ENGI 1313 Mechanics I

Size: px
Start display at page:

Download "ENGI 1313 Mechanics I"

Transcription

1 ENGI 11 Mechancs I Lecture 40: Center of Gravty, Center of Mass and Geometrc Centrod Shan Kenny, Ph.D., P.Eng. ssstant Professor Faculty of Engneerng and ppled Scence Memoral Unversty of Nefoundland spkenny@engr.mun.ca

2 Materal Coverage for Fnal Exam Introducton (Ch.1: Sectons ) Force Vectors (Ch.2: Sectons ) Partcle Equlbrum (Ch.: Sectons.1.4) Force System Resultants (Ch.4: Sectons ) Omt Wrench (p.174) Rgd Body Equlbrum (Ch.5: Sectons ) Structural nalyss (Ch.6: Sectons & 6.6) Frcton (Ch.8: Sectons ) Center of Gravty and Centrod (Ch.9: Sectons ) Ignore problems nvolvng closed-form ntegraton Smple shapes such as square, rectangle, trangle and crcle S. Kenny, Ph.D., P.Eng.

3 Lecture 40 Objectve to understand the concepts of center of gravty, center of mass, and geometrc centrod to be able to determne the locaton of these ponts for a system of partcles or a body 2007 S. Kenny, Ph.D., P.Eng.

4 Center of Gravty Pont locatng the equvalent resultant eght of a system of partcles or body Example: Sold Blocks re both fnal confguratons stable? W R W R S. Kenny, Ph.D., P.Eng.

5 Center of Gravty (cont.) Resultant Weght L/2 W R 1K4 Coordnates 4 x W zw R R z~ 1K4 1K4 z ~ z 1 1 x G 2 Key Property M G ( x ) 0 1K4 G x ~ 1 x W R S. Kenny, Ph.D., P.Eng.

6 Center of Gravty (cont.) Generalzed Formulae n W R 1 x y z n 1 n 1 n 1 W y ~ W z~ W R R R Moment about y-axs Moment about x-axs Moment about x-axs or y-axs ~ z 2 z ~ n ~ z S. Kenny, Ph.D., P.Eng.

7 Center of Mass Pont locatng the equvalent resultant mass of a system of partcles or body Generally concdes th center of gravty (G) Center of mass coordnates x m m y y ~ m m z z~ m m S. Kenny, Ph.D., P.Eng.

8 Center of Mass (cont.) Can the Center of Mass be Outsde the Body? Fulcrum / Balance Center of Mass S. Kenny, Ph.D., P.Eng.

9 Center of Gravty & Mass pplcatons Dynamcs Inertal terms Vehcle roll-over and stablty S. Kenny, Ph.D., P.Eng.

10 Geometrc Centrod Pont locatng the geometrc center of an object or body Homogeneous body Body th unform dstrbuton of densty or specfc eght Center of mass and center of gravty concdent Centrod only dependent on body dmensons and not eght terms y ~ z~ x y z S. Kenny, Ph.D., P.Eng.

11 Geometrc Centrod (cont.) Common Geometrc Shapes Sold structure or frame elements GC & CM GC & CM GC & CM Medan Lnes S. Kenny, Ph.D., P.Eng.

12 Composte Body Fnd center of gravty or geometrc centrod of complex shape based on knoledge of smpler geometrc forms S. Kenny, Ph.D., P.Eng.

13 Example Determne the locaton (x, y) of the 7-kg partcle so that the three partcles, hch le n the x y plane, have a center of mass located at the orgn O S. Kenny, Ph.D., P.Eng.

14 Example (cont.) Center of Mass x y y ~ m m m m ( 7 kg) x + ( kg)( m) ( 5 kg)( 4 m) x 0 x 1.57m kg + 5 kg + 7 kg ( 7 kg) y + ( kg)( 2 m) + ( 5 kg)( 2 m) y 0 x 2.29m kg + 5 kg + 7 kg S. Kenny, Ph.D., P.Eng.

15 Example rack s made from roll-formed sheet steel and has the cross secton shon. Determne the locaton (x,y) of the centrod of the cross secton. The dmensons are ndcated at the center thckness of each segment S. Kenny, Ph.D., P.Eng.

16 Example (cont.) ssume Unt Thckness Ignore bend rad Center-to-center dstance Centrod Equatons y ~ x y z S. Kenny, Ph.D., P.Eng. z~

17 Example (cont.) Centrod Equatons x y y ~ ~ x 1 7.5mm 1 # rea (mm 2 ) ( mm) ( mm) y ~ ( mm ) y ~ ( mm ) 1 (15mm)(1mm) 15mm 2 15/2 7.5 (15)(7.5) S. Kenny, Ph.D., P.Eng.

18 Example (cont.) Centrod Equatons x y y ~ 5 ~ y 5 25mm # rea (mm 2 ) ( mm) ( mm) y ~ ( mm ) y ~ ( mm ) 5 (50mm)(1mm) 50mm 2 50/2 25 (50)(25) S. Kenny, Ph.D., P.Eng.

19 Example (cont.) Centrod Equatons x y y ~ ~ x 6 15mm 6 ~ y 6 65mm # rea (mm 2 ) ( mm) ( mm) y ~ ( mm ) y ~ ( mm ) 6 (0mm)(1mm) 0mm / S. Kenny, Ph.D., P.Eng.

20 Example (cont.) Centrod Equatons x y y ~ # rea (mm 2 ) ( mm) ( mm) y ~ ( mm ) y ~ ( mm ) 1 (15mm)(1mm) 15mm 2 15/ (15mm)(1mm) 15mm / (15mm)(1mm) 15mm 2 15/ (0mm)(1mm) 0mm / (50mm)(1mm) 50mm 2 50/ (0mm)(1mm) 0mm / (80mm)(1mm) 80mm / Sum 25mm mm 9550mm S. Kenny, Ph.D., P.Eng.

21 Example (cont.) Centrod Equatons x x 24.4mm y y ~ 577.5mm 2 25mm 9550mm 25mm mm 40.6 mm y 40.6mm S. Kenny, Ph.D., P.Eng.

22 Example 40-0 To blocks of dfferent materals are assembled as shon. The denstes of the materals are: ρ 150 lb/ft and ρ 400 lb/ft. The center of gravty of ths assembly S. Kenny, Ph.D., P.Eng.

23 Example 40-0 (cont.) Center of Gravty x y z y ~ z~ S. Kenny, Ph.D., P.Eng.

24 Example 40-0 (cont.) Center of Gravty x # y 150lb / Weght (lb) ft y ~ z z~ ( 1 / 2)( 6n)( 6n)( 2n) ( 12n / ft ) 400lb / ft ( 6n)( 6n)( 2n) ( 12n / ft ) B 16.67lb.125lb ( n) y ~ ( n) z~ ( n) ( lb n) y ~ ( lb n) z~ ( lb n) B Σ S. Kenny, Ph.D., P.Eng.

25 Example 40-0 (cont.) Center of Gravty x n y y ~ n z z~ n S. Kenny, Ph.D., P.Eng.

26 Chapter 9 Problems Understand prncples for smple geometrc shapes Rectangle, square, trangle and crcle No closed form ntegraton knoledge requred Reve Example 9.9 and 9.10 Problems 9-44 to 9-61 Omt Example 9.1 through 9.8 Problems 9-1 through 9-4, 9-62, 9-67 to S. Kenny, Ph.D., P.Eng.

27 References Hbbeler (2007) mech_ S. Kenny, Ph.D., P.Eng.

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

ENGI 1313 Mechanics I

ENGI 1313 Mechanics I ENGI 1313 Mechanics I Lecture 43: Course Material Review Shawn Kenny, Ph.D., P.Eng. ssistant Professor aculty of Engineering and pplied Science Memorial University of Newfoundland spkenny@engr.mun.ca inal

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Sprng 2017 Exam 1 NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

I have not received unauthorized aid in the completion of this exam.

I have not received unauthorized aid in the completion of this exam. ME 270 Sprng 2013 Fnal Examnaton Please read and respond to the followng statement, I have not receved unauthorzed ad n the completon of ths exam. Agree Dsagree Sgnature INSTRUCTIONS Begn each problem

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2013 Fnal Exam NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2012 Fnal Exam Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem

More information

ENGI 1313 Mechanics I

ENGI 1313 Mechanics I ENGI 1313 Mechanics I Lecture 25: Equilibrium of a Rigid Body Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland spkenny@engr.mun.ca

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Summer 2014 Fnal Exam NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

If the solution does not follow a logical thought process, it will be assumed in error.

If the solution does not follow a logical thought process, it will be assumed in error. Group # Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space provded

More information

Increase Decrease Remain the Same (Circle one) (2 pts)

Increase Decrease Remain the Same (Circle one) (2 pts) ME 270 Sample Fnal Eam PROBLEM 1 (25 ponts) Prob. 1 questons are all or nothng. PROBLEM 1A. (5 ponts) FIND: A 2000 N crate (D) s suspended usng ropes AB and AC and s n statc equlbrum. If θ = 53.13, determne

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Sprng 2014 Fnal Exam NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation! Important Dates: Post Test: Dec. 8 0 durng rectatons. If you have taken the post test, don t come to rectaton! Post Test Make-Up Sessons n ARC 03: Sat Dec. 6, 0 AM noon, and Sun Dec. 7, 8 PM 0 PM. Post

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSED-BOOK

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp. Clck to Vew Mathcad Document 2011 Knovel Corp. Buldng Structural Desgn. homas P. Magner, P.E. 2011 Parametrc echnology Corp. Chapter 3: Renforced Concrete Slabs and Beams 3.2 Renforced Concrete Beams -

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

LAGRANGIAN MECHANICS

LAGRANGIAN MECHANICS LAGRANGIAN MECHANICS Generalzed Coordnates State of system of N partcles (Newtonan vew): PE, KE, Momentum, L calculated from m, r, ṙ Subscrpt covers: 1) partcles N 2) dmensons 2, 3, etc. PE U r = U x 1,

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

FUZZY FINITE ELEMENT METHOD

FUZZY FINITE ELEMENT METHOD FUZZY FINITE ELEMENT METHOD RELIABILITY TRUCTURE ANALYI UING PROBABILITY 3.. Maxmum Normal tress Internal force s the shear force, V has a magntude equal to the load P and bendng moment, M. Bendng moments

More information

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur Module 11 Desgn o Jonts or Specal Loadng Verson ME, IIT Kharagpur Lesson 1 Desgn o Eccentrcally Loaded Bolted/Rveted Jonts Verson ME, IIT Kharagpur Instructonal Objectves: At the end o ths lesson, the

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

Chapter 9. The Dot Product (Scalar Product) The Dot Product use (Scalar Product) The Dot Product (Scalar Product) The Cross Product.

Chapter 9. The Dot Product (Scalar Product) The Dot Product use (Scalar Product) The Dot Product (Scalar Product) The Cross Product. The Dot Product (Scalar Product) Chapter 9 Statcs and Torque The dot product of two vectors can be constructed by takng the component of one vector n the drecton of the other and multplyng t tmes the magntude

More information

ENGI 5708 Design of Civil Engineering Systems

ENGI 5708 Design of Civil Engineering Systems ENGI 5708 Design of Civil Engineering Systems Lecture 09: Characteristics of Simplex Algorithm Solutions Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial

More information

2D Motion of Rigid Bodies: Falling Stick Example, Work-Energy Principle

2D Motion of Rigid Bodies: Falling Stick Example, Work-Energy Principle Example: Fallng Stck 1.003J/1.053J Dynamcs and Control I, Sprng 007 Professor Thomas Peacock 3/1/007 ecture 10 D Moton of Rgd Bodes: Fallng Stck Example, Work-Energy Prncple Example: Fallng Stck Fgure

More information

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

Mathematical Applications in Modern Science

Mathematical Applications in Modern Science Effect of Perturbatons n the Corols Centrfugal Forces on the Locaton Stablty of the Equlbrum Solutons n Robe s Restrcted Problem of + Bodes BHAVNEET KAUR Lady Shr Ram College for Women Department of Mathematcs

More information

. You need to do this for each force. Let s suppose that there are N forces, with components ( N) ( N) ( N) = i j k

. You need to do this for each force. Let s suppose that there are N forces, with components ( N) ( N) ( N) = i j k EN3: Introducton to Engneerng and Statcs Dvson of Engneerng Brown Unversty 3. Resultant of systems of forces Machnes and structures are usually subected to lots of forces. When we analyze force systems

More information

Introduction. - The Second Lyapunov Method. - The First Lyapunov Method

Introduction. - The Second Lyapunov Method. - The First Lyapunov Method Stablty Analyss A. Khak Sedgh Control Systems Group Faculty of Electrcal and Computer Engneerng K. N. Toos Unversty of Technology February 2009 1 Introducton Stablty s the most promnent characterstc of

More information

Problem Points Score Total 100

Problem Points Score Total 100 Physcs 450 Solutons of Sample Exam I Problem Ponts Score 1 8 15 3 17 4 0 5 0 Total 100 All wor must be shown n order to receve full credt. Wor must be legble and comprehensble wth answers clearly ndcated.

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY The Bot-Savart Law The velocty nduced by the sngular vortex lne wth the crculaton can be determned by means of the Bot- Savart formula

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Parabola Model with the Application to the Single-Point Mooring System

Parabola Model with the Application to the Single-Point Mooring System Journal of Multdscplnary Engneerng Scence and Technology (JMEST) ISSN: 58-93 Vol. Issue 3, March - 7 Parabola Model wth the Applcaton to the Sngle-Pont Moorng System Chunle Sun, Yuheng Rong, Xn Wang, Mengjao

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam APPENDIX F A DISPACEMENT-BASED BEAM EEMENT WITH SHEAR DEFORMATIONS Never use a Cubc Functon Approxmaton for a Non-Prsmatc Beam F. INTRODUCTION { XE "Shearng Deformatons" }In ths appendx a unque development

More information

ENGI 5708 Design of Civil Engineering Systems

ENGI 5708 Design of Civil Engineering Systems ENGI 5708 Design of Civil Engineering Systems Lecture 04: Graphical Solution Methods Part 1 Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University

More information

Finite Wings Steady, incompressible flow

Finite Wings Steady, incompressible flow Steady, ncompressble flow Geometrc propertes of a wng - Fnte thckness much smaller than the span and the chord - Defnton of wng geometry: a) Planform (varaton of chord and sweep angle) b) Secton/Arfol

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION STATIC ANALYSIS OF TWO-LERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION Ákos József Lengyel István Ecsed Assstant Lecturer Emertus Professor Insttute of Appled Mechancs Unversty of Mskolc Mskolc-Egyetemváros

More information

Spatial Statistics and Analysis Methods (for GEOG 104 class).

Spatial Statistics and Analysis Methods (for GEOG 104 class). Spatal Statstcs and Analyss Methods (for GEOG 104 class). Provded by Dr. An L, San Dego State Unversty. 1 Ponts Types of spatal data Pont pattern analyss (PPA; such as nearest neghbor dstance, quadrat

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Pressure Measurements Laboratory

Pressure Measurements Laboratory Lab # Pressure Measurements Laboratory Objectves:. To get hands-on experences on how to make pressure (surface pressure, statc pressure and total pressure nsde flow) measurements usng conventonal pressuremeasurng

More information

MEEM 3700 Mechanical Vibrations

MEEM 3700 Mechanical Vibrations MEEM 700 Mechancal Vbratons Mohan D. Rao Chuck Van Karsen Mechancal Engneerng-Engneerng Mechancs Mchgan echnologcal Unversty Copyrght 00 Lecture & MEEM 700 Multple Degree of Freedom Systems (ext: S.S.

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

Chapter 12 Equilibrium & Elasticity

Chapter 12 Equilibrium & Elasticity Chapter 12 Equlbrum & Elastcty If there s a net force, an object wll experence a lnear acceleraton. (perod, end of story!) If there s a net torque, an object wll experence an angular acceleraton. (perod,

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before .1 Arc Length hat s the length of a curve? How can we approxmate t? e could do t followng the pattern we ve used before Use a sequence of ncreasngly short segments to approxmate the curve: As the segments

More information

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods Chapter Eght Energy Method 8. Introducton 8. Stran energy expressons 8.3 Prncpal of statonary potental energy; several degrees of freedom ------ Castglano s frst theorem ---- Examples 8.4 Prncpal of statonary

More information

Please initial the statement below to show that you have read it

Please initial the statement below to show that you have read it EN0: Structural nalyss Exam I Wednesday, March 2, 2005 Dvson of Engneerng rown Unversty NME: General Instructons No collaboraton of any nd s permtted on ths examnaton. You may consult your own wrtten lecture

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004 Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system). EWTO S LAWS Consder two partcles. 1 1. If 1 0 then 0 wth p 1 m1v. 1 1 2. 1.. 3. 11 These laws only apply when vewed from an nertal coordnate system (unaccelerated system). consder a collecton of partcles

More information

Frame element resists external loads or disturbances by developing internal axial forces, shear forces, and bending moments.

Frame element resists external loads or disturbances by developing internal axial forces, shear forces, and bending moments. CE7 Structural Analyss II PAAR FRAE EEET y 5 x E, A, I, Each node can translate and rotate n plane. The fnal dsplaced shape has ndependent generalzed dsplacements (.e. translatons and rotatons) noled.

More information

Ch 35 Images. Eunil Won Department of Physics Korea University. Fundamentals of Physics by Eunil Won, Korea University 1

Ch 35 Images. Eunil Won Department of Physics Korea University. Fundamentals of Physics by Eunil Won, Korea University 1 Ch 35 Images Eunl Won Department of Physcs Korea Unversty Fundamentals of Physcs by Eunl Won, Korea Unversty We wll cover... Plane mrrors Thn Lenses Three proofs Sphercal mrrors Sphercal refrtng Surfes

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

ME 307 Machine Design I. Chapter 8: Screws, Fasteners and the Design of Nonpermanent Joints

ME 307 Machine Design I. Chapter 8: Screws, Fasteners and the Design of Nonpermanent Joints Dr.. zz Bazoune Chapter 8: Screws, Fasteners and the Desgn of Nonpermanent Jonts Dr.. zz Bazoune Chapter 8: Screws, Fasteners and the Desgn of Nonpermanent Jonts CH-8 LEC 35 Slde 2 Dr.. zz Bazoune Chapter

More information

Aerodynamics. Finite Wings Lifting line theory Glauert s method

Aerodynamics. Finite Wings Lifting line theory Glauert s method α ( y) l Γ( y) r ( y) V c( y) β b 4 V Glauert s method b ( y) + r dy dγ y y dy Soluton procedure that transforms the lftng lne ntegro-dfferental equaton nto a system of algebrac equatons - Restrcted to

More information

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO.

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO. Slde Kng Saud Unersty College of Scence Physcs & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART ) LECTURE NO. 6 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture

More information

MAGNETISM MAGNETIC DIPOLES

MAGNETISM MAGNETIC DIPOLES MAGNETISM We now turn to magnetsm. Ths has actually been used for longer than electrcty. People were usng compasses to sal around the Medterranean Sea several hundred years BC. However t was not understood

More information

Torsion, Thermal Effects and Indeterminacy

Torsion, Thermal Effects and Indeterminacy ENDS Note Set 7 F007bn orson, herml Effects nd Indetermncy Deformton n orsonlly Loded Members Ax-symmetrc cross sectons subjected to xl moment or torque wll remn plne nd undstorted. At secton, nternl torque

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

An identification algorithm of model kinetic parameters of the interfacial layer growth in fiber composites

An identification algorithm of model kinetic parameters of the interfacial layer growth in fiber composites IOP Conference Seres: Materals Scence and Engneerng PAPER OPE ACCESS An dentfcaton algorthm of model knetc parameters of the nterfacal layer growth n fber compostes o cte ths artcle: V Zubov et al 216

More information

Professor Terje Haukaas University of British Columbia, Vancouver The Q4 Element

Professor Terje Haukaas University of British Columbia, Vancouver  The Q4 Element Professor Terje Haukaas Unversty of Brtsh Columba, ancouver www.nrsk.ubc.ca The Q Element Ths document consders fnte elements that carry load only n ther plane. These elements are sometmes referred to

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg PHY 454 - celestal-mechancs - J. Hedberg - 207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The

More information

Line Drawing and Clipping Week 1, Lecture 2

Line Drawing and Clipping Week 1, Lecture 2 CS 43 Computer Graphcs I Lne Drawng and Clppng Week, Lecture 2 Davd Breen, Wllam Regl and Maxm Peysakhov Geometrc and Intellgent Computng Laboratory Department of Computer Scence Drexel Unversty http://gcl.mcs.drexel.edu

More information

Turbulent Nonpremixed Flames

Turbulent Nonpremixed Flames School of Aerospace Engneerng Turbulent Nonpremxed Flames Jerry Setzman. 5 Mole Fracton.15.1.5 CH4 HO HCO x 1 Temperature Methane Flame.1..3 Dstance (cm) 15 1 5 Temperature (K) TurbulentNonpremxed -1 School

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Computer Based Porosity Design by Multi Phase Topology Optimization

Computer Based Porosity Design by Multi Phase Topology Optimization Computer Based Porosty Desgn by Mult Phase Topology Optmzaton Andreas Burbles and Matthas Busse Fraunhofer-Insttut für Fertgungstechnk und Angewandte Materalforschung - IFAM Wener Str. 12, 28359 Bremen,

More information