Transfer Function Analysis

Size: px
Start display at page:

Download "Transfer Function Analysis"

Transcription

1 Trasfer Fuctio Aalysis Free & Forced Resposes Trasfer Fuctio Syste Stability ME375 Trasfer Fuctios - Free & Forced Resposes Ex: Let s s look at a stable first order syste: τ y + y = Ku Take LT of the I/O odel ad reeber to keep tracks of the ICs: L[ τ y + y] = L[ Ku] τ ( ) + = K Rearrage ters s.t. the output Y(s) ) ters are o oe side ad the iput U(s) ) ad IC ters are o the other: Ys () = Us () + y() ( ) ( ) ( ) Factor out the output side of the equatio: Y ( s) = U ( s) + y() ME375 Trasfer Fuctios - 2

2 Free & Forced Resposes Free Respose (u(t)( ) = & ozero ICs) The respose of a syste to zero iput ad ozero iitial coditios. Ca be obtaied by Let u(t) ) = ad use LT ad ILT to solve for the free respose. Forced Respose (zero( ICs & ozero u(t)) The respose of a syste to ozero iput ad zero iitial coditios. Ca be obtaied by Assue zero ICs ad use LT ad ILT to solve for the forced respose (replace differetiatio with s i the I/O ODE). ME375 Trasfer Fuctios - 3 I Class Exercise Fid the free ad forced resposes of the followig I/O odel: y + 4 y y + 5y = 2u u + u ME375 Trasfer Fuctios - 4 2

3 Trasfer Fuctio Give a geeral th order syste odel: ( ) ( ) ( ) ( ) a y + a y + + ay + a y = bu + b u + + bu + bu The forced respose (zero ICs) of the syste due to iput u(t) ) is: Takig the LT of the ODE: ( ) L y = s Y( s) ( WHY? ) asys () + a s Ys () + + asys () + ays () = bsus ( ) + b s Us ( ) + + bsus ( ) + bus ( ) () as + a s + + as+ a Ys = bs + b s + + bs+ b Us () Ds ( ) Ns ( ) bs + b s + + bs + b Ns () Ys () = Us () = Us () = Gs () Us () as + a s + + as + a Ds () Gs () Trasfer Fuctio ME375 Trasfer Fuctios - 5 Exaples () Recall the first order syste: τ y + y = K u Fid the trasfer fuctio of the syste. Takig LT of the ODE: (2) For the followig 2d order syste: y + 2 ζ ω y + ω y = Kω u Fid the trasfer fuctio of the syste. Takig LT of the ODE: 2 2 ME375 Trasfer Fuctios - 6 3

4 Trasfer Fuctio Give a geeral th order syste: ay + a y + + ay + ay= bu + b u + + bu + bu ( ) ( ) ( ) ( ) The trasfer fuctio of the syste is: bs + b s + + bs+ b Gs () as + a s + + as+ a The trasfer fuctio ca be iterpreted as: u(t) Iput Differetial Equatio y(t) Output U(s) Iput G(s) Y(s) Output Tie Doai s -Doai ME375 Trasfer Fuctios - 7 Poles ad Zeros Give a trasfer fuctio (TF) of a syste: bs + b s + + bs + b N() s Gs () = as + a s + + as + a Ds () Poles Zeros The roots of the deoiator of the The roots of the uerator of the TF. TF, i.e. the roots of the characteristic equatio. Ns () = bs + b s + + bs + b Ds () = as + a s + + as + a = b( s z)( s z2) ( s z) = = a( s p)( s p2) ( s p) = z, z2,, z : zeros of the TF p, p,, p : poles of the TF 2 bs + b s + + bs+ b Ns ( ) Gs () = = as + a s + + as+ a Ds () ME375 Trasfer Fuctios - 8 4

5 Static Gai Static Gai ( G() ) The value of the trasfer fuctio whe s =. If bs + b s + + bs + b N() s Gs () = as + a s + + as + a Ds () N() b KS = G() = = D() a The static gai K S ca be iterpreted as the steady state value of the uit step respose. Ex: For a secod order syste: 2 2 y+ 2ζ ωy + ω y = Ksω u Fid the trasfer fuctio ad the static gai. Ex: Fid the steady state value of the syste y + 3 y + 5y + 7y = u + 2u + u to a step iput of agitude 2. ME375 Trasfer Fuctios - 9 I Class Exercise Give a I/O odel of a 2d order syste: 5 y + 2 y + 4 y = 6 u () Fid the trasfer fuctio of the syste (2) Fid the poles ad zeros of the syste (3) What is the syste forced respose Y(s) ) to a uit step iput u(t) ) =? (4) As tie goes to ifiity, what is the steady state value of the uit step respose? ME375 Trasfer Fuctios - 5

6 A Closer Look at Free Respose Give a geeral th order syste odel: ( ) ( ) ( ) ( ) ay + a y + + ay + ay = bu + b u + + bu + bu The free respose (zero iput) of the syste due to ICs is: ( ) ( ) Takig the LT of the Hoogeeous ODE: ay + a y + + ay + ay= ( ) ( ) L y L y ( ) 2 ( 2) a s Y( s) s y() y () + a s Y( s) s y() y () [ ] + + a sy( s) y() + a Y( s) = L y L y as + a s + + as+ a YFree ( s) 2 ( ) = ( as + a s + + a) y() + + y () Y ( s) = F( s) F( s) A Polyoial of s That depeds o ICs Free as + a s + + as+ a ME375 Trasfer Fuctios - A Closer Look at Free Respose Ex: : Fid the free respose of the followig syste: 5 y + 3y + 5y = 2 u + u Ex: : Perfor partial fractio expasio (PFE) of the above free respose whe: y ( ) = ad y( ) = ME375 Trasfer Fuctios - 2 6

7 Free Respose ad Pole Positio The free respose of a syste ca be represeted by: Fs () Fs () YFree() s = = as + a s + + as + a a( s p)( s p2) ( s p) A A2 A = s p s p2 s p Assue p p p i.e. distict poles R S T 2 p t p2 t y ( t) = Y ( s) = A e + A e + + A e p p i i is real = σ + jβ Free R S T i R S T pi < pi = p > σ < σ = σ > p t L Free 2 Ig. Real ME375 Trasfer Fuctios - 3 Coplete Respose U(s) N() s Y(s) Gs () Iput D() s Output ( ) ICs: y(), y (),, y () Coplete Respose Y ( s) = Y ( s) + Y ( s) = G ( s) U ( s) + Y ( s) Forced Free Free = U( s) + Q: What part of the syste affects both the free ad forced respose? Q: If U(s) U ) = ad there are o-zero ICs, what will guaratee that y(t) y? ME375 Trasfer Fuctios - 4 7

8 Stability Stability Cocept Describes the ability of a syste to stay at its equilibriu positio (for liear systes: all state variables = or y(t) ) = ) i the absece of ay iputs. A liear tie ivariat (LTI) syste is stable if ad oly if (iff) its free respose coverges to zero. Ex: Pedulu Ball o curved surface ME375 Trasfer Fuctios - 5 Stability of LTI Systes Stability Criterio for LTI Systes ( ) ( ) ( ) ( ) ay + a y + + ay + ay = bu + b u + + bu + bu Stable all poles of Ds ( ) = as + a s + + as + a lie i the left-half coplex plae Coets o LTI Stability Stability of a LTI syste does ot deped o the iput. (why?) For st ad 2d order systes, stability is guarateed if all the e coefficiets of the characteristic polyoial are positive. D( s) = as + a : Stable ai > i or ai < i 2 Ds ( ) = as + as+ a : Stable a> i or a< i 2 Characteristic Polyoial Effect of Poles ad Zeros o Stability Stability of a syste depeds oly o its poles. Zeros do ot affect syste stability. Zeros affect the trasiet respose of the syste. i i LHP ME375 Trasfer Fuctios - 6 8

9 I Class Exercises () Fid the trasfer fuctio of the followig I/O equatio: y 2 y 5y = 2u + u (2) Deterie the syste s s stability. (3) Plot the poles ad zeros of the syste o the coplex plae. () Fid the trasfer fuctio of the followig I/O equatio: y + y + 6y = u 3u + 4u (2) Deterie the syste s s stability. (3) Plot the poles ad zeros of the syste o the coplex plae. ME375 Trasfer Fuctios - 7 Exaple (Iverted) Pedulu () Derive a atheatical odel for a pedulu. (2) Fid the equilibriu positios. (3) Discuss the stability of the equilibriu positios. ME375 Trasfer Fuctios - 8 9

10 Exaple (Iverted Pedulu) ME375 Trasfer Fuctios - 9

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1 Trasfer Fuctio Aalysis Free & Forced Resposes Trasfer Fuctio Syste Stability ME375 Trasfer Fuctios - 1 Free & Forced Resposes Ex: Let s look at a stable first order syste: y y Ku Take LT of the I/O odel

More information

Dynamic Response of Linear Systems

Dynamic Response of Linear Systems Dyamic Respose of Liear Systems Liear System Respose Superpositio Priciple Resposes to Specific Iputs Dyamic Respose of st Order Systems Characteristic Equatio - Free Respose Stable st Order System Respose

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1 Case Study ME375 Frequecy Respose - Case Study SUPPORT POWER WIRE DROPPERS Electric trai derives power through a patograph, which cotacts the power wire, which is suspeded from a cateary. Durig high-speed

More information

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1 ROOT LOCUS TECHNIQUE 93 should be desiged differetly to eet differet specificatios depedig o its area of applicatio. We have observed i Sectio 6.4 of Chapter 6, how the variatio of a sigle paraeter like

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences A Uiversity of Califoria at Berkeley College of Egieerig Departmet of Electrical Egieerig ad Computer Scieces U N I V E R S T H E I T Y O F LE T TH E R E B E LI G H T C A L I F O R N 8 6 8 I A EECS : Sigals

More information

Class 07 Time domain analysis Part II 2 nd order systems

Class 07 Time domain analysis Part II 2 nd order systems Class 07 Time domai aalysis Part II d order systems Time domai aalysis d order systems iput S output Secod order systems of the type α G(s) as + bs + c Time domai aalysis d order systems iput S α as +

More information

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter Time Respose & Frequecy Respose d -Order Dyamic System -Pole, Low-Pass, Active Filter R 4 R 7 C 5 e i R 1 C R 3 - + R 6 - + e out Assigmet: Perform a Complete Dyamic System Ivestigatio of the Two-Pole,

More information

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser FIR Filters Lecture #7 Chapter 5 8 What Is this Course All About? To Gai a Appreciatio of the Various Types of Sigals ad Systems To Aalyze The Various Types of Systems To Lear the Skills ad Tools eeded

More information

The state space model needs 5 parameters, so it is not as convenient to use in this control study.

The state space model needs 5 parameters, so it is not as convenient to use in this control study. Trasfer fuctio for of the odel G θ K ω 2 θ / v θ / v ( s) = = 2 2 vi s + 2ζωs + ω The followig slides detail a derivatio of this aalog eter odel both as state space odel ad trasfer fuctio (TF) as show

More information

Chapter 7: The z-transform. Chih-Wei Liu

Chapter 7: The z-transform. Chih-Wei Liu Chapter 7: The -Trasform Chih-Wei Liu Outlie Itroductio The -Trasform Properties of the Regio of Covergece Properties of the -Trasform Iversio of the -Trasform The Trasfer Fuctio Causality ad Stability

More information

Solution of Linear Constant-Coefficient Difference Equations

Solution of Linear Constant-Coefficient Difference Equations ECE 38-9 Solutio of Liear Costat-Coefficiet Differece Equatios Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa Solutio of Liear Costat-Coefficiet Differece Equatios Example: Determie

More information

Definition of z-transform.

Definition of z-transform. - Trasforms Frequecy domai represetatios of discretetime sigals ad LTI discrete-time systems are made possible with the use of DTFT. However ot all discrete-time sigals e.g. uit step sequece are guarateed

More information

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations Geeraliig the DTFT The Trasform M. J. Roberts - All Rights Reserved. Edited by Dr. Robert Akl 1 The forward DTFT is defied by X e jω = x e jω i which = Ω is discrete-time radia frequecy, a real variable.

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes Beroulli Polyoials Tals give at LSBU, October ad Noveber 5 Toy Forbes Beroulli Polyoials The Beroulli polyoials B (x) are defied by B (x), Thus B (x) B (x) ad B (x) x, B (x) x x + 6, B (x) dx,. () B 3

More information

Bode Diagrams School of Mechanical Engineering ME375 Frequency Response - 29 Purdue University Example Ex:

Bode Diagrams School of Mechanical Engineering ME375 Frequency Response - 29 Purdue University Example Ex: ME375 Hadouts Bode Diagrams Recall that if m m bs m + bm s + + bs+ b Gs () as + a s + + as+ a The bm( j z)( j z) ( j zm) G( j ) a ( j p )( j p ) ( j p ) bm( s z)( s z) ( s zm) a ( s p )( s p ) ( s p )

More information

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals. Z - Trasform The -trasform is a very importat tool i describig ad aalyig digital systems. It offers the techiques for digital filter desig ad frequecy aalysis of digital sigals. Defiitio of -trasform:

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistat Professor Departmet of Mathematics Uiversity Of Kalyai West Begal, Idia E-mail : sahoopulak1@gmail.com 1 Module-2: Stereographic Projectio 1 Euler

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

M2.The Z-Transform and its Properties

M2.The Z-Transform and its Properties M2.The Z-Trasform ad its Properties Readig Material: Page 94-126 of chapter 3 3/22/2011 I. Discrete-Time Sigals ad Systems 1 What did we talk about i MM1? MM1 - Discrete-Time Sigal ad System 3/22/2011

More information

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C) Aswer: (A); (C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 0(A); (A); (C); 3(C). A two loop positio cotrol system is show below R(s) Y(s) + + s(s +) - - s The gai of the Tacho-geerator iflueces maily the

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

DIGITAL SIGNAL PROCESSING LECTURE 3

DIGITAL SIGNAL PROCESSING LECTURE 3 DIGITAL SIGNAL PROCESSING LECTURE 3 Fall 2 2K8-5 th Semester Tahir Muhammad tmuhammad_7@yahoo.com Cotet ad Figures are from Discrete-Time Sigal Processig, 2e by Oppeheim, Shafer, ad Buc, 999-2 Pretice

More information

Digital Signal Processing

Digital Signal Processing Digital Sigal Processig Z-trasform dftwave -Trasform Backgroud-Defiitio - Fourier trasform j ω j ω e x e extracts the essece of x but is limited i the sese that it ca hadle stable systems oly. jω e coverges

More information

Lecture 20 - Wave Propagation Response

Lecture 20 - Wave Propagation Response .09/.093 Fiite Eleet Aalysis of Solids & Fluids I Fall 09 Lecture 0 - Wave Propagatio Respose Prof. K. J. Bathe MIT OpeCourseWare Quiz #: Closed book, 6 pages of otes, o calculators. Covers all aterials

More information

Chapter 2. Asymptotic Notation

Chapter 2. Asymptotic Notation Asyptotic Notatio 3 Chapter Asyptotic Notatio Goal : To siplify the aalysis of ruig tie by gettig rid of details which ay be affected by specific ipleetatio ad hardware. [1] The Big Oh (O-Notatio) : It

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

Lab(8) controller design using root locus

Lab(8) controller design using root locus Lab(8) cotroller desig usig root locus I this lab we will lear how to desig a cotroller usig root locus but before this we eed to aswer the followig questios: What is root locus? What is the purpose of

More information

5.6 Binomial Multi-section Matching Transformer

5.6 Binomial Multi-section Matching Transformer 4/14/21 5_6 Bioial Multisectio Matchig Trasforers 1/1 5.6 Bioial Multi-sectio Matchig Trasforer Readig Assiget: pp. 246-25 Oe way to axiize badwidth is to costruct a ultisectio Γ f that is axially flat.

More information

Vasyl Moisyshyn*, Bogdan Borysevych*, Oleg Vytyaz*, Yuriy Gavryliv*

Vasyl Moisyshyn*, Bogdan Borysevych*, Oleg Vytyaz*, Yuriy Gavryliv* AGH DRILLING, OIL, GAS Vol. 3 No. 3 204 http://dx.doi.org/0.7494/drill.204.3.3.43 Vasyl Moisyshy*, Bogda Borysevych*, Oleg Vytyaz*, Yuriy Gavryliv* DEVELOPMENT OF THE MATHEMATICAL MODELS OF THE INTEGRAL

More information

Chapter 3. z-transform

Chapter 3. z-transform Chapter 3 -Trasform 3.0 Itroductio The -Trasform has the same role as that played by the Laplace Trasform i the cotiuous-time theorem. It is a liear operator that is useful for aalyig LTI systems such

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1

School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1 Dynamic Response of Linear Systems Linear System Response Superposition Principle Responses to Specific Inputs Dynamic Response of f1 1st to Order Systems Characteristic Equation - Free Response Stable

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.34 Discrete Time Sigal Processig Fall 24 BACKGROUND EXAM September 3, 24. Full Name: Note: This exam is closed

More information

: Transforms and Partial Differential Equations

: Transforms and Partial Differential Equations Trasforms ad Partial Differetial Equatios 018 SUBJECT NAME : Trasforms ad Partial Differetial Equatios SUBJECT CODE : MA 6351 MATERIAL NAME : Part A questios REGULATION : R013 WEBSITE : wwwharigaeshcom

More information

Solutions - Homework # 1

Solutions - Homework # 1 ECE-4: Sigals ad Systems Summer Solutios - Homework # PROBLEM A cotiuous time sigal is show i the figure. Carefully sketch each of the followig sigals: x(t) a) x(t-) b) x(-t) c) x(t+) d) x( - t/) e) x(t)*(

More information

19.1 The dictionary problem

19.1 The dictionary problem CS125 Lecture 19 Fall 2016 19.1 The dictioary proble Cosider the followig data structural proble, usually called the dictioary proble. We have a set of ites. Each ite is a (key, value pair. Keys are i

More information

2D DSP Basics: Systems Stability, 2D Sampling

2D DSP Basics: Systems Stability, 2D Sampling - Digital Iage Processig ad Copressio D DSP Basics: Systes Stability D Saplig Stability ty Syste is stable if a bouded iput always results i a bouded output BIBO For LSI syste a sufficiet coditio for stability:

More information

CEMTool Tutorial. The z-transform

CEMTool Tutorial. The z-transform CEMTool Tutorial The -Trasform Overview This tutorial is part of the CEMWARE series. Each tutorial i this series will teach you a specific topic of commo applicatios by explaiig theoretical cocepts ad

More information

Exponential Moving Average Pieter P

Exponential Moving Average Pieter P Expoetial Movig Average Pieter P Differece equatio The Differece equatio of a expoetial movig average lter is very simple: y[] x[] + (1 )y[ 1] I this equatio, y[] is the curret output, y[ 1] is the previous

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

Digital signal processing: Lecture 5. z-transformation - I. Produced by Qiangfu Zhao (Since 1995), All rights reserved

Digital signal processing: Lecture 5. z-transformation - I. Produced by Qiangfu Zhao (Since 1995), All rights reserved Digital sigal processig: Lecture 5 -trasformatio - I Produced by Qiagfu Zhao Sice 995, All rights reserved DSP-Lec5/ Review of last lecture Fourier trasform & iverse Fourier trasform: Time domai & Frequecy

More information

Define a Markov chain on {1,..., 6} with transition probability matrix P =

Define a Markov chain on {1,..., 6} with transition probability matrix P = Pla Group Work 0. The title says it all Next Tie: MCMC ad Geeral-state Markov Chais Midter Exa: Tuesday 8 March i class Hoework 4 due Thursday Uless otherwise oted, let X be a irreducible, aperiodic Markov

More information

Chapter 7 z-transform

Chapter 7 z-transform Chapter 7 -Trasform Itroductio Trasform Uilateral Trasform Properties Uilateral Trasform Iversio of Uilateral Trasform Determiig the Frequecy Respose from Poles ad Zeros Itroductio Role i Discrete-Time

More information

AH Checklist (Unit 3) AH Checklist (Unit 3) Matrices

AH Checklist (Unit 3) AH Checklist (Unit 3) Matrices AH Checklist (Uit 3) AH Checklist (Uit 3) Matrices Skill Achieved? Kow that a matrix is a rectagular array of umbers (aka etries or elemets) i paretheses, each etry beig i a particular row ad colum Kow

More information

ECE 308 Discrete-Time Signals and Systems

ECE 308 Discrete-Time Signals and Systems ECE 38-5 ECE 38 Discrete-Time Sigals ad Systems Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa ECE 38-5 1 Additio, Multiplicatio, ad Scalig of Sequeces Amplitude Scalig: (A Costat

More information

Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation

Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation Appl. Math. If. Sci. 8, No. 1, 187-192 (2014) 187 Applied Matheatics & Iforatio Scieces A Iteratioal Joural http://dx.doi.org/10.12785/ais/080123 Lebesgue Costat Miiizig Bivariate Barycetric Ratioal Iterpolatio

More information

Solutions of Chapter 5 Part 1/2

Solutions of Chapter 5 Part 1/2 Page 1 of 8 Solutios of Chapter 5 Part 1/2 Problem 5.1-1 Usig the defiitio, compute the -trasform of x[] ( 1) (u[] u[ 8]). Sketch the poles ad eros of X[] i the plae. Solutio: Accordig to the defiitio,

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 301 Sigals & Systems Prof. Mark Fowler Note Set #8 D-T Covolutio: The Tool for Fidig the Zero-State Respose Readig Assigmet: Sectio 2.1-2.2 of Kame ad Heck 1/14 Course Flow Diagram The arrows here

More information

School of Mechanical Engineering Purdue University

School of Mechanical Engineering Purdue University Case Study ME375 Frequency Response - 1 Case Study SUPPORT POWER WIRE DROPPERS Electric train derives power through a pantograph, which contacts the power wire, which is suspended from a catenary. During

More information

f(w) w z =R z a 0 a n a nz n Liouville s theorem, we see that Q is constant, which implies that P is constant, which is a contradiction.

f(w) w z =R z a 0 a n a nz n Liouville s theorem, we see that Q is constant, which implies that P is constant, which is a contradiction. Theorem 3.6.4. [Liouville s Theorem] Every bouded etire fuctio is costat. Proof. Let f be a etire fuctio. Suppose that there is M R such that M for ay z C. The for ay z C ad R > 0 f (z) f(w) 2πi (w z)

More information

The Non-homogeneous Diffusion Equation

The Non-homogeneous Diffusion Equation The No-hoogeeous Diffusio Equatio The o-hoogeeous diffusio equatio, with sources, has the geeral for, 2 r,t a 2 r,t Fr,t t a 2 is real ad The hoogeeous diffusio equatio, 2 r,t a 2 t r,t ca be solved by

More information

The Performance of Feedback Control Systems

The Performance of Feedback Control Systems The Performace of Feedbac Cotrol Sytem Objective:. Secify the meaure of erformace time-domai the firt te i the deig roce Percet overhoot / Settlig time T / Time to rie / Steady-tate error e. ut igal uch

More information

MA Lesson 26 Notes Graphs of Rational Functions (Asymptotes) Limits at infinity

MA Lesson 26 Notes Graphs of Rational Functions (Asymptotes) Limits at infinity MA 1910 Lesso 6 Notes Graphs of Ratioal Fuctios (Asymptotes) Limits at ifiity Defiitio of a Ratioal Fuctio: If P() ad Q() are both polyomial fuctios, Q() 0, the the fuctio f below is called a Ratioal Fuctio.

More information

Acoustic Field inside a Rigid Cylinder with a Point Source

Acoustic Field inside a Rigid Cylinder with a Point Source Acoustic Field iside a Rigid Cylider with a Poit Source 1 Itroductio The ai objectives of this Deo Model are to Deostrate the ability of Coustyx to odel a rigid cylider with a poit source usig Coustyx

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

PARTIAL DIFFERENTIAL EQUATIONS SEPARATION OF VARIABLES

PARTIAL DIFFERENTIAL EQUATIONS SEPARATION OF VARIABLES Diola Bagayoko (0 PARTAL DFFERENTAL EQUATONS SEPARATON OF ARABLES. troductio As discussed i previous lectures, partial differetial equatios arise whe the depedet variale, i.e., the fuctio, varies with

More information

Engineering Mechanics Dynamics & Vibrations. Engineering Mechanics Dynamics & Vibrations Plane Motion of a Rigid Body: Equations of Motion

Engineering Mechanics Dynamics & Vibrations. Engineering Mechanics Dynamics & Vibrations Plane Motion of a Rigid Body: Equations of Motion 1/5/013 Egieerig Mechaics Dyaics ad Vibratios Egieerig Mechaics Dyaics & Vibratios Egieerig Mechaics Dyaics & Vibratios Plae Motio of a Rigid Body: Equatios of Motio Motio of a rigid body i plae otio is

More information

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems Departmet of Electrical Egieerig Uiversity of Arasas ELEG 4603/5173L Digital Sigal Processig Ch. 1 Discrete-Time Sigals ad Systems Dr. Jigxia Wu wuj@uar.edu OUTLINE 2 Classificatios of discrete-time sigals

More information

ME 375 FINAL EXAM Friday, May 6, 2005

ME 375 FINAL EXAM Friday, May 6, 2005 ME 375 FINAL EXAM Friay, May 6, 005 Divisio: Kig 11:30 / Cuigham :30 (circle oe) Name: Istructios (1) This is a close book examiatio, but you are allowe three 8.5 11 crib sheets. () You have two hours

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

Sinusoidal Steady-state Analysis

Sinusoidal Steady-state Analysis Siusoidal Steady-state Aalysis Complex umber reviews Phasors ad ordiary differetial equatios Complete respose ad siusoidal steady-state respose Cocepts of impedace ad admittace Siusoidal steady-state aalysis

More information

ELEG3503 Introduction to Digital Signal Processing

ELEG3503 Introduction to Digital Signal Processing ELEG3503 Itroductio to Digital Sigal Processig 1 Itroductio 2 Basics of Sigals ad Systems 3 Fourier aalysis 4 Samplig 5 Liear time-ivariat (LTI) systems 6 z-trasform 7 System Aalysis 8 System Realizatio

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

Discrete population models

Discrete population models Discrete populatio odels D. Gurarie Ratioal: cclic (seasoal) tiig of reproductio ad developet, schroizatio Topics:. Reewal odels (Fiboacci). Discrete logistic odels (Verhulst vs. Ricker); cobwebs; equilibria,

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20 ECE 6341 Sprig 016 Prof. David R. Jackso ECE Dept. Notes 0 1 Spherical Wave Fuctios Cosider solvig ψ + k ψ = 0 i spherical coordiates z φ θ r y x Spherical Wave Fuctios (cot.) I spherical coordiates we

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

Chapter 10 z Transform

Chapter 10 z Transform Chapter 0 Trasfor 熊红凯特聘教授 http://i.sjtu.edu.c 电子工程系上海交通大学 07 DT Fourier trasfor eables us to do a lot of thigs, e.g. Aale frequec respose of LTI sstes Modulatio Wh do we eed et aother trasfor? Oe view

More information

The Binomial Multi-Section Transformer

The Binomial Multi-Section Transformer 4/15/2010 The Bioial Multisectio Matchig Trasforer preset.doc 1/24 The Bioial Multi-Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where:

More information

Computing the output response of LTI Systems.

Computing the output response of LTI Systems. Computig the output respose of LTI Systems. By breaig or decomposig ad represetig the iput sigal to the LTI system ito terms of a liear combiatio of a set of basic sigals. Usig the superpositio property

More information

6.003: Signals and Systems. Feedback, Poles, and Fundamental Modes

6.003: Signals and Systems. Feedback, Poles, and Fundamental Modes 6.003: Sigals ad Systems Feedback, Poles, ad Fudametal Modes February 9, 2010 Last Time: Multiple Represetatios of DT Systems Verbal descriptios: preserve the ratioale. To reduce the umber of bits eeded

More information

A Generalization of Ince s Equation

A Generalization of Ince s Equation Joural of Applied Matheatics ad Physics 7-8 Published Olie Deceber i SciRes. http://www.scirp.org/oural/ap http://dx.doi.org/.36/ap..337 A Geeralizatio of Ice s Equatio Ridha Moussa Uiversity of Wiscosi

More information

The z-transform can be used to obtain compact transform-domain representations of signals and systems. It

The z-transform can be used to obtain compact transform-domain representations of signals and systems. It 3 4 5 6 7 8 9 10 CHAPTER 3 11 THE Z-TRANSFORM 31 INTRODUCTION The z-trasform ca be used to obtai compact trasform-domai represetatios of sigals ad systems It provides ituitio particularly i LTI system

More information

Summer MA Lesson 13 Section 1.6, Section 1.7 (part 1)

Summer MA Lesson 13 Section 1.6, Section 1.7 (part 1) Suer MA 1500 Lesso 1 Sectio 1.6, Sectio 1.7 (part 1) I Solvig Polyoial Equatios Liear equatio ad quadratic equatios of 1 variable are specific types of polyoial equatios. Soe polyoial equatios of a higher

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B. Amme 3500 : System Dyamics ad Cotrol Root Locus Course Outlie Week Date Cotet Assigmet Notes Mar Itroductio 8 Mar Frequecy Domai Modellig 3 5 Mar Trasiet Performace ad the s-plae 4 Mar Block Diagrams Assig

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

Difference Equation Construction (1) ENGG 1203 Tutorial. Difference Equation Construction (2) Grow, baby, grow (1)

Difference Equation Construction (1) ENGG 1203 Tutorial. Difference Equation Construction (2) Grow, baby, grow (1) ENGG 03 Tutorial Differece Equatio Costructio () Systems ad Cotrol April Learig Objectives Differece Equatios Z-trasform Poles Ack.: MIT OCW 6.0, 6.003 Newto s law of coolig states that: The chage i a

More information

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time Sigals ad Systems Problem Set: From Cotiuous-Time to Discrete-Time Updated: October 5, 2017 Problem Set Problem 1 - Liearity ad Time-Ivariace Cosider the followig systems ad determie whether liearity ad

More information

The Z-Transform. (t-t 0 ) Figure 1: Simplified graph of an impulse function. For an impulse, it can be shown that (1)

The Z-Transform. (t-t 0 ) Figure 1: Simplified graph of an impulse function. For an impulse, it can be shown that (1) The Z-Trasform Sampled Data The geeralied fuctio (t) (also kow as the impulse fuctio) is useful i the defiitio ad aalysis of sampled-data sigals. Figure below shows a simplified graph of a impulse. (t-t

More information

Solution of EECS 315 Final Examination F09

Solution of EECS 315 Final Examination F09 Solutio of EECS 315 Fial Examiatio F9 1. Fid the umerical value of δ ( t + 4ramp( tdt. δ ( t + 4ramp( tdt. Fid the umerical sigal eergy of x E x = x[ ] = δ 3 = 11 = ( = ramp( ( 4 = ramp( 8 = 8 [ ] = (

More information

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed) Exam February 8th, 8 Sigals & Systems (5-575-) Prof. R. D Adrea Exam Exam Duratio: 5 Mi Number of Problems: 5 Number of Poits: 5 Permitted aids: Importat: Notes: A sigle A sheet of paper (double sided;

More information

6. Uniform distribution mod 1

6. Uniform distribution mod 1 6. Uiform distributio mod 1 6.1 Uiform distributio ad Weyl s criterio Let x be a seuece of real umbers. We may decompose x as the sum of its iteger part [x ] = sup{m Z m x } (i.e. the largest iteger which

More information

Multinomial. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Multinomial. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation Multioial Notatios Traditioal ae Multioial coefficiet Traditioal otatio 1 2 ; 1, 2,, Matheatica StadardFor otatio Multioial 1, 2,, Priary defiitio 06.04.02.0001.01 1 2 ; 1, 2,, 06.04.02.0002.01 1 k k 1

More information

Unit 4: Polynomial and Rational Functions

Unit 4: Polynomial and Rational Functions 48 Uit 4: Polyomial ad Ratioal Fuctios Polyomial Fuctios A polyomial fuctio y px ( ) is a fuctio of the form p( x) ax + a x + a x +... + ax + ax+ a 1 1 1 0 where a, a 1,..., a, a1, a0are real costats ad

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 06 Summer 07 Problem Set #5 Assiged: Jue 3, 07 Due Date: Jue 30, 07 Readig: Chapter 5 o FIR Filters. PROBLEM 5..* (The

More information

5.6 Binomial Multi-section Matching Transformer

5.6 Binomial Multi-section Matching Transformer 4/14/2010 5_6 Bioial Multisectio Matchig Trasforers 1/1 5.6 Bioial Multi-sectio Matchig Trasforer Readig Assiget: pp. 246-250 Oe way to axiize badwidth is to costruct a ultisectio Γ f that is axially flat.

More information

COMM 602: Digital Signal Processing

COMM 602: Digital Signal Processing COMM 60: Digital Sigal Processig Lecture 4 -Properties of LTIS Usig Z-Trasform -Iverse Z-Trasform Properties of LTIS Usig Z-Trasform Properties of LTIS Usig Z-Trasform -ve +ve Properties of LTIS Usig Z-Trasform

More information

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals.

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals. Discrete-ime Sigals ad Systems Discrete-ime Sigals ad Systems Dr. Deepa Kudur Uiversity of oroto Referece: Sectios. -.5 of Joh G. Proakis ad Dimitris G. Maolakis, Digital Sigal Processig: Priciples, Algorithms,

More information

Application of Homotopy Analysis Method for Solving various types of Problems of Ordinary Differential Equations

Application of Homotopy Analysis Method for Solving various types of Problems of Ordinary Differential Equations Iteratioal Joural o Recet ad Iovatio Treds i Coputig ad Couicatio IN: 31-8169 Volue: 5 Issue: 5 16 Applicatio of Hootopy Aalysis Meod for olvig various types of Probles of Ordiary Differetial Equatios

More information

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5 Sigals ad Systems Sigals ad Systems Sigals are variables that carry iformatio Systemstake sigals as iputs ad produce sigals as outputs The course deals with the passage of sigals through systems T-6.4

More information

1the 1it is said to be overdamped. When 1, the roots of

1the 1it is said to be overdamped. When 1, the roots of Homework 3 AERE573 Fall 08 Due 0/8(M) ame PROBLEM (40pts) Cosider a D order uderdamped system trasfer fuctio H( s) s ratio 0 The deomiator is the system characteristic polyomial P( s) s s (a)(5pts) Use

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

DETERMINATION OF NATURAL FREQUENCY AND DAMPING RATIO

DETERMINATION OF NATURAL FREQUENCY AND DAMPING RATIO Hasa G Pasha DETERMINATION OF NATURAL FREQUENCY AND DAMPING RATIO OBJECTIVE Deterie the atural frequecy ad dapig ratio for a aluiu catilever bea, Calculate the aalytical value of the atural frequecy ad

More information

Chapter 4 Postulates & General Principles of Quantum Mechanics

Chapter 4 Postulates & General Principles of Quantum Mechanics Chapter 4 Postulates & Geeral Priciples of Quatu Mechaics Backgroud: We have bee usig quite a few of these postulates already without realizig it. Now it is tie to forally itroduce the. State of a Syste

More information

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c)

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c) Problem. Compute the itegrals C r d for Z, where C r = ad r >. Recall that C r has the couter-clockwise orietatio. Solutio: We will use the idue Theorem to solve this oe. We could istead use other (perhaps

More information

Generating Functions. 1 Operations on generating functions

Generating Functions. 1 Operations on generating functions Geeratig Fuctios The geeratig fuctio for a sequece a 0, a,..., a,... is defied to be the power series fx a x. 0 We say that a 0, a,... is the sequece geerated by fx ad a is the coefficiet of x. Example

More information

e to approximate (using 4

e to approximate (using 4 Review: Taylor Polyomials ad Power Series Fid the iterval of covergece for the series Fid a series for f ( ) d ad fid its iterval of covergece Let f( ) Let f arcta a) Fid the rd degree Maclauri polyomial

More information