( x) min. Nonlinear optimization problem without constraints NPP: then. Global minimum of the function f(x)

Size: px
Start display at page:

Download "( x) min. Nonlinear optimization problem without constraints NPP: then. Global minimum of the function f(x)"

Transcription

1 Objectve fucto f() : he optzato proble cossts of fg a vector of ecso varables belogg to the feasble set of solutos R such that It s eote as: Nolear optzato proble wthout costrats NPP: R f ( ) : R R f f R f ( ) ( ) = f Local u a global u of the fucto f() he vector s local u of the fucto f() the space R f there ests such ope space E R of a pot that E f ( ) f ( ) Atoaly f f ( ) < f ( ) for the there ests strct local u. he vector s global u of the fucto f() the space R f there ests such ope space R of a pot that R f ( ) f ( ) Atoaly f f ( ) < f ( ) for the there ests the strct global u ths pot. Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs Nolear optzato proble wthout costrats: Defto. A recto the space R we eote ay -etoal colu vector. Let us assue that there ests a pot R a scalar τ [ ; + ). Ay pot y R Optzato theory a coputg belogg to half strght le whch starts pot recto wll be etere as follows: Lea. Let f : X= R R y= + τ be a fferetable fucto the pot Let us assue that there est a recto for whch: ( ) < X he there ests such σ > that for all τ ( σ ] the followg coto s fulflle f ( +τ) < f ( ). Proof: let us use the property of Gateau fferetal wth the rectoal ervatve efto. Faculty of Electrocs Nolear optzato proble wthout costrats: heore. Let f : X= R R wll be fferetable fucto. If ze fucto f() the for: f ( ) f ( ) X Proof: ot rectly. he pot f ( ˆ) f ( ) For each X f a oly f whe fulflls the followg coto: Optzato theory a coputg the (ˆ) = s ae as a statoary pot. heore. Let f : X = R R wll be cove a fferetable fucto. For the pot ˆ X fucto f() costtutes al value of the fucto: ( ˆ) = It s the ecessary coto for local etreu f() the pot. X Faculty of Electrocs Global u of the fucto f() Suffcat cotos for the olear optzato proble wthout costrats: Fucto f() s cotuous a twce fferetable. he fucto f() has the atr wth seco ervatves ae as hesja A heore: Matr A has soe a subeterats A If the fucto f : X = R R wll be strctly cove a fferetable the the vector ˆ X whch fulflls the ecessary coto ( ˆ) = s the oly oe global u of the fucto f(). A = ( ) ( ) A =.. ( ).... ( ) ( ) ( ) A = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs

2 he statoary cotos for olear prograg proble wthout costrats Let us assue that s a statoary pot for a fuctof(). he the followg relatos are fulflle:. If the hesja atr A s postve efe : A( ) > for = the a fucto f() has local u ths pot.. If the hesja atr A s egatve efe : ( ) A( ) > for = the a fucto f() has local au ths pot. 3. If the hesja s half-postve efe: or the hesja s half-egatve efe: A( ) for = a A( ) = ( ) A( ) for = a A( ) = heore. If the fucto f() s twce fferetable the each local u for the olear prograg proble wthout costrats the followg optalty cotos are fulflle: = A ( ) > A= f ( ) for I orer coto II orer coto Matr A has to be strctly postve I ths oet t s possble to ece what type of a etreu of a fucto f( s ths pot. 4. If two cotos a are ot fulflle (the the hesja A s ot etere) the the fucto f() has ot etreu the pot. Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs Nolear prograg proble wth costrats NPP : Eaple of NP proble Let us f where: such that: f ( ˆ) = f ( ) X = { : g ( ) = } f : X = R g : X = R X R R. f ( ) = ( X 3 ) + 4 ( ) + ( ) X = {( ) ( ) (.4+ ) 3 3/ + ( 3 3 = )}. Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs Nolear prograg proble wth costrats NPP : Defto. he recto startg the pot s feasble f there ests such σ > that for ay τ [ ; σ ] + τ X he set of all feasble rectos: D( ) = { : σ > such that τ [; σ ] + τ X }. Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs

3 Lagrage fucto Actve costrats: Defto. he Lagrage fucto for olear prograg proble s a scalar fucto as follows:. g (ˆ + τ) A(ˆ) where τ [ σ ] L ( λ) = f ( ) + λ g( ). g (ˆ + τ) = g (ˆ) + τ g (ˆ) + O( τ ) where λ R s a vector of Lagrage ultplers. 3. he ecessary coto for the feasblty of recto vector s: g ( ˆ) A(ˆ) Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs Farkas lea he set of rectos: Let us efe the set of -esoal vectors R space { b a = }. he relato set up for each R b whch fulflls a b+ = λ a =. λ = [ λ ] λ D ( ) = : <g( ) > A( ) < ( ) D ( ) = : <g( ) > A( ) < ( ) > >< D3( ) = : <g ( ) >> forsoe A( ) ( 3 D ) = D ( ) D ( ) D ( ) Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs Kuh-ucker-Karusch ecessary cotos: Proof: ecessary cotos Kuh-ucker-Karusch heore: If a)fuctos ˆ Optzato theory a coputg f g are fferetable; b) s a local u of NPP there ests λ ˆ ˆ λ =. such that f a oly f (ˆ) + g (ˆ) = (ˆ) = = = D ( ˆ) =φ Faculty of Electrocs Proof. Let Optzato theory a coputg a a =g ( ˆ) A(ˆ) he accorg to the Farkas lea there ests Such that whe A the coto for the actve costrats has to be fulflle : g ˆ) f a oly f b= (ˆ) (ˆ) = ˆ λ ( g (ˆ)) A( ˆ ) (ˆ ) R ( A(ˆ) D ( ˆ) =φ ˆ λ A(ˆ) Faculty of Electrocs

4 Proof: ecessary cotos Kuh-ucker-Karusch Kuh-ucker_Karush ecessary cotos wth the help of Lagraga fucto For A(ˆ) let us assue ˆ = So two followg equatos are fulflle: (ˆ) + = λ g (ˆ) = (ˆ) = = Ck L ( λ ) = f ( ) + λ Necessary cotos : L = g ( ˆ ) = λ ˆ L(ˆ ) = λ λ L ( ˆ ) ˆ λ ( ). Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs Suffcet cotos efe as the regularty coto:. All fuctos for the cotrats g () are lear the Karl regularty coto... All fuctos for the cotrats g () are cove a the feasble set of solutos s ot epty - the Slater regularty coto. 3. he graets of all actve costrats g ( ) for A) are leary epeet Facco a McCorck regularty coto. ( Kuh-Karusch-ucker theore ecessary a suffcet cotos for olear prograg proble wth costrats (NPP) heore. If a)fuctos f ag are fferetable; b) s local u of NPP ˆ c) Regularty coto for costrats s fulflle the pot ˆ he there ests =. Such that the pot the Kuh-Karusch-ucker ecessary cotos are fulflle: (ˆ) + ˆ λg (ˆ) = = (ˆ) = = Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs Eaple I Nolear prograg proble wth costrats NPP wth atoal costrats for varables: akg uer coserato the K-K- cotos solve the followg olear optzato proble: f ( ) = X he solutos of NPP proble: + * +.5* + X = a f (ˆ) f ( ) X = { : g ( ) = } f ( ) : R R g ( ) : R R = = X where : = [ ] f ( ) = L ( λ ) = f ( ) + λ = g ( ). Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs

5 L λ L λ = Lagrage cotos for NNP wth λl λ L λ = λ λ λ Eaples for Kuh-ucker-Karusch cotos Eaple II akg uer coserato the K--K cotos solve the followg olear optzato proble: f ( ) = * X + * +.5* + X = he solutos of NPP proble: = [ ] f ( ) = Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs Nolear prograg proble wth costrats NPP wth atoal equatos as costrats : where : X = { : g ( ) = p h ( ) = = p+ } Where: f ( ) : X = R R g ( ) : X = R R = p h ( ) : X = R R = p+ = X f ( ) f ( ) L ( λ ) = f ( ) + λ = g ( ). heore: If a) Fuctos f a g for = are fferetable; b) s local u of NPP ˆ he there ests: λ = p a λ = p+ such that the pot are fulflle: (ˆ) + = (ˆ) = ˆ wthout ay costrats o varables the Kuh-Karusch-ucker ecessary cotos g (ˆ) = = p Optzato theory a coputg Faculty of Electrocs Optzato theory a coputg Faculty of Electrocs Eaple III akg uer coserato the K-K- cotos solve the followg olear optzato proble: f ( ) = + + X he solutos of NPP proble: 4 X = = = [ ] ; λ= f ( ) = 4 Optzato theory a coputg Faculty of Electrocs

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD Jural Karya Asl Loreka Ahl Matematk Vol 8 o 205 Page 084-088 Jural Karya Asl Loreka Ahl Matematk LIEARLY COSTRAIED MIIMIZATIO BY USIG EWTO S METHOD Yosza B Dasrl, a Ismal B Moh 2 Faculty Electrocs a Computer

More information

A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming

A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming Aerca Joural of Operatos Research, 4, 4, 33-339 Publshed Ole Noveber 4 ScRes http://wwwscrporg/oural/aor http://ddoorg/436/aor4463 A Pealty Fucto Algorth wth Obectve Paraeters ad Costrat Pealty Paraeter

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

An Alternative Approach to the Solution of Multi-Objective Geometric Programming Problems

An Alternative Approach to the Solution of Multi-Objective Geometric Programming Problems Ope Joural of Optzato, 7, 6, -5 http://www.scrp.org/oural/oop ISSN Ole: 35-79 ISSN Prt: 35-75 A Alteratve Approach to the Soluto of Mult-Obectve Geoetrc Prograg Probles Ersoy Öz, Nura Güzel, Selçuk Alp

More information

Capacitated Plant Location Problem:

Capacitated Plant Location Problem: . L. Brcker, 2002 ept of Mechacal & Idustral Egeerg The Uversty of Iowa CPL/ 5/29/2002 page CPL/ 5/29/2002 page 2 Capactated Plat Locato Proble: where Mze F + C subect to = = =, =, S, =,... 0, =, ; =,

More information

A conic cutting surface method for linear-quadraticsemidefinite

A conic cutting surface method for linear-quadraticsemidefinite A coc cuttg surface method for lear-quadratcsemdefte programmg Mohammad R. Osoorouch Calfora State Uversty Sa Marcos Sa Marcos, CA Jot wor wth Joh E. Mtchell RPI July 3, 2008 Outle: Secod-order coe: defto

More information

-Pareto Optimality for Nondifferentiable Multiobjective Programming via Penalty Function

-Pareto Optimality for Nondifferentiable Multiobjective Programming via Penalty Function JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 198, 248261 1996 ARTICLE NO. 0080 -Pareto Otalty for Nodfferetable Multobectve Prograg va Pealty Fucto J. C. Lu Secto of Matheatcs, Natoal Uersty Prearatory

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

Algorithms behind the Correlation Setting Window

Algorithms behind the Correlation Setting Window Algorths behd the Correlato Settg Wdow Itroducto I ths report detaled forato about the correlato settg pop up wdow s gve. See Fgure. Ths wdow s obtaed b clckg o the rado butto labelled Kow dep the a scree

More information

M2S1 - EXERCISES 8: SOLUTIONS

M2S1 - EXERCISES 8: SOLUTIONS MS - EXERCISES 8: SOLUTIONS. As X,..., X P ossoλ, a gve that T ˉX, the usg elemetary propertes of expectatos, we have E ft [T E fx [X λ λ, so that T s a ubase estmator of λ. T X X X Furthermore X X X From

More information

D. L. Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa. CPL/XD 12/10/2003 page 1

D. L. Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa. CPL/XD 12/10/2003 page 1 D. L. Brcker, 2002 Dept of Mechacal & Idustral Egeerg The Uversty of Iowa CPL/XD 2/0/2003 page Capactated Plat Locato Proble: Mze FY + C X subject to = = j= where Y = j= X D, j =, j X SY, =,... X 0, =,

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A OF THE ROMANIAN ACADEMY Volue 8, Nuber /27,.- MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEM INVOLVING GENERALIZED d - TYPE-I -ET

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

UNIT 7 RANK CORRELATION

UNIT 7 RANK CORRELATION UNIT 7 RANK CORRELATION Rak Correlato Structure 7. Itroucto Objectves 7. Cocept of Rak Correlato 7.3 Dervato of Rak Correlato Coeffcet Formula 7.4 Te or Repeate Raks 7.5 Cocurret Devato 7.6 Summar 7.7

More information

A nonsmooth Levenberg-Marquardt method for generalized complementarity problem

A nonsmooth Levenberg-Marquardt method for generalized complementarity problem ISSN 746-7659 Egla UK Joural of Iformato a Computg Scece Vol. 7 No. 4 0 pp. 67-7 A osmooth Leveberg-Marquart metho for geeralze complemetarty problem Shou-qag Du College of Mathematcs Qgao Uversty Qgao

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Support vector machines II

Support vector machines II CS 75 Mache Learg Lecture Support vector maches II Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Learl separable classes Learl separable classes: here s a hperplae that separates trag staces th o error

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17 Itroucto to Ecoometrcs (3 r Upate Eto) by James H. Stock a Mark W. Watso Solutos to O-Numbere E-of-Chapter Exercses: Chapter 7 (Ths erso August 7, 04) 05 Pearso Eucato, Ic. Stock/Watso - Itroucto to Ecoometrcs

More information

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht los@cs.tt.eu 59 Seott Square Suervse learg Data: D { D D.. D} a set of eales D s a ut vector of sze s the esre outut gve b a teacher Obectve: lear

More information

An Implementation of Integer Programming Techniques in Clustering Algorithm

An Implementation of Integer Programming Techniques in Clustering Algorithm S. Shebaga Ezhl et al / Ia Joural of oputer Scece a Egeerg (IJSE) A Ipleetato of Iteger rograg echques lusterg Algorth S. Shebaga Ezhl a Dr.. Vayalaksh 2 Departet of Matheatcs Sathyabaa Uversty, hea 9

More information

A COMPARATIVE STUDY OF THE METHODS OF SOLVING NON-LINEAR PROGRAMMING PROBLEM

A COMPARATIVE STUDY OF THE METHODS OF SOLVING NON-LINEAR PROGRAMMING PROBLEM DAODIL INTERNATIONAL UNIVERSITY JOURNAL O SCIENCE AND TECHNOLOGY, VOLUME, ISSUE, JANUARY 9 A COMPARATIVE STUDY O THE METHODS O SOLVING NON-LINEAR PROGRAMMING PROBLEM Bmal Chadra Das Departmet of Tetle

More information

Global Optimization for Solving Linear Non-Quadratic Optimal Control Problems

Global Optimization for Solving Linear Non-Quadratic Optimal Control Problems Joural of Appled Matheatcs ad Physcs 06 4 859-869 http://wwwscrporg/joural/jap ISSN Ole: 37-4379 ISSN Prt: 37-435 Global Optzato for Solvg Lear No-Quadratc Optal Cotrol Probles Jghao Zhu Departet of Appled

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

Review Exam I Complex Analysis. Cauchy s Integral Formula (#0). Let G be a region in C, let Bar (, ) G and let γ be the circle C(a,r), oriented.

Review Exam I Complex Analysis. Cauchy s Integral Formula (#0). Let G be a region in C, let Bar (, ) G and let γ be the circle C(a,r), oriented. Revew Exa I Coplex Aalyss Uderled Deftos: May be ased for o exa Uderled Propostos or Theores: Proofs ay be ased for o exa Cauchy s Itegral Forula (#) Let G be a rego C, let Bar (, ) G ad let be the crcle

More information

Hamilton s principle for non-holonomic systems

Hamilton s principle for non-holonomic systems Das Hamltosche Przp be chtholoome Systeme, Math. A. (935), pp. 94-97. Hamlto s prcple for o-holoomc systems by Georg Hamel Berl Traslate by: D. H. Delphech I the paper Le prcpe e Hamlto et l holoomsme,

More information

Numerical Experiments with the Lagrange Multiplier and Conjugate Gradient Methods (ILMCGM)

Numerical Experiments with the Lagrange Multiplier and Conjugate Gradient Methods (ILMCGM) Aerca Joural of Appled Matheatcs 4; (6: -6 Publshed ole Jauary 5, 5 (http://wwwscecepublshroupco//aa do: 648/aa465 ISSN: 33-43 (Prt; ISSN: 33-6X (Ole Nuercal Eperets wth the Larae Multpler ad Couate Gradet

More information

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers ELEMENTS OF NUMBER THEORY I the followg we wll use aly tegers a ostve tegers Ζ = { ± ± ± K} - the set of tegers Ν = { K} - the set of ostve tegers Oeratos o tegers: Ato Each two tegers (ostve tegers) ay

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne. KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS by Peter J. Wlcoxe Ipact Research Cetre, Uversty of Melboure Aprl 1989 Ths paper descrbes a ethod that ca be used to resolve cossteces

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING CONVEX OPIMIZAION AND INERIOR POIN MEHODS FINAL PROJEC / INEGER PROGRAMMING AND SEMIDEFINE PROGRAMMING b Luca Buch ad Natala Vktorova CONENS:.Itroducto.Formulato.Applcato to Kapsack Problem 4.Cuttg Plaes

More information

An Algorithm for Capacitated n-index Transportation Problem

An Algorithm for Capacitated n-index Transportation Problem Iteratoal Joural of Coutatoal Scece a Matheatcs ISSN 974-389 Volue 3, Nuber 3 2), 269-275 Iteratoal Research Publcato House htt://wwwrhouseco A Algorth for Caactate -Ie Trasortato Proble SC Shara a 2 Abha

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Advances in Theory of Neural Network and Its Application

Advances in Theory of Neural Network and Its Application Joural of Behavoral a Bra Scece 06 6 9-6 Publshe Ole May 06 ScRes http://wwwscrporg/oural/bbs http://xoorg/0436/bbs06650 Avaces Theory of Neural Network a Its Applcato Baha Mashoo Greg Mllbak 50 a Playa

More information

OPTIMALITY CONDITIONS FOR LOCALLY LIPSCHITZ GENERALIZED B-VEX SEMI-INFINITE PROGRAMMING

OPTIMALITY CONDITIONS FOR LOCALLY LIPSCHITZ GENERALIZED B-VEX SEMI-INFINITE PROGRAMMING Mrcea cel Batra Naval Acadey Scetfc Bullet, Volue XIX 6 Issue he joural s dexed : PROQUES / DOAJ / Crossref / EBSCOhost / INDEX COPERNICUS / DRJI / OAJI / JOURNAL INDEX / IOR / SCIENCE LIBRARY INDEX /

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Graphs and graph models-graph terminology and special types of graphs-representing graphs and graph isomorphism -connectivity-euler and Hamilton

Graphs and graph models-graph terminology and special types of graphs-representing graphs and graph isomorphism -connectivity-euler and Hamilton Prepare by Dr. A.R.VIJAYALAKSHMI Graphs a graph moels-graph termology a specal types of graphs-represetg graphs a graph somorphsm -coectty-euler a Hamlto paths Graph Graph: A graph G = (V, E) cossts of

More information

Order Nonlinear Vector Differential Equations

Order Nonlinear Vector Differential Equations It. Joural of Math. Aalyss Vol. 3 9 o. 3 39-56 Coverget Power Seres Solutos of Hgher Order Nolear Vector Dfferetal Equatos I. E. Kougas Departet of Telecoucato Systes ad Networs Techologcal Educatoal Isttute

More information

Maximum Walk Entropy Implies Walk Regularity

Maximum Walk Entropy Implies Walk Regularity Maxmum Walk Etropy Imples Walk Regularty Eresto Estraa, a José. e la Peña Departmet of Mathematcs a Statstcs, Uversty of Strathclye, Glasgow G XH, U.K., CIMT, Guaajuato, Mexco BSTRCT: The oto of walk etropy

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients 3.2 Dfferetato Rules 1 Capter 3. Dfferetato 3.2 Dfferetato Rules for Polyomals, Expoetals, Proucts a Quotets Rule 1. Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof.

More information

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions Appled Matheatcs, 1, 4, 8-88 http://d.do.org/1.4/a.1.448 Publshed Ole Aprl 1 (http://www.scrp.org/joural/a) A Covetoal Approach for the Soluto of the Ffth Order Boudary Value Probles Usg Sth Degree Sple

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract Numercal Smulatos of the Complex Moded Korteweg-de Vres Equato Thab R. Taha Computer Scece Departmet The Uversty of Georga Athes, GA 002 USA Tel 0-542-2911 e-mal thab@cs.uga.edu Abstract I ths paper mplemetatos

More information

A CLASS OF SINGULAR PERTURBATED BILOCAL LINEAR PROBLEMS

A CLASS OF SINGULAR PERTURBATED BILOCAL LINEAR PROBLEMS Proeegs of the Iteratoal Coferee o Theor a Applatos of Matheats a Iforats ICTAMI 3 Alba Iula A CLASS OF SINGULAR PERTURBATED BILOCAL LINEAR PROBLEMS b Mhaela Jaraat a Teoor Groşa Abstrat. Ths paper presets

More information

Linear regression (cont) Logistic regression

Linear regression (cont) Logistic regression CS 7 Fouatos of Mache Lear Lecture 4 Lear reresso cot Lostc reresso Mlos Hausrecht mlos@cs.ptt.eu 539 Seott Square Lear reresso Vector efto of the moel Iclue bas costat the put vector f - parameters ehts

More information

Chapter 3. Differentiation 3.3 Differentiation Rules

Chapter 3. Differentiation 3.3 Differentiation Rules 3.3 Dfferetato Rules 1 Capter 3. Dfferetato 3.3 Dfferetato Rules Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof. From te efto: f (x) f(x + ) f(x) o c c 0 = 0. QED

More information

On the Pfaff problem

On the Pfaff problem Sur le problème e Pfaff Bull sc math astro (2) 6 (882) 4-36 O the Pfaff problem By G DARBOUX Traslate by D H Delphech The metho for the tegrato of partal fferetal equatos a arbtrary umber of epeet varables

More information

CSE 5526: Introduction to Neural Networks Linear Regression

CSE 5526: Introduction to Neural Networks Linear Regression CSE 556: Itroducto to Neural Netorks Lear Regresso Part II 1 Problem statemet Part II Problem statemet Part II 3 Lear regresso th oe varable Gve a set of N pars of data , appromate d by a lear fucto

More information

Solutions to problem set ); (, ) (

Solutions to problem set ); (, ) ( Solutos to proble set.. L = ( yp p ); L = ( p p ); y y L, L = yp p, p p = yp p, + p [, p ] y y y = yp + p = L y Here we use for eaple that yp, p = yp p p yp = yp, p = yp : factors that coute ca be treated

More information

Given a table of data poins of an unknown or complicated function f : we want to find a (simpler) function p s.t. px (

Given a table of data poins of an unknown or complicated function f : we want to find a (simpler) function p s.t. px ( Iterpolato 1 Iterpolato Gve a table of data pos of a ukow or complcated fucto f : y 0 1 2 y y y y 0 1 2 we wat to fd a (smpler) fucto p s.t. p ( ) = y for = 0... p s sad to terpolate the table or terpolate

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions: Smplex ad Rectagle Elemets Mult-dex Notato = (,..., ), o-egatve tegers = = β = ( β,..., β ) the + β = ( + β,..., + β ) + x = x x x x = x x β β + D = D = D D x x x β β Defto: The set P of polyomals of degree

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

UNIT 6 CORRELATION COEFFICIENT

UNIT 6 CORRELATION COEFFICIENT UNIT CORRELATION COEFFICIENT Correlato Coeffcet Structure. Itroucto Objectves. Cocept a Defto of Correlato.3 Tpes of Correlato.4 Scatter Dagram.5 Coeffcet of Correlato Assumptos for Correlato Coeffcet.

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

ECE 421/599 Electric Energy Systems 7 Optimal Dispatch of Generation. Instructor: Kai Sun Fall 2014

ECE 421/599 Electric Energy Systems 7 Optimal Dispatch of Generation. Instructor: Kai Sun Fall 2014 ECE 4/599 Electrc Eergy Systems 7 Optmal Dspatch of Geerato Istructor: Ka Su Fall 04 Backgroud I a practcal power system, the costs of geeratg ad delverg electrcty from power plats are dfferet (due to

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

A MODIFIED REGULARIZED NEWTON METHOD FOR UNCONSTRAINED NONCONVEX OPTIMIZATION

A MODIFIED REGULARIZED NEWTON METHOD FOR UNCONSTRAINED NONCONVEX OPTIMIZATION JRRAS 9 Ma 4 wwwarpapresscom/volumes/vol9ssue/jrras_9 6p A MODFED REGULARZED NEWON MEOD FOR UNCONSRANED NONCONVEX OPMZAON e Wa Me Q & abo Wa Collee o Scece Uverst o Shaha or Scece a echolo Shaha Cha 93

More information

A Note on the Almost Sure Central Limit Theorem in the Joint Version for the Maxima and Partial Sums of Certain Stationary Gaussian Sequences *

A Note on the Almost Sure Central Limit Theorem in the Joint Version for the Maxima and Partial Sums of Certain Stationary Gaussian Sequences * Appe Matheatcs 0 5 598-608 Pubshe Oe Jue 0 ScRes http://wwwscrporg/joura/a http://xoorg/06/a0505 A Note o the Aost Sure Cetra Lt Theore the Jot Verso for the Maxa a Parta Sus of Certa Statoary Gaussa Sequeces

More information

DUALITY FOR MINIMUM MATRIX NORM PROBLEMS

DUALITY FOR MINIMUM MATRIX NORM PROBLEMS HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMNIN CDEMY, Seres, OF HE ROMNIN CDEMY Vole 6, Nber /2005,. 000-000 DULIY FOR MINIMUM MRI NORM PROBLEMS Vasle PRED, Crstca FULG Uverst of Bcharest, Faclt of Matheatcs

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3 Adrew Powuk - http://www.powuk.com- Math 49 (Numercal Aalyss) Root fdg. Itroducto f ( ),?,? Solve[^-,] {{-},{}} Plot[^-,{,-,}] Cubc equato https://e.wkpeda.org/wk/cubc_fucto Quartc equato https://e.wkpeda.org/wk/quartc_fucto

More information

Power Flow S + Buses with either or both Generator Load S G1 S G2 S G3 S D3 S D1 S D4 S D5. S Dk. Injection S G1

Power Flow S + Buses with either or both Generator Load S G1 S G2 S G3 S D3 S D1 S D4 S D5. S Dk. Injection S G1 ower Flow uses wth ether or both Geerator Load G G G D D 4 5 D4 D5 ecto G Net Comple ower ecto - D D ecto s egatve sg at load bus = _ G D mlarl Curret ecto = G _ D At each bus coservato of comple power

More information

5. Data Compression. Review of Last Lecture. Outline of the Lecture. Course Overview. Basics of Information Theory: Markku Juntti

5. Data Compression. Review of Last Lecture. Outline of the Lecture. Course Overview. Basics of Information Theory: Markku Juntti : Markku Jutt Overvew The deas of lossless data copresso ad source codg are troduced ad copresso lts are derved. Source The ateral s aly based o Sectos 5. 5.5 of the course book []. Teleco. Laboratory

More information

Neural Networks for Nonlinear Fractional Programming

Neural Networks for Nonlinear Fractional Programming Iteratoal Joural o Scetc & Egeerg Research, Volue, Issue, Deceber- ISSN 9-558 Neural Networks or Nolear Fractoal Prograg S.K Bso, G. Dev, Arabda Rath Abstract - Ths paper presets a eural etwork or solvg

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Cesaro Supermodular Order and Archimedean Copulas

Cesaro Supermodular Order and Archimedean Copulas Joural of Sceces, Islamc Republc of Ira 6(): 7-76 (05) Uversty of Tehra, ISSN 06-04 http://jsceces.ut.ac.r Cesaro Supermoular Orer a Archmeea Copulas H.R. Nl Sa *, M. Am, M. Khajar, a N. Salm Departmet

More information

Dr. Shalabh. Indian Institute of Technology Kanpur

Dr. Shalabh. Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Expermets-I MODULE -I LECTURE - SOME RESULTS ON LINEAR ALGEBRA, MATRIX THEORY AND DISTRIBUTIONS Dr. Shalabh Departmet t of Mathematcs t ad Statstcs t t Ida Isttute of Techology

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

3D Reconstruction from Image Pairs. Reconstruction from Multiple Views. Computing Scene Point from Two Matching Image Points

3D Reconstruction from Image Pairs. Reconstruction from Multiple Views. Computing Scene Point from Two Matching Image Points D Recostructo fro Iage ars Recostructo fro ultple Ves Dael Deetho Fd terest pots atch terest pots Copute fudaetal atr F Copute caera atrces ad fro F For each atchg age pots ad copute pot scee Coputg Scee

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Correlation and Regression Analysis

Correlation and Regression Analysis Chapter V Correlato ad Regresso Aalss R. 5.. So far we have cosdered ol uvarate dstrbutos. Ma a tme, however, we come across problems whch volve two or more varables. Ths wll be the subject matter of the

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Relations to Other Statistical Methods Statistical Data Analysis with Positive Definite Kernels

Relations to Other Statistical Methods Statistical Data Analysis with Positive Definite Kernels Relatos to Other Statstcal Methods Statstcal Data Aalyss wth Postve Defte Kerels Kej Fukuzu Isttute of Statstcal Matheatcs, ROIS Departet of Statstcal Scece, Graduate Uversty for Advaced Studes October

More information

ALGORITHMS FOR OPTIMAL DECISIONS 2. PRIMAL-DUAL INTERIOR POINT LP ALGORITHMS 3. QUADRATIC PROGRAMMING ALGORITHMS & PORTFOLIO OPTIMISATION

ALGORITHMS FOR OPTIMAL DECISIONS 2. PRIMAL-DUAL INTERIOR POINT LP ALGORITHMS 3. QUADRATIC PROGRAMMING ALGORITHMS & PORTFOLIO OPTIMISATION - (00) Itroducto - ALGORIHMS FOR OPIMAL DECISIONS. INRODUCION: ì Nolear decso problems ì Basc cocepts ad optmalty ì Basc Algorthms: Steepest descet; Frak-Wolfe; Barrer/SUM. PRIMAL-DUAL INERIOR POIN LP

More information

INVARIANT MANIFOLDS OF COMPLEX SYSTEMS

INVARIANT MANIFOLDS OF COMPLEX SYSTEMS INVARIANT MANIFOLDS OF COMPLE SYSTEMS Jea-Marc Goux a Bruo Rossetto P.R.O.T.E.E. Laboratory I.U.T. e Toulo, Uversté u Su B.P., 8957, La Gare ceex, Frace E-mal: goux@uv-tl.fr, rossetto@uv-tl.fr KEYWORDS

More information

The Necessarily Efficient Point Method for Interval Molp Problems

The Necessarily Efficient Point Method for Interval Molp Problems ISS 6-69 Eglad K Joural of Iformato ad omputg Scece Vol. o. 9 pp. - The ecessarly Effcet Pot Method for Iterval Molp Problems Hassa Mshmast eh ad Marzeh Alezhad + Mathematcs Departmet versty of Ssta ad

More information

Applied Fitting Theory VII. Building Virtual Particles

Applied Fitting Theory VII. Building Virtual Particles Appled Fttg heory II Paul Avery CBX 98 38 Jue 8, 998 Apr. 7, 999 (rev.) Buldg rtual Partcles I Statemet of the problem I may physcs aalyses we ecouter the problem of mergg a set of partcles to a sgle partcle

More information

Lyapunov Stability. Aleksandr Mikhailovich Lyapunov [1] 1 Autonomous Systems. R into Nonlinear Systems in Mechanical Engineering Lesson 5

Lyapunov Stability. Aleksandr Mikhailovich Lyapunov [1] 1 Autonomous Systems. R into Nonlinear Systems in Mechanical Engineering Lesson 5 Joh vo Neuma Perre de Fermat Joseph Fourer etc 858 Nolear Systems Mechacal Egeerg Lesso 5 Aleksadr Mkhalovch Lyapuov [] Bor: 6 Jue 857 Yaroslavl Russa Ded: 3 November 98 Bega hs educato at home Graduated

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information