Convexity/Concavity of Renyi Entropy and -Mutual Information Siu-Wai Ho Institute for Telecommunications Research University of South Australia Adelaide, SA 5095, Australia Email: siuwai.ho@unisa.edu.au

More information

Necessary and Sufficient Conditions for High-Dimensional Salient Feature Subset Recovery

Necessary and Sufficient Conditions for High-Dimensional Salient Feature Subset Recovery Necessary and Sufficient Conditions for High-Dimensional Salient Feature Subset Recovery Vincent Tan, Matt Johnson, Alan S. Willsky Stochastic Systems Group, Laboratory for Information and Decision Systems,

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ = Chapter 6. Integration 1. Integrals of Nonnegative Functions Let (, S, µ) be a measure space. We denote by L + the set of all measurable functions from to [0, ]. Let φ be a simple function in L +. Suppose

More information

Incompressibility Estimates in the Laughlin Phase

Incompressibility Estimates in the Laughlin Phase Incompressibility Estimates in the Laughlin Phase Jakob Yngvason, University of Vienna with Nicolas Rougerie, University of Grenoble București, July 2, 2014 Jakob Yngvason (Uni Vienna) Incompressibility

More information

arxiv: v4 [cs.it] 8 Apr 2014

arxiv: v4 [cs.it] 8 Apr 2014 1 On Improved Bounds for Probability Metrics and f-divergences Igal Sason Abstract Derivation of tight bounds for probability metrics and f-divergences is of interest in information theory and statistics.

More information

Quantum Hadamard channels (I)

Quantum Hadamard channels (I) .... Quantum Hadamard channels (I) Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. July 8, 2010 Vlad Gheorghiu (CMU) Quantum Hadamard channels (I) July 8, 2010

More information

Local Differential Privacy

Local Differential Privacy Local Differential Privacy Peter Kairouz Department of Electrical & Computer Engineering University of Illinois at Urbana-Champaign Joint work with Sewoong Oh (UIUC) and Pramod Viswanath (UIUC) / 33 Wireless

More information

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem Chapter 8 General Countably dditive Set Functions In Theorem 5.2.2 the reader saw that if f : X R is integrable on the measure space (X,, µ) then we can define a countably additive set function ν on by

More information

Spectral law of the sum of random matrices

Spectral law of the sum of random matrices Spectral law of the sum of random matrices Florent Benaych-Georges benaych@dma.ens.fr May 5, 2005 Abstract The spectral distribution of a matrix is the uniform distribution on its spectrum with multiplicity.

More information

Nonparametric Inference In Functional Data

Nonparametric Inference In Functional Data Nonparametric Inference In Functional Data Zuofeng Shang Purdue University Joint work with Guang Cheng from Purdue Univ. An Example Consider the functional linear model: Y = α + where 1 0 X(t)β(t)dt +

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Lecture 22: Error exponents in hypothesis testing, GLRT

Lecture 22: Error exponents in hypothesis testing, GLRT 10-704: Information Processing and Learning Spring 2012 Lecture 22: Error exponents in hypothesis testing, GLRT Lecturer: Aarti Singh Scribe: Aarti Singh Disclaimer: These notes have not been subjected

More information