LIOUVILLE QUANTUM MULTIFRACTALITY

Size: px
Start display at page:

Download "LIOUVILLE QUANTUM MULTIFRACTALITY"

Transcription

1 LIOUVILLE QUANTUM MULTIFRACTALITY Bertrand Duplantier Institut de Physique Théorique Université Paris-Saclay, France 116TH STATISTICAL MECHANICS CONFERENCE HONOREES: JOHN CARDY & SUSAN COPPERSMITH Rutgers University, Hill Center December 18 20, 2016 Based on joint work with Gaëtan Borot (MPI Bonn), Jérémie Bouttier (ENS-Lyon) Jason Miller (Cambridge), Scott Sheffield (MIT)

2 Random Planar Map & Conformal Map [Courtesy of N. Curien] Left: A random triangulation of the sphere. Right: Conformal map to the sphere. In the continuum scaling limit: Liouville Quantum Gravity A.M. Polyakov 81 (See also J. Teschner s talk)

3 Random Planar Maps & Statistical Models Percolation hulls [Courtesy of N. Curien].

4 LIOUVILLE QG RANDOM MEASURE µ= e γh dz

5 Gaussian Free Field (GFF) [Courtesy of J. Miller] Distribution h with Gaussian weight exp [ 1 2 (h,h) ], and Dirichlet inner product in domain D ( f 1, f 2 ) := (2π) 1 f 1 (z) f 2 (z)dz D = Cov ( ) (h, f 1 ),(h, f 2 )

6 LIOUVILLE QUANTUM MEASURE µ γ := lim ε 0 exp [ γh ε (z) ] ε γ2 /2 dz, where h ε (z) is the GFF average on a circle of radius ε, converges weakly for γ<2 to a random measure, denoted by e γh(z) dz. [Høegh-Krohn 71; Kahane 85; D. & Sheffield 11] For γ=2, the renormalized one, log(1/ε) [ exp [ γh ε (z) ] ε γ2 /2 ] γ=2 dz, converges, as ε 0, to a positive non-atomic random measure. [D., Rhodes, Sheffield, Vargas 14]

7 O(n) model on a Random Planar Map g h A disk triangulationc, and its local weights (α=1 here). α 1 Z l = C u V(C) w(c), w(c)=n L g T 1 h T 2, the sum runs over all configurationsc of a disk of fixed perimeter l; u is an auxiliary weight per vertex, V(C) denotes the number of vertices of the map ofc (volume); T 1, T 2 are the numbers of empty or occupied triangles; the number of loopsl ofc is weighted by n [0,2].

8 Phase diagram and critical loci h supercritical dense dilute subcritical generic Qualitative phase diagram of the O(n) loop model (n [0,2]) on a random map. For u=1, a line of critical points separates the subcritical and supercritical phase. Critical points may be in three different universality classes: generic (pure gravity), dilute and dense. g

9 Random Map Nesting Theorem [Borot, Bouttier, D. 16] Fix(g,h) and n (0,2) such that the model reaches a dilute or dense critical point for the vertex weight u=1. In the ensemble of random pointed disks of volume V and perimeter L, the probability distribution of the numbern of separating loops between the marked point and the boundary behaves as: [ clnv P N. = p V,L=l] (lnv) 2 1 V π c J(p) (sphere), π [ clnv ] P N = 2π p V,L= V 2l c. (lnv) 2 1 V 2π c J(p) (disk), where l>0is fixed, and lnv p, and: ( ) 2 p J(p)= pln + arccot(p) arccos(n/2). n 1+ p 2 with c=1 (dilute), c=1/[1 1 π arccos( n 2 ) ] (dense), which decreases from 2 to 1 as n increases from 0 to 2.

10 Large Deviations Function J(p) p J(p) for n=1 (blue), n= 2 (Ising, green) and n= 3 (3-Potts, orange).

11 The Conformal Loop Ensemble (CLE) [Sheffield 09, Sheffield & Werner 12] The critical O(n)-model on a regular planar lattice is expected to converge in the continuum limit to SLE κ /CLE κ, for n= 2cos ( 4π/κ ) κ (8/3,4], dilute phase, n (0,2], κ [4,8), dense phase, (Loop-erased random walk & spanning trees [Lawler, Schramm, Werner], Ising & percolation [Smirnov], GFF contour lines [Schramm-Sheffield].) The same is expected in the critical dilute or dense phase on a random planar map, the random area measure being in the scaling limit the Liouville quantum measure for γ=min{ κ,4/ κ}.

12 Nesting in the Conformal Loop Ensemble (CLE) ερ ε 1 N z (ε) is the number of nested loops of a CLE κ, κ (8/3,8) surrounding the ball B(z,ε) in the unit disk.

13 Extreme nesting in CLE [Miller, Watson & Wilson 14] LetN z (ε) be the number of loops of a CLE κ, κ (8/3,8) surrounding the ball B(z,ε), and Φ ν the set of points z where dim H Φ ν = 2 γ κ (ν) lim N z(ε)/ln(1/ε)=ν. ε 0 γ κ (ν)=νλ κ(1/ν),ν 0; Λ κ(x) := sup(λx Λ κ (λ)) Λ κ (λ)=ln λ R cos(4π/κ) ( (1 ) ) λ cos π κ κ Moment generating function of the loop log-conformal radius [Cardy & Ziff 02; Kenyon & Wilson 04; Schramm, Sheffield & Wilson 09]

14 Large Deviations Euclidean case: for a ball of radius ε P ( N z νln(1/ε) ε ) =P ( N z νt t ) ε γ κ(ν) = exp[ tγ κ (ν)]. Liouville Quantum Gravity: t := lnε; A := γ 1 lnδ, δ := B(z,ε) µ γ (quantum ball) Conditioned on δ, hence A, perform the convolution P Q (N z A) := 0 P ( N z t ) P(t A)dt, where P(t A) is the probability distribution of the random Euclidean log-radius t, given the quantum log-radius A.

15 Probability Distribution (γ= 8/3) [A=2; 20; 200] AP A ( t) t/a t = lnε, A= γ 1 lnδ, δ= P(t A)= A [ exp 1 ( A aγ t ) ] 2 2πt 3 2t a γ := 2/γ γ/2 µ γ B(z,ε)

16 Large Deviations t = lnε, A= γ 1 logδ (quantum ball), N νlnε=νt,n p lnδ=γpa It implies ν=γpa/t. P Q (N z γpa A) := 0 P ( N z γpa=νt t ) P(t A)dt The asymptotic result above then yields, for A +, ( dt A P Q (N z γpa A) exp (A a γt) 2 ) γ κ (ν)t 0 2πt 3 2t exp[ A Θ(p)] (saddle point at νt constant) Θ(p) is the large deviation function for the loop number around a δ-quantum ball scaling as p log(1/δ).

17 Liouville Quantum Large Deviations In the plane, the Legendre transform gave γ κ (ν)=λ νλ κ (λ), In Liouville Quantum Gravity Θ(p)= Uγ 1 (λ/2) pλ κ (λ), 1 ν = Λ κ(λ) λ. 1 p = Λ κ(λ) Uγ 1 (λ/2), where Uγ 1 (λ/2) := ( ) aγ+ 2 2λ a γ /γ is the inverse KPZ function, with γ=min { κ,4/ κ }, a γ = 2/γ γ/2.

18 Nesting in Liouville Quantum Gravity Theorem [Borot, Bouttier, D. 16] The quantum nesting probability of a CLE κ in a simply connected domain, for the numbern z of loops surrounding a ball centered at z and conditioned to have a given Liouville quantum area δ, has the large deviations form, P Q ( N z cp 2π ln(1/δ) δ ) δ c 2π J(p), δ 0, where c and J are the same as in the combinatorial result obtained for the critical O(n) model in the scaling limit of large random maps.

19 CLE on the Riemann sphere [Kemppainen & Werner 14] Theorem [Borot, Bouttier, D. 16] The nesting probability in CLE κ (Ĉ) between two balls of radius ε 1 and ε 2 and centered at two distinct punctures, has the large deviations form, PĈ[ N (ε 1,ε 2 ) νln(1/(ε 1 ε 2 )) ] (ε 1 ε 2 ) γ κ(ν), ν 0, ε 1,ε 2 0, where γ κ (ν) is the large deviations function of the disk topology. Corollary The nesting probability in CLE κ (Ĉ) between two balls of same radius ε and centered at two distinct punctures, has the large deviations form, PĈ( N (ε,ε) νln(1/ε) ) ε γ κ(ν), ν 0, ε 0, where γ κ (ν) is related to the disk large deviations function by γ κ (2ν)=2γ κ (ν).

20 Riemann sphere Theorem [Borot, Bouttier, D. 16] On the Riemann sphere Ĉ, the large deviations function Θ which governs the quantum nesting probability between two non-overlapping δ-quantum balls, PĈQ (N pln(1/δ) δ) δ Θ(p), δ 0, is related to the similar function Θ for the disk topology by Θ(2p)=2Θ(p), so that ( cp ) PĈQ N δ 0 π ln(1/δ) δ π c J(p), where c and J are the same as before. Perfect matching of LQG results for CLE κ with those for the O(n) model on a random planar map, with the correspondence δ 1/V, with δ 0, V +.

21 HAPPY BIRTHDAYS, JOHN & SUSAN!

An introduction to Liouville Quantum Field theory

An introduction to Liouville Quantum Field theory An introduction to Liouville Quantum Field theory Vincent Vargas ENS Paris Outline 1 Quantum Mechanics and Feynman s path integral 2 Liouville Quantum Field theory (LQFT) The Liouville action The Gaussian

More information

Imaginary Geometry and the Gaussian Free Field

Imaginary Geometry and the Gaussian Free Field Imaginary Geometry and the Gaussian Free Field Jason Miller and Scott Sheffield Massachusetts Institute of Technology May 23, 2013 Jason Miller and Scott Sheffield (MIT) Imaginary Geometry and the Gaussian

More information

CFT and SLE and 2D statistical physics. Stanislav Smirnov

CFT and SLE and 2D statistical physics. Stanislav Smirnov CFT and SLE and 2D statistical physics Stanislav Smirnov Recently much of the progress in understanding 2-dimensional critical phenomena resulted from Conformal Field Theory (last 30 years) Schramm-Loewner

More information

Constructing the 2d Liouville Model

Constructing the 2d Liouville Model Constructing the 2d Liouville Model Antti Kupiainen joint work with F. David, R. Rhodes, V. Vargas Porquerolles September 22 2015 γ = 2, (c = 2) Quantum Sphere γ = 2, (c = 2) Quantum Sphere Planar maps

More information

Plan 1. This talk: (a) Percolation and criticality (b) Conformal invariance Brownian motion (BM) and percolation (c) Loop-erased random walk (LERW) (d

Plan 1. This talk: (a) Percolation and criticality (b) Conformal invariance Brownian motion (BM) and percolation (c) Loop-erased random walk (LERW) (d Percolation, Brownian Motion and SLE Oded Schramm The Weizmann Institute of Science and Microsoft Research Plan 1. This talk: (a) Percolation and criticality (b) Conformal invariance Brownian motion (BM)

More information

Liouville Quantum Gravity on the Riemann sphere

Liouville Quantum Gravity on the Riemann sphere Liouville Quantum Gravity on the Riemann sphere Rémi Rhodes University Paris-Est Marne La Vallée Joint work with F.David, A.Kupiainen, V.Vargas A.M. Polyakov: "Quantum geometry of bosonic strings", 1981

More information

Towards conformal invariance of 2-dim lattice models

Towards conformal invariance of 2-dim lattice models Towards conformal invariance of 2-dim lattice models Stanislav Smirnov Université de Genève September 4, 2006 2-dim lattice models of natural phenomena: Ising, percolation, self-avoiding polymers,... Realistic

More information

Brownian surfaces. Grégory Miermont based on ongoing joint work with Jérémie Bettinelli. UMPA, École Normale Supérieure de Lyon

Brownian surfaces. Grégory Miermont based on ongoing joint work with Jérémie Bettinelli. UMPA, École Normale Supérieure de Lyon Brownian surfaces Grégory Miermont based on ongoing joint work with Jérémie Bettinelli UMPA, École Normale Supérieure de Lyon Clay Mathematics Institute conference Advances in Probability Oxford, Sept

More information

QLE. Jason Miller and Scott Sheffield. August 1, 2013 MIT. Jason Miller and Scott Sheffield (MIT) QLE August 1, / 37

QLE. Jason Miller and Scott Sheffield. August 1, 2013 MIT. Jason Miller and Scott Sheffield (MIT) QLE August 1, / 37 QLE Jason Miller and Scott Sheffield MIT August 1, 2013 Jason Miller and Scott Sheffield (MIT) QLE August 1, 2013 1 / 37 Surfaces, curves, metric balls: how are they related? FPP: first passage percolation.

More information

2D Critical Systems, Fractals and SLE

2D Critical Systems, Fractals and SLE 2D Critical Systems, Fractals and SLE Meik Hellmund Leipzig University, Institute of Mathematics Statistical models, clusters, loops Fractal dimensions Stochastic/Schramm Loewner evolution (SLE) Outlook

More information

Stochastic Loewner Evolution: another way of thinking about Conformal Field Theory

Stochastic Loewner Evolution: another way of thinking about Conformal Field Theory Stochastic Loewner Evolution: another way of thinking about Conformal Field Theory John Cardy University of Oxford October 2005 Centre for Mathematical Physics, Hamburg Outline recall some facts about

More information

First Passage Percolation

First Passage Percolation First Passage Percolation (and other local modifications of the metric) on Random Planar Maps (well... actually on triangulations only!) N. Curien and J.F. Le Gall (Université Paris-Sud Orsay, IUF) Journées

More information

Percolation on random triangulations

Percolation on random triangulations Percolation on random triangulations Olivier Bernardi (MIT) Joint work with Grégory Miermont (Université Paris-Sud) Nicolas Curien (École Normale Supérieure) MSRI, January 2012 Model and motivations Planar

More information

Liouville quantum gravity as a mating of trees

Liouville quantum gravity as a mating of trees Liouville quantum gravity as a mating of trees Bertrand Duplantier, Jason Miller and Scott Sheffield arxiv:1409.7055v [math.pr] 9 Feb 016 Abstract There is a simple way to glue together a coupled pair

More information

THE WORK OF WENDELIN WERNER

THE WORK OF WENDELIN WERNER THE WORK OF WENDELIN WERNER International Congress of Mathematicians Madrid August 22, 2006 C. M. Newman Courant Institute of Mathematical Sciences New York University It is my pleasure to report on some

More information

The dimer model: universality and conformal invariance. Nathanaël Berestycki University of Cambridge. Colloque des sciences mathématiques du Québec

The dimer model: universality and conformal invariance. Nathanaël Berestycki University of Cambridge. Colloque des sciences mathématiques du Québec The dimer model: universality and conformal invariance Nathanaël Berestycki University of Cambridge Colloque des sciences mathématiques du Québec The dimer model Definition G = bipartite finite graph,

More information

GEOMETRIC AND FRACTAL PROPERTIES OF SCHRAMM-LOEWNER EVOLUTION (SLE)

GEOMETRIC AND FRACTAL PROPERTIES OF SCHRAMM-LOEWNER EVOLUTION (SLE) GEOMETRIC AND FRACTAL PROPERTIES OF SCHRAMM-LOEWNER EVOLUTION (SLE) Triennial Ahlfors-Bers Colloquium Gregory F. Lawler Department of Mathematics Department of Statistics University of Chicago 5734 S.

More information

Random planar curves Schramm-Loewner Evolution and Conformal Field Theory

Random planar curves Schramm-Loewner Evolution and Conformal Field Theory Random planar curves Schramm-Loewner Evolution and Conformal Field Theory John Cardy University of Oxford WIMCS Annual Meeting December 2009 Introduction - lattice models in two dimensions and random planar

More information

Béatrice de Tilière. Université Pierre et Marie Curie, Paris. Young Women in Probability 2014, Bonn

Béatrice de Tilière. Université Pierre et Marie Curie, Paris. Young Women in Probability 2014, Bonn ASPECTS OF THE DIMER MODEL, SPANNING TREES AND THE ISING MODEL Béatrice de Tilière Université Pierre et Marie Curie, Paris Young Women in Probability 2014, Bonn INTRODUCTION STATISTICAL MECHANICS Understand

More information

The Brownian map A continuous limit for large random planar maps

The Brownian map A continuous limit for large random planar maps The Brownian map A continuous limit for large random planar maps Jean-François Le Gall Université Paris-Sud Orsay and Institut universitaire de France Seminar on Stochastic Processes 0 Jean-François Le

More information

An Introduction to Percolation

An Introduction to Percolation An Introduction to Percolation Michael J. Kozdron University of Regina http://stat.math.uregina.ca/ kozdron/ Colloquium Department of Mathematics & Statistics September 28, 2007 Abstract Percolation was

More information

arxiv:math/ v1 [math.pr] 21 Dec 2001

arxiv:math/ v1 [math.pr] 21 Dec 2001 Monte Carlo Tests of SLE Predictions for the 2D Self-Avoiding Walk arxiv:math/0112246v1 [math.pr] 21 Dec 2001 Tom Kennedy Departments of Mathematics and Physics University of Arizona, Tucson, AZ, 85721

More information

Some new estimates on the Liouville heat kernel

Some new estimates on the Liouville heat kernel Some new estimates on the Liouville heat kernel Vincent Vargas 1 2 ENS Paris 1 first part in collaboration with: Maillard, Rhodes, Zeitouni 2 second part in collaboration with: David, Kupiainen, Rhodes

More information

Simple random walk on the two-dimensional uniform spanning tree and its scaling limits

Simple random walk on the two-dimensional uniform spanning tree and its scaling limits Simple random walk on the two-dimensional uniform spanning tree and its scaling limits 5th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals, 11 June, 2014 Takashi Kumagai

More information

arxiv:math-ph/ v2 14 Mar 2003

arxiv:math-ph/ v2 14 Mar 2003 Proceedings of Symposia in Pure Mathematics Amérique, Ô ma Norvège! Dominique Fourcade Le sujet monotype P.O.L. (1997) arxiv:math-ph/0303034v2 14 Mar 2003 CONFORMAL FRACTAL GEOMETRY & BOUNDARY QUANTUM

More information

Fluctuations for the Ginzburg-Landau Model and Universality for SLE(4)

Fluctuations for the Ginzburg-Landau Model and Universality for SLE(4) Fluctuations for the Ginzburg-Landau Model and Universality for SLE(4) Jason Miller Department of Mathematics, Stanford September 7, 2010 Jason Miller (Stanford Math) Fluctuations and Contours of the GL

More information

Fractal Properties of the Schramm-Loewner Evolution (SLE)

Fractal Properties of the Schramm-Loewner Evolution (SLE) Fractal Properties of the Schramm-Loewner Evolution (SLE) Gregory F. Lawler Department of Mathematics University of Chicago 5734 S. University Ave. Chicago, IL 60637 lawler@math.uchicago.edu December 12,

More information

Planar maps, circle patterns, conformal point processes and 2D gravity

Planar maps, circle patterns, conformal point processes and 2D gravity Planar maps, circle patterns, conformal point processes and 2D gravity François David*, Institut de Physique Théorique, Saclay joint work with Bertrand Eynard Direction des Sciences de la Matière, CEA

More information

arxiv:math-ph/ v1 23 Aug 2006

arxiv:math-ph/ v1 23 Aug 2006 arxiv:math-ph/0608053v1 23 Aug 2006 CONFORMAL RANDOM GEOMETRY Bertrand Duplantier Service de Physique Théorique, Orme des Merisiers, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, FRANCE 1 Photo: width 7.5cm

More information

Proof of the DOZZ Formula

Proof of the DOZZ Formula Proof of the DOZZ Formula Antti Kupiainen joint work with R. Rhodes, V. Vargas Diablerets February 12 2018 DOZZ formula Dorn, Otto (1994) and Zamolodchikov, Zamolodchikov (1996): C γ (α 1, α 2, α 3 ) =(π

More information

The near-critical planar Ising Random Cluster model

The near-critical planar Ising Random Cluster model The near-critical planar Ising Random Cluster model Gábor Pete http://www.math.bme.hu/ gabor Joint work with and Hugo Duminil-Copin (Université de Genève) Christophe Garban (ENS Lyon, CNRS) arxiv:1111.0144

More information

Convergence of loop erased random walks on a planar graph to a chordal SLE(2) curve

Convergence of loop erased random walks on a planar graph to a chordal SLE(2) curve Convergence of loop erased random walks on a planar graph to a chordal SLE(2) curve Hiroyuki Suzuki Chuo University International Workshop on Conformal Dynamics and Loewner Theory 2014/11/23 1 / 27 Introduction(1)

More information

The Fyodorov-Bouchaud formula and Liouville conformal field theory

The Fyodorov-Bouchaud formula and Liouville conformal field theory The Fyodorov-Bouchaud formula and Liouville conformal field theory Guillaume Remy École Normale Supérieure February 1, 218 Guillaume Remy (ENS) The Fyodorov-Bouchaud formula February 1, 218 1 / 39 Introduction

More information

Mandelbrot Cascades and their uses

Mandelbrot Cascades and their uses Mandelbrot Cascades and their uses Antti Kupiainen joint work with J. Barral, M. Nikula, E. Saksman, C. Webb IAS November 4 2013 Random multifractal measures Mandelbrot Cascades are a class of random measures

More information

arxiv: v2 [math.pr] 14 Apr 2017

arxiv: v2 [math.pr] 14 Apr 2017 Geometry of infinite planar maps with high degrees Timothy Budd & Nicolas Curien arxiv:602.0328v2 [math.pr] 4 Apr 207 Abstract We study the geometry of infinite random Boltzmann planar maps with vertices

More information

Convergence of 2D critical percolation to SLE 6

Convergence of 2D critical percolation to SLE 6 Convergence of 2D critical percolation to SLE 6 Michael J. Kozdron University of Regina http://stat.math.uregina.ca/ kozdron/ Lecture given at the Mathematisches Forschungsinstitut Oberwolfach (MFO) during

More information

arxiv: v1 [math.pr] 23 Feb 2016

arxiv: v1 [math.pr] 23 Feb 2016 Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity arxiv:1602.07323v1 [math.pr] 23 Feb 2016 Rémi Rhodes, Vincent Vargas bstract The purpose of these notes, based on a course given

More information

PERCOLATION AND COARSE CONFORMAL UNIFORMIZATION. 1. Introduction

PERCOLATION AND COARSE CONFORMAL UNIFORMIZATION. 1. Introduction PERCOLATION AND COARSE CONFORMAL UNIFORMIZATION ITAI BENJAMINI Abstract. We formulate conjectures regarding percolation on planar triangulations suggested by assuming (quasi) invariance under coarse conformal

More information

Advanced Topics in Probability

Advanced Topics in Probability Advanced Topics in Probability Conformal Methods in 2D Statistical Mechanics Pierre Nolin Different lattices discrete models on lattices, in two dimensions: square lattice Z 2 : simplest one triangular

More information

SLE and nodal lines. Eugene Bogomolny, Charles Schmit & Rémy Dubertrand. LPTMS, Orsay, France. SLE and nodal lines p.

SLE and nodal lines. Eugene Bogomolny, Charles Schmit & Rémy Dubertrand. LPTMS, Orsay, France. SLE and nodal lines p. SLE and nodal lines p. SLE and nodal lines Eugene Bogomolny, Charles Schmit & Rémy Dubertrand LPTMS, Orsay, France SLE and nodal lines p. Outline Motivations Loewner Equation Stochastic Loewner Equation

More information

arxiv: v4 [math.pr] 1 Sep 2017

arxiv: v4 [math.pr] 1 Sep 2017 CLE PERCOLATIONS JASON MILLER, SCOTT SHEFFIELD, AND WENDELIN WERNER arxiv:1602.03884v4 [math.pr] 1 Sep 2017 Abstract. Conformal loop ensembles are random collections of loops in a simply connected domain,

More information

An Introduction to the Schramm-Loewner Evolution Tom Alberts C o u(r)a n (t) Institute. March 14, 2008

An Introduction to the Schramm-Loewner Evolution Tom Alberts C o u(r)a n (t) Institute. March 14, 2008 An Introduction to the Schramm-Loewner Evolution Tom Alberts C o u(r)a n (t) Institute March 14, 2008 Outline Lattice models whose time evolution is not Markovian. Conformal invariance of their scaling

More information

Infinite geodesics in hyperbolic random triangulations

Infinite geodesics in hyperbolic random triangulations Infinite geodesics in hyperbolic random triangulations Thomas Budzinski April 20, 2018 Abstract We study the structure of infinite geodesics in the Planar Stochastic Hyperbolic Triangulations T λ introduced

More information

Plan 1. Brownian motion 2. Loop-erased random walk 3. SLE 4. Percolation 5. Uniform spanning trees (UST) 6. UST Peano curve 7. Self-avoiding walk 1

Plan 1. Brownian motion 2. Loop-erased random walk 3. SLE 4. Percolation 5. Uniform spanning trees (UST) 6. UST Peano curve 7. Self-avoiding walk 1 Conformally invariant scaling limits: Brownian motion, percolation, and loop-erased random walk Oded Schramm Microsoft Research Weizmann Institute of Science (on leave) Plan 1. Brownian motion 2. Loop-erased

More information

Gradient Percolation and related questions

Gradient Percolation and related questions and related questions Pierre Nolin (École Normale Supérieure & Université Paris-Sud) PhD Thesis supervised by W. Werner July 16th 2007 Introduction is a model of inhomogeneous percolation introduced by

More information

Extremal process associated with 2D discrete Gaussian Free Field

Extremal process associated with 2D discrete Gaussian Free Field Extremal process associated with 2D discrete Gaussian Free Field Marek Biskup (UCLA) Based on joint work with O. Louidor Plan Prelude about random fields blame Eviatar! DGFF: definitions, level sets, maximum

More information

Ω = e E d {0, 1} θ(p) = P( C = ) So θ(p) is the probability that the origin belongs to an infinite cluster. It is trivial that.

Ω = e E d {0, 1} θ(p) = P( C = ) So θ(p) is the probability that the origin belongs to an infinite cluster. It is trivial that. 2 Percolation There is a vast literature on percolation. For the reader who wants more than we give here, there is an entire book: Percolation, by Geoffrey Grimmett. A good account of the recent spectacular

More information

CRITICAL PERCOLATION AND CONFORMAL INVARIANCE

CRITICAL PERCOLATION AND CONFORMAL INVARIANCE CRITICAL PERCOLATION AND CONFORMAL INVARIANCE STANISLAV SMIRNOV Royal Institute of Technology, Department of Mathematics, Stockholm, S10044, Sweden E-mail : stas@math.kth.se Many 2D critical lattice models

More information

Poisson point processes, excursions and stable processes in two-dimensional structures

Poisson point processes, excursions and stable processes in two-dimensional structures Stochastic Processes and their Applications 120 (2010) 750 766 www.elsevier.com/locate/spa Poisson point processes, excursions and stable processes in two-dimensional structures Wendelin Werner Université

More information

Conformal blocks in nonrational CFTs with c 1

Conformal blocks in nonrational CFTs with c 1 Conformal blocks in nonrational CFTs with c 1 Eveliina Peltola Université de Genève Section de Mathématiques < eveliina.peltola@unige.ch > March 15th 2018 Based on various joint works with Steven M. Flores,

More information

Liouville quantum gravity spheres as matings of finite-diameter trees

Liouville quantum gravity spheres as matings of finite-diameter trees Liouville quantum gravity spheres as matings of finite-diameter trees arxiv:1506.03804v3 [math.pr] 10 Apr 2017 Jason Miller and Scott Sheffield Abstract We show that the unit area Liouville quantum gravity

More information

Random colored lattices

Random colored lattices Random colored lattices Olivier Bernardi Joint work with Mireille Bousquet-Mélou (CNRS) IGERT talk, Brandeis University, February 2013 Random lattices, Random surfaces Maps A map is a way of gluing polygons

More information

Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines Commun. Math. Phys. 361, 53 80 (2018) Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-018-3159-z Communications in Mathematical Physics Coupling the Gaussian Free Fields with Free and with

More information

Two-dimensional self-avoiding walks. Mireille Bousquet-Mélou CNRS, LaBRI, Bordeaux, France

Two-dimensional self-avoiding walks. Mireille Bousquet-Mélou CNRS, LaBRI, Bordeaux, France Two-dimensional self-avoiding walks Mireille Bousquet-Mélou CNRS, LaBRI, Bordeaux, France A walk with n = 47 steps Self-avoiding walks (SAWs) Self-avoiding walks (SAWs) A walk with n = 47 steps A self-avoiding

More information

Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees

Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees arxiv:130.4738v [math.pr] 6 Apr 017 Jason Miller and Scott Sheffield Abstract We establish existence and uniqueness

More information

Planar maps, circle patterns, conformal point processes and two dimensional gravity

Planar maps, circle patterns, conformal point processes and two dimensional gravity Planar maps, circle patterns, conformal point processes and two dimensional gravity François David joint work with Bertrand Eynard (+ recent work with Séverin Charbonnier) IPhT, CEA-Saclay and CNRS 1 1.

More information

Extrema of discrete 2D Gaussian Free Field and Liouville quantum gravity

Extrema of discrete 2D Gaussian Free Field and Liouville quantum gravity Extrema of discrete 2D Gaussian Free Field and Liouville quantum gravity Marek Biskup (UCLA) Joint work with Oren Louidor (Technion, Haifa) Discrete Gaussian Free Field (DGFF) D R d (or C in d = 2) bounded,

More information

Graduation from St. Petersburg State University, 1992; short-term positions at MPI Bonn and IAS Princeton, ;

Graduation from St. Petersburg State University, 1992; short-term positions at MPI Bonn and IAS Princeton, ; 72 Stanislav Smirnov Graduation from St. Petersburg State University, 1992; Ph.D., California Institute of Technology, 1996. Positions held Gibbs Instructor at the Yale University, 1996-1999; short-term

More information

arxiv:hep-th/ v2 1 Aug 2001

arxiv:hep-th/ v2 1 Aug 2001 Universal amplitude ratios in the two-dimensional Ising model 1 arxiv:hep-th/9710019v2 1 Aug 2001 Gesualdo Delfino Laboratoire de Physique Théorique, Université de Montpellier II Pl. E. Bataillon, 34095

More information

Liouville quantum gravity and the Brownian map I: The QLE(8/3, 0) metric

Liouville quantum gravity and the Brownian map I: The QLE(8/3, 0) metric Liouville quantum gravity and the Brownian map I: The QLE(8/3, 0) metric arxiv:1507.00719v2 [math.pr] 27 Feb 2016 Jason Miller and Scott Sheffield Abstract Liouville quantum gravity (LQG) and the Brownian

More information

Mathematical Research Letters 8, (2001) THE DIMENSION OF THE PLANAR BROWNIAN FRONTIER IS 4/3

Mathematical Research Letters 8, (2001) THE DIMENSION OF THE PLANAR BROWNIAN FRONTIER IS 4/3 Mathematical Research Letters 8, 401 411 (2001) THE DIMENSION OF THE PLANAR BROWNIAN FRONTIER IS 4/3 Gregory F. Lawler 1, Oded Schramm 2, and Wendelin Werner 3 1. Introduction The purpose of this note

More information

Uniformization and percolation

Uniformization and percolation Uniformization and percolation Itai Benjamini May 2016 Conformal maps A conformal map, between planar domains, is a function that infinitesimally preserves angles. The derivative of a conformal map is

More information

On the Riemann surface type of Random Planar Maps

On the Riemann surface type of Random Planar Maps On the Riemann surface type of Random Planar Maps James T. Gill and Steffen Rohde arxiv:1101.1320v1 [math.cv] 6 Jan 2011 September 21, 2018 Abstract We show that the (random) Riemann surfaces of the Angel-Schramm

More information

Gradient interfaces with and without disorder

Gradient interfaces with and without disorder Gradient interfaces with and without disorder Codina Cotar University College London September 09, 2014, Toronto Outline 1 Physics motivation Example 1: Elasticity Recap-Gaussian Measure Example 2: Effective

More information

Renormalization: An Attack on Critical Exponents

Renormalization: An Attack on Critical Exponents Renormalization: An Attack on Critical Exponents Zebediah Engberg March 15, 2010 1 Introduction Suppose L R d is a lattice with critical probability p c. Percolation on L is significantly differs depending

More information

Critical exponents on Fortuin Kasteleyn weighted planar maps

Critical exponents on Fortuin Kasteleyn weighted planar maps Critical exponents on Fortuin Kasteleyn weighted planar maps Nathanaël Berestycki Benoît Laslier Gourab Ray March 20, 2017 Abstract In this paper we consider random planar maps weighted by the self-dual

More information

Self-avoiding walk ensembles that should converge to SLE

Self-avoiding walk ensembles that should converge to SLE Tom Kennedy UC Davis, May 9, 2012 p. 1/4 Self-avoiding walk ensembles that should converge to SLE Tom Kennedy University of Arizona, MSRI Tom Kennedy UC Davis, May 9, 2012 p. 2/4 Outline Variety of ensembles

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information

Extreme values of two-dimensional discrete Gaussian Free Field

Extreme values of two-dimensional discrete Gaussian Free Field Extreme values of two-dimensional discrete Gaussian Free Field Marek Biskup (UCLA) Joint work with Oren Louidor (Technion, Haifa) Midwest Probability Colloquium, Evanston, October 9-10, 2015 My collaborator

More information

CONFORMAL INVARIANCE AND 2 d STATISTICAL PHYSICS

CONFORMAL INVARIANCE AND 2 d STATISTICAL PHYSICS CONFORMAL INVARIANCE AND 2 d STATISTICAL PHYSICS GREGORY F. LAWLER Abstract. A number of two-dimensional models in statistical physics are conjectured to have scaling limits at criticality that are in

More information

An axiomatic characterization of the Brownian map

An axiomatic characterization of the Brownian map An axiomatic characterization of the Brownian map Jason Miller and Scott Sheffield arxiv:1506.03806v1 [math.pr] 11 Jun 2015 Abstract The Brownian map is a random sphere-homeomorphic metric measure space

More information

Towards conformal invariance of 2D lattice models

Towards conformal invariance of 2D lattice models Towards conformal invariance of 2D lattice models Stanislav Smirnov Abstract. Many 2D lattice models of physical phenomena are conjectured to have conformally invariant scaling limits: percolation, Ising

More information

Critical exponents on Fortuin Kastelyn weighted planar maps

Critical exponents on Fortuin Kastelyn weighted planar maps Critical exponents on Fortuin Kastelyn weighted planar maps Nathanaël Berestycki Benoît Laslier Gourab Ray Statistical Laboratory, University of Cambridge February 2, 2015 Abstract In this paper we consider

More information

Level lines of the Gaussian Free Field with general boundary data

Level lines of the Gaussian Free Field with general boundary data Level lines of the Gaussian Free Field with general boundary data UK Easter Probability Meeting 2016 April 7th, 2016 The Gaussian Free Field GFF on domain D R 2 Gaussian random function. The Gaussian Free

More information

Review of complex analysis in one variable

Review of complex analysis in one variable CHAPTER 130 Review of complex analysis in one variable This gives a brief review of some of the basic results in complex analysis. In particular, it outlines the background in single variable complex analysis

More information

Conformal field theory on the lattice: from discrete complex analysis to Virasoro algebra

Conformal field theory on the lattice: from discrete complex analysis to Virasoro algebra Conformal field theory on the lattice: from discrete complex analysis to Virasoro algebra kalle.kytola@aalto.fi Department of Mathematics and Systems Analysis, Aalto University joint work with March 5,

More information

Uniformization and percolation

Uniformization and percolation Uniformization and percolation Itai Benjamini October 2015 Conformal maps A conformal map, between planar domains, is a function that infinitesimally preserves angles. The derivative of a conformal map

More information

Visibility estimates in Euclidean and hyperbolic germ-grain models and line tessellations

Visibility estimates in Euclidean and hyperbolic germ-grain models and line tessellations Visibility estimates in Euclidean and hyperbolic germ-grain models and line tessellations Pierre Calka Lille, Stochastic Geometry Workshop, 30 March 2011 Outline Visibility in the vacancy of the Boolean

More information

PICARD S THEOREM STEFAN FRIEDL

PICARD S THEOREM STEFAN FRIEDL PICARD S THEOREM STEFAN FRIEDL Abstract. We give a summary for the proof of Picard s Theorem. The proof is for the most part an excerpt of [F]. 1. Introduction Definition. Let U C be an open subset. A

More information

arxiv: v1 [math.dg] 28 Jun 2008

arxiv: v1 [math.dg] 28 Jun 2008 Limit Surfaces of Riemann Examples David Hoffman, Wayne Rossman arxiv:0806.467v [math.dg] 28 Jun 2008 Introduction The only connected minimal surfaces foliated by circles and lines are domains on one of

More information

3 Statistical physics models

3 Statistical physics models 3 Statistical physics models 3.1 Percolation In Werner s St. Flour lectures he discusses percolation in the first section and then in more detail in section 10. In the article by Kager and Nienhuis percolation

More information

From loop clusters and random interlacements to the Gaussian free field

From loop clusters and random interlacements to the Gaussian free field From loop clusters and random interlacements to the Gaussian free field Université Paris-Sud, Orsay June 4, 014 Definition of the random walk loop soup G = (V, E) undirected connected graph. V at most

More information

SMALL SPECTRAL RADIUS AND PERCOLATION CONSTANTS ON NON-AMENABLE CAYLEY GRAPHS

SMALL SPECTRAL RADIUS AND PERCOLATION CONSTANTS ON NON-AMENABLE CAYLEY GRAPHS SMALL SPECTRAL RADIUS AND PERCOLATION CONSTANTS ON NON-AMENABLE CAYLEY GRAPHS KATE JUSCHENKO AND TATIANA NAGNIBEDA Abstract. Motivated by the Benjamini-Schramm non-unicity of percolation conjecture we

More information

2 Wendelin Werner had been also predicted by theoretical physics). We then show how all these problems are mathematically related, and, in particular,

2 Wendelin Werner had been also predicted by theoretical physics). We then show how all these problems are mathematically related, and, in particular, Critical exponents, conformal invariance and planar Brownian motion Wendelin Werner Abstract. In this review paper, we rst discuss some open problems related to two-dimensional self-avoiding paths and

More information

Introduction to the Gaussian Free Field and Liouville Quantum Gravity

Introduction to the Gaussian Free Field and Liouville Quantum Gravity Introduction to the Gaussian Free Field and Liouville Quantum Gravity Nathanaël Berestycki [Draft lecture notes: July 19, 2016] 1 Contents 1 Definition and properties of the GFF 6 1.1 Discrete case...................................

More information

Nailing the intensity measure

Nailing the intensity measure Lecture 10 Nailing the intensity measure In this lecture we first observe that the intensity measure associated with a subsequential limit of the extremal point process is in one-to-one correspondence

More information

Counting surfaces of any topology, with Topological Recursion

Counting surfaces of any topology, with Topological Recursion Counting surfaces of any topology, with Topological Recursion 1... g 2... 3 n+1 = 1 g h h I 1 + J/I g 1 2 n+1 Quatum Gravity, Orsay, March 2013 Contents Outline 1. Introduction counting surfaces, discrete

More information

arxiv: v2 [math.pr] 5 May 2015

arxiv: v2 [math.pr] 5 May 2015 An SLE 2 loop measure Stéphane Benoist Julien Dubédat June 25, 218 arxiv:145.788v2 [math.pr] 5 May 215 Abstract There is an essentially unique way to associate to any Riemann surface a measure on its simple

More information

arxiv: v1 [math.pr] 24 Sep 2009

arxiv: v1 [math.pr] 24 Sep 2009 arxiv:0909.4499v1 [math.pr] 24 Sep 2009 CRITICAL PERCOLATION IN THE PLANE. I. CONFORMAL INVARIANCE AND CARDY S FORMULA. II. CONTINUUM SCALING LIMIT. STANISLAV SMIRNOV Abstract. We study scaling limits

More information

Uniform spanning trees and loop-erased random walks on Sierpinski graphs

Uniform spanning trees and loop-erased random walks on Sierpinski graphs Uniform spanning trees and loop-erased random walks on Sierpinski graphs Elmar Teufl Eberhard Karls Universität Tübingen 12 September 2011 joint work with Stephan Wagner Stellenbosch University Elmar Teufl

More information

Testing for SLE using the driving process

Testing for SLE using the driving process Testing for SLE using the driving process Department of Mathematics, University of Arizona Supported by NSF grant DMS-0501168 http://www.math.arizona.edu/ e tgk Testing for SLE, 13rd Itzykson Conference

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Natural parametrization of percolation interface and pivotal points

Natural parametrization of percolation interface and pivotal points Natural parametrization of percolation interface and pivotal points Nina Holden Xinyi Li Xin Sun arxiv:1804.07286v2 [math.pr] 3 Apr 2019 Abstract We prove that the interface of critical site percolation

More information

SLE 6 and CLE 6 from critical percolation

SLE 6 and CLE 6 from critical percolation Probability, Geometry and Integrable Systems MSRI Publications Volume 55, 2008 SLE 6 and CLE 6 from critical percolation FEDERICO CAMIA AND CHARLES M. NEWMAN ABSTRACT. We review some of the recent progress

More information

Fractal Geometry of Minimal Spanning Trees

Fractal Geometry of Minimal Spanning Trees Fractal Geometry of Minimal Spanning Trees T. S. Jackson and N. Read Part I: arxiv:0902.3651 Part II: arxiv:0909.5343 Accepted by Phys. Rev. E Problem Definition Given a graph with costs on the edges,

More information

Logarithmic CFTs as limits of ordinary CFTs and some physical applications

Logarithmic CFTs as limits of ordinary CFTs and some physical applications Logarithmic CFTs as limits of ordinary CFTs and some physical applications John Cardy University of Oxford IHP, Paris October 2011 mostly arxiv:cond-mat/9911024, 0111031 and some new stuff Introduction

More information

Circle Packings, Conformal Mappings, and Probability

Circle Packings, Conformal Mappings, and Probability , Conformal Mappings, and Probability Edward Crane University of Bristol LMS Prospects in Mathematics Durham, 20/12/2013 Outline Mathematics and PhD opportunities at the University of Bristol Some connections

More information

TWO-DIMENSIONAL QUANTUM GEOMETRY

TWO-DIMENSIONAL QUANTUM GEOMETRY Vol. 44 (2013) ACTA PHYSICA POLONICA B No 12 TWO-DIMENSIONAL QUANTUM GEOMETRY J. Ambjørn a,b, T. Budd a a The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, 2100 Copenhagen, Denmark b IMAPP,

More information

SPRING 2008: POLYNOMIAL IMAGES OF CIRCLES

SPRING 2008: POLYNOMIAL IMAGES OF CIRCLES 18.821 SPRING 28: POLYNOMIAL IMAGES OF CIRCLES JUSTIN CURRY, MICHAEL FORBES, MATTHEW GORDON Abstract. This paper considers the effect of complex polynomial maps on circles of various radii. Several phenomena

More information

Percolations on random maps I: half-plane models

Percolations on random maps I: half-plane models Percolations on random maps I: half-plane models Omer Angel Nicolas Curien Abstract We study Bernoulli percolations on random lattices of the half-plane obtained as local limit of uniform planar triangulations

More information