Gilles Brassard. Université de Montréal

Size: px
Start display at page:

Download "Gilles Brassard. Université de Montréal"

Transcription

1 Gilles Brassard Université de Montréal

2 Gilles Brassard Université de Montréal

3 VOLUME 76, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 1996 Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels Charles H. Bennett, 1, * Gilles Brassard, 2, Sandu Popescu, 3, Benjamin Schumacher, 4, John A. Smolin, 5,k and William K. Wootters 6, 1 IBM Research Division, Yorktown Heights, New York Département IRO, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7 3 Physics Department, Tel Aviv University, Tel Aviv, Israel 4 Physics Department, Kenyon College, Gambier, Ohio Physics Department, University of California at Los Angeles, Los Angeles, California Physics Department, Williams College, Williamstown, Massachusetts (Received 24 April 1995) Two separated observers, by applying local operations to a supply of not-too-impure entangled states (e.g., singlets shared through a noisy channel), can prepare a smaller number of entangled pairs of arbitrarily high purity (e.g., near-perfect singlets). These can then be used to faithfully teleport unknown quantum states from one observer to the other, thereby achieving faithful transmission of quantum information through a noisy channel. We give upper and lower bounds on the yield D M of pure singlets jc 2 distillable from mixed states M, showing D M. 0 if C 2 jmjc PACS numbers: Bz, Dv, c The techniques of quantum teleportation [1] and quantum data compression [2,3] exemplify a new goal of quantum information theory, namely, to understand the kind and quantity of channel resources needed for the transmission of intact quantum states, rather than classical information, from a sender to a receiver. In this approach, the quantum source S is viewed as an ensemble of pure states c i, typically not all orthogonal, emitted with known probabilities p i. Transmission of quantum information through a channel is considered successful if the channel outputs closely approximate the inputs as quantum states. Because nonorthogonal states, in principle, cannot be observed without disturbing them, their faithful transmission requires that the entire transmission processes be carried out by a physical apparatus that functions obliviously, that is, without knowing or learning which c i are passing through. Just as classical data compression techniques allow data from a classical source to be faithfully transmitted using a number of bits per signal asymptotically approaching the source s Shannon entropy, 2 P i p i log 2 p i, quantum data compression [2,3] allows quantum data to be transmitted, with asymptotically perfect fidelity, using a number of 2- state quantum systems or qubits (e.g., spin- 1 2 particles) asymptotically approaching the source s von Neumann entropy S r 2Trr log 2 r, where r X p i jc i c i j. (1) i Quantum teleportation achieves the goal of faithful transmission in a different way, by substituting classical communication and prior entanglement for a direct quantum channel. Using teleportation, an arbitrary unknown qubit can be faithfully transmitted via a pair of maximally entangled qubits (e.g., two spin- 1 2 particles in a pure singlet state) previously shared between sender and receiver, and a 2-bit classical message from the sender to the receiver. Both quantum data compression and teleportation require a noiseless quantum channel in the former case for the direct quantum transmission and in the latter for sharing the entangled particles yet available channels are typically noisy. Since quantum information cannot be cloned [4], it would perhaps appear impossible to use redundancy in the usual way to correct errors. Nevertheless, quantum error-correcting codes have recently been discovered [5] which operate in a subtler way, essentially by embedding the quantum information to be protected in a subspace so oriented in a larger Hilbert space as to leak little or no information to the environment, within a given noise model. We describe another approach in which the noisy channel is not used to transmit the source states directly, but rather to share entangled pairs (e.g., singlets) for use in teleportation. But before they can be used to teleport reliably, the entangled pairs must be purified converted to almost perfectly entangled states from the mixed entangled states that result from transmission through the noisy channel. We show below how the two observers can accomplish this purification, by performing local unitary operations and measurements on the shared entangled pairs, coordinating their actions through classical messages, and sacrificing some of the entangled pairs to increase the purity of the remaining ones. Once this is done, the resulting almost perfectly pure, almost perfectly entangled pairs can be used, in conjunction with classical messages, to teleport the unknown quantum states c i from sender to receiver with high fidelity. The overall result is to simulate a noiseless quantum channel by a noisy one, supplemented by local actions and classical communication. Let M be a general mixed state of two spin- 1 2 particles, from which we wish to distill some pure entanglement. The state M could result, for example, (5) 722(4)$ The American Physical Society

4 Noisy Channel Alice Bob

5 Alice Bob 0 0

6 Alice Bob 0 0 Perfect with probability Randomized with prob 1/2 1/2

7

8

9 Werner State 2 qubits jointly in state with probability F (F = 5/8)

10 Distinguishing Bell States { { 0 1 or or 0 1

11 Manipulating Bell States - +

12 Manipulating Bell States and are unaffected (up to phase)

13

14

15 before after target example probability source target source target = Φ? F = 5/8 Φ + Φ + F 2 Φ + Φ + YES 25/64 Φ + Φ F (1 F )/3 Φ Φ YES 5/64 Φ + Ψ + F (1 F )/3 Φ + Ψ + 5/64 Φ + Ψ F (1 F )/3 Φ Ψ 5/64 Φ Φ + F (1 F )/3 Φ Φ + YES 5/64 Φ Φ (1 F ) 2 /9 Φ + Φ YES 1/64 Φ Ψ + (1 F ) 2 /9 Φ Ψ + 1/64 Φ Ψ (1 F ) 2 /9 Φ + Ψ 1/64 Ψ + Φ + F (1 F )/3 Ψ + Ψ + 5/64 Ψ + Φ (1 F ) 2 /9 Ψ Ψ 1/64 Ψ + Ψ + (1 F ) 2 /9 Ψ + Φ + YES 1/64 Ψ + Ψ (1 F ) 2 /9 Ψ Φ YES 1/64 Ψ Φ + F (1 F )/3 Ψ Ψ + 5/64 Ψ Φ (1 F ) 2 /9 Ψ + Ψ 1/64 Ψ Ψ + (1 F ) 2 /9 Ψ Φ + 1/64 Ψ Ψ (1 F ) 2 /9 Ψ + Φ YES 1/64

16 before after target example probability source target source target = Φ? F = 5/8 Φ + Φ + F 2 Φ + Φ + YES 25/64 Φ + Φ F (1 F )/3 Φ Φ YES 5/64 Φ + Ψ + Φ + Ψ Φ Φ + F (1 F )/3 Φ Φ + YES 5/64 Φ Φ (1 F ) 2 /9 Φ + Φ YES 1/64 Φ Ψ + Φ Ψ Ψ + Φ + Ψ + Φ Ψ + Ψ + (1 F ) 2 /9 Ψ + Φ + YES 1/64 Ψ + Ψ (1 F ) 2 /9 Ψ Φ YES 1/64 Ψ Φ + Ψ Φ Ψ Ψ + (1 F ) 2 /9 Ψ Φ + YES 1/64 Ψ Ψ (1 F ) 2 /9 Ψ + Φ YES 1/64 Prob keep P 40/64 Prob keep and Φ + Q 26/64 Prob Φ + if kept 13/20 P = F 2 + 2F (1 F ) 3 + 5(1 F )2 9 = 8F 2 4F Q = F 2 + (1 F )2 9 = 8F 2 4F F = 10F 2 2F + 1 8F 2 4F + 5 > F provided F > 1/2

17 Repeat Process? Round Fidelity

18 What's Wrong? After First Round: with probability 13/20 with probability 1/4 with probability 1/20 with probability 1/20 Not a Werner State!

19 Solution (1) Wernerize between rounds or or each with probability 1/3 After Wernerizing First Round: with probability 13/20 each with probability 7/60

20 Result of Wernerization Round Fidelity Rate % 65.0% 67.9% 71.2% 74.8% % 6

21 Manipulating Bell States and are unaffected (up to phase)

22 Solution (2) Macchiavellize between rounds Round Fidelity Rate % 65.0% 73.3% 82.6% 89.3% 96.7% 99.3% % 31.25% 9.06% 2.96% 1.13% 0.47% 0.22%!1/455

23 Wernerisation Soit ρ un état sur deux qubits distribués entre Alice et Bob tel que Ψ ρ Ψ = F. Si Alice et Bob choisissent au hasard l une de 12 transformations suivantes, s ils appliquent localement et indépendamment cette transformation sur leur qubit respectif et s ils oublient la transformation qu ils ont choisie, alors l état ρ résultant sera un état de Werner W Ψ F de même fidélité: et Ψ ρ Ψ = F Ψ + ρ Ψ + = Φ ρ Φ = Φ + ρ Φ + = (1 F )/3. Les 12 rotations bilatérales ( ) ( 0 i i 0 ) ( ) ( i 0 0 i ) ( i 1 + i i 1 i ) ( 1 1 i 1 i 2 1 i 1 + i ) 1 2 ( 1 i 1 + i 1 + i 1 + i ) ( 1 1 i 1 + i i 1 + i ) ( i 1 + i i 1 i ) ( 1 1 i 1 i 2 1 i 1 + i ) 1 2 ( 1 i 1 + i 1 + i 1 + i ) ( 1 1 i 1 + i i 1 + i )

Concentrating partial entanglement by local operations

Concentrating partial entanglement by local operations PHYSICAL REVIEW A VOLUME 53, NUMBER 4 APRIL 1996 Concentrating partial entanglement by local operations Charles H. Bennett IBM Research Division, T. J. Watson Center, Yorktown Heights, New York 10598 Herbert

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

Quantum Teleportation Pt. 1

Quantum Teleportation Pt. 1 Quantum Teleportation Pt. 1 PHYS 500 - Southern Illinois University April 17, 2018 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 1 April 17, 2018 1 / 13 Types of Communication In the

More information

1. Basic rules of quantum mechanics

1. Basic rules of quantum mechanics 1. Basic rules of quantum mechanics How to describe the states of an ideally controlled system? How to describe changes in an ideally controlled system? How to describe measurements on an ideally controlled

More information

arxiv:quant-ph/ v2 22 May 1998

arxiv:quant-ph/ v2 22 May 1998 Teleportation, Entanglement and Thermodynamics in the Quantum World Martin B. Plenio and Vlatko Vedral 1 Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, U.K. arxiv:quant-ph/9804075v2

More information

to mere bit flips) may affect the transmission.

to mere bit flips) may affect the transmission. 5 VII. QUANTUM INFORMATION THEORY to mere bit flips) may affect the transmission. A. Introduction B. A few bits of classical information theory Information theory has developed over the past five or six

More information

Compression and entanglement, entanglement transformations

Compression and entanglement, entanglement transformations PHYSICS 491: Symmetry and Quantum Information April 27, 2017 Compression and entanglement, entanglement transformations Lecture 8 Michael Walter, Stanford University These lecture notes are not proof-read

More information

On balance of information in bipartite quantum communication systems: entanglement-energy analogy

On balance of information in bipartite quantum communication systems: entanglement-energy analogy On balance of information in bipartite quantum communication systems: entanglement-energy analogy Ryszard Horodecki 1,, Micha l Horodecki 1, and Pawe l Horodecki 2, 1 Institute of Theoretical Physics and

More information

Entanglement-Assisted Capacity of a Quantum Channel and the Reverse Shannon Theorem

Entanglement-Assisted Capacity of a Quantum Channel and the Reverse Shannon Theorem IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 10, OCTOBER 2002 2637 Entanglement-Assisted Capacity of a Quantum Channel the Reverse Shannon Theorem Charles H. Bennett, Peter W. Shor, Member, IEEE,

More information

Entanglement: Definition, Purification and measures

Entanglement: Definition, Purification and measures Entanglement: Definition, Purification and measures Seminar in Quantum Information processing 3683 Gili Bisker Physics Department Technion Spring 006 Gili Bisker Physics Department, Technion Introduction

More information

Quantum Information Processing and Diagrams of States

Quantum Information Processing and Diagrams of States Quantum Information and Diagrams of States September 17th 2009, AFSecurity Sara Felloni sara@unik.no / sara.felloni@iet.ntnu.no Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/ UNIK University

More information

Quantum Coding. Benjamin Schumacher. Department of Physics. Kenyon College. Gambier, OH

Quantum Coding. Benjamin Schumacher. Department of Physics. Kenyon College. Gambier, OH Quantum Coding Benjamin Schumacher Department of Physics Kenyon College Gambier, OH 43022 e-mail: schumacb@kenyon.edu Abstract A theorem is proven for quantum information theory that is analogous to the

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

Entanglement Manipulation

Entanglement Manipulation Entanglement Manipulation Steven T. Flammia 1 1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Dated: 22 March 2010) These are notes for my RIT tutorial lecture at the

More information

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Rahul Jain U. Waterloo and Institute for Quantum Computing, rjain@cs.uwaterloo.ca entry editor: Andris Ambainis

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

Secrecy and the Quantum

Secrecy and the Quantum Secrecy and the Quantum Benjamin Schumacher Department of Physics Kenyon College Bright Horizons 35 (July, 2018) Keeping secrets Communication Alice sound waves, photons, electrical signals, paper and

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

arxiv:quant-ph/ v1 1 Jun 2000

arxiv:quant-ph/ v1 1 Jun 2000 Probabilistic teleportation of two-particle entangled state Bao-Sen Shi, Yun-Kun Jiang and Guang-Can Guo Lab. of Quantum Communication and Quantum Computation Department of Physics University of Science

More information

Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Ph 219/CS 219. Exercises Due: Friday 3 November 2006 Ph 9/CS 9 Exercises Due: Friday 3 November 006. Fidelity We saw in Exercise. that the trace norm ρ ρ tr provides a useful measure of the distinguishability of the states ρ and ρ. Another useful measure

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

Quantum rate distortion, reverse Shannon theorems, and source-channel separation

Quantum rate distortion, reverse Shannon theorems, and source-channel separation Quantum rate distortion, reverse Shannon theorems, and source-channel separation ilanjana Datta, Min-Hsiu Hsieh, Mark Wilde (1) University of Cambridge,U.K. (2) McGill University, Montreal, Canada Classical

More information

Asymptotic Pure State Transformations

Asymptotic Pure State Transformations Asymptotic Pure State Transformations PHYS 500 - Southern Illinois University April 18, 2017 PHYS 500 - Southern Illinois University Asymptotic Pure State Transformations April 18, 2017 1 / 15 Entanglement

More information

Lecture 11: Quantum Information III - Source Coding

Lecture 11: Quantum Information III - Source Coding CSCI5370 Quantum Computing November 25, 203 Lecture : Quantum Information III - Source Coding Lecturer: Shengyu Zhang Scribe: Hing Yin Tsang. Holevo s bound Suppose Alice has an information source X that

More information

A Genetic Algorithm to Analyze the Security of Quantum Cryptographic Protocols

A Genetic Algorithm to Analyze the Security of Quantum Cryptographic Protocols A Genetic Algorithm to Analyze the Security of Quantum Cryptographic Protocols Walter O. Krawec walter.krawec@gmail.com Iona College Computer Science Department New Rochelle, NY USA IEEE WCCI July, 2016

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

Quantum Information Theory and Cryptography

Quantum Information Theory and Cryptography Quantum Information Theory and Cryptography John Smolin, IBM Research IPAM Information Theory A Mathematical Theory of Communication, C.E. Shannon, 1948 Lies at the intersection of Electrical Engineering,

More information

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security

Quantum Cryptography. Areas for Discussion. Quantum Cryptography. Photons. Photons. Photons. MSc Distributed Systems and Security Areas for Discussion Joseph Spring Department of Computer Science MSc Distributed Systems and Security Introduction Photons Quantum Key Distribution Protocols BB84 A 4 state QKD Protocol B9 A state QKD

More information

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki *Perimeter Institute for Theoretical Physics Collaboration with Masato Koashi

More information

arxiv:quant-ph/ v1 9 May 2005

arxiv:quant-ph/ v1 9 May 2005 Quantum information can be negative Michal Horodecki 1, Jonathan Oppenheim & Andreas Winter 3 1 Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80 95 Gdańsk, Poland Department

More information

Introduction to Quantum Key Distribution

Introduction to Quantum Key Distribution Fakultät für Physik Ludwig-Maximilians-Universität München January 2010 Overview Introduction Security Proof Introduction What is information? A mathematical concept describing knowledge. Basic unit is

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

Trading classical communication, quantum communication, and entanglement in quantum Shannon theory

Trading classical communication, quantum communication, and entanglement in quantum Shannon theory Trading classical communication, quantum communication, and entanglement in quantum Shannon theory Min-Hsiu Hsieh and Mark M. Wilde arxiv:9.338v3 [quant-ph] 9 Apr 2 Abstract We give trade-offs between

More information

arxiv:quant-ph/ v4 2 Nov 1998

arxiv:quant-ph/ v4 2 Nov 1998 Quantum Nonlocality without Entanglement Charles H. Bennett, David P. DiVincenzo, Christopher A. Fuchs, Tal Mor 3, Eric Rains 4, Peter W. Shor 4, John A. Smolin, and William K. Wootters 5 IBM Research

More information

Fidelity of Quantum Teleportation through Noisy Channels

Fidelity of Quantum Teleportation through Noisy Channels Fidelity of Quantum Teleportation through Noisy Channels Sangchul Oh, Soonchil Lee, and Hai-woong Lee Department of Physics, Korea Advanced Institute of Science and Technology, Daejon, 305-701, Korea (Dated:

More information

Exemple of Hilbert spaces with dimension equal to two. *Spin1/2particle

Exemple of Hilbert spaces with dimension equal to two. *Spin1/2particle University Paris-Saclay - IQUPS Optical Quantum Engineering: From fundamentals to applications Philippe Grangier, Institut d Optique, CNRS, Ecole Polytechnique. Eemple of Hilbert spaces with dimension

More information

Some Bipartite States Do Not Arise from Channels

Some Bipartite States Do Not Arise from Channels Some Bipartite States Do Not Arise from Channels arxiv:quant-ph/0303141v3 16 Apr 003 Mary Beth Ruskai Department of Mathematics, Tufts University Medford, Massachusetts 0155 USA marybeth.ruskai@tufts.edu

More information

Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state

Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state Perfect quantum teleportation and dense coding protocols via the -qubit W state Wang Mei-Yu( ) a)b) and Yan Feng-Li( ) a)b) a) College of Physics Science and Information Engineering, Hebei ormal University,

More information

Spin chain model for correlated quantum channels

Spin chain model for correlated quantum channels Spin chain model for correlated quantum channels Davide Rossini Scuola Internazionale Superiore di Studi Avanzati SISSA Trieste, Italy in collaboration with: Vittorio Giovannetti (Pisa) Simone Montangero

More information

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels JOURNAL OF CHEMISTRY 57 VOLUME NUMBER DECEMBER 8 005 A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels Miri Shlomi

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Quantum key distribution for the lazy and careless

Quantum key distribution for the lazy and careless Quantum key distribution for the lazy and careless Noisy preprocessing and twisted states Joseph M. Renes Theoretical Quantum Physics, Institut für Angewandte Physik Technische Universität Darmstadt Center

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Ping Pong Protocol & Auto-compensation

Ping Pong Protocol & Auto-compensation Ping Pong Protocol & Auto-compensation Adam de la Zerda For QIP seminar Spring 2004 02.06.04 Outline Introduction to QKD protocols + motivation Ping-Pong protocol Security Analysis for Ping-Pong Protocol

More information

arxiv:quant-ph/ v2 17 Jun 1996

arxiv:quant-ph/ v2 17 Jun 1996 Separability Criterion for Density Matrices arxiv:quant-ph/9604005v2 17 Jun 1996 Asher Peres Department of Physics, Technion Israel Institute of Technology, 32000 Haifa, Israel Abstract A quantum system

More information

Quantum Information Theory

Quantum Information Theory Chapter 5 Quantum Information Theory Quantum information theory is a rich subject that could easily have occupied us all term. But because we are short of time (I m anxious to move on to quantum computation),

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

Entanglement from the vacuum

Entanglement from the vacuum Entanglement from the vacuum arxiv:quant-ph/0212044v2 27 Jan 2003 Benni Reznik School of Physics and Astronomy Tel Aviv University Tel Aviv 69978, Israel. e-mail:reznik@post.tau.ac.il July 23, 2013 We

More information

Classical data compression with quantum side information

Classical data compression with quantum side information Classical data compression with quantum side information I Devetak IBM TJ Watson Research Center, Yorktown Heights, NY 10598, USA arxiv:quant-ph/0209029v3 18 Apr 2003 A Winter Department of Computer Science,

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

Lecture 11 September 30, 2015

Lecture 11 September 30, 2015 PHYS 7895: Quantum Information Theory Fall 015 Lecture 11 September 30, 015 Prof. Mark M. Wilde Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

Quantum Teleportation

Quantum Teleportation Fortschr. Phys. 50 (2002) 5 7, 608 613 Quantum Teleportation Samuel L. Braunstein Informatics, Bangor University, Bangor LL57 1UT, UK schmuel@sees.bangor.ac.uk Abstract Given a single copy of an unknown

More information

Lecture 6: Quantum error correction and quantum capacity

Lecture 6: Quantum error correction and quantum capacity Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde The quantum capacity theorem is one of the most important theorems in quantum hannon theory. It is a fundamentally quantum theorem

More information

arxiv: v2 [quant-ph] 24 Apr 2016

arxiv: v2 [quant-ph] 24 Apr 2016 Teleportation via maximally and non-maximally entangled mixed states Satyabrata Adhikari Dept. of Mathematics, Birla Institute of Technology, Mesra, Ranchi-855, India Archan S. Majumdar Dept. of Astro

More information

Quantum Cryptography

Quantum Cryptography Quantum Cryptography (Notes for Course on Quantum Computation and Information Theory. Sec. 13) Robert B. Griffiths Version of 26 March 2003 References: Gisin = N. Gisin et al., Rev. Mod. Phys. 74, 145

More information

Quantum rate distortion, reverse Shannon theorems, and source-channel separation

Quantum rate distortion, reverse Shannon theorems, and source-channel separation Quantum rate distortion, reverse Shannon theorems, and source-channel separation ilanjana Datta, Min-Hsiu Hsieh, and Mark M. Wilde arxiv:08.4940v3 [quant-ph] 9 Aug 202 Abstract We derive quantum counterparts

More information

arxiv:quant-ph/ v1 14 Jun 1999

arxiv:quant-ph/ v1 14 Jun 1999 Teleportation via generalized measurements, and conclusive teleportation Tal Mor and Pawel Horodecki (August 4, 08 arxiv:quant-ph/990609v 4 Jun 999 In this work we show that teleportation [] is a special

More information

Technical Report Communicating Secret Information Without Secret Messages

Technical Report Communicating Secret Information Without Secret Messages Technical Report 013-605 Communicating Secret Information Without Secret Messages Naya Nagy 1, Marius Nagy 1, and Selim G. Akl 1 College of Computer Engineering and Science Prince Mohammad Bin Fahd University,

More information

Geometry of Entanglement

Geometry of Entanglement Geometry of Entanglement Bachelor Thesis Group of Quantum Optics, Quantum Nanophysics and Quantum Information University of Vienna WS 21 2659 SE Seminar Quantenphysik I Supervising Professor: Ao. Univ.-Prof.

More information

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1 Cryptography CS 555 Topic 25: Quantum Crpytography CS555 Topic 25 1 Outline and Readings Outline: What is Identity Based Encryption Quantum cryptography Readings: CS555 Topic 25 2 Identity Based Encryption

More information

Seminar 1. Introduction to Quantum Computing

Seminar 1. Introduction to Quantum Computing Seminar 1 Introduction to Quantum Computing Before going in I am also a beginner in this field If you are interested, you can search more using: Quantum Computing since Democritus (Scott Aaronson) Quantum

More information

Indeterminate-length quantum coding

Indeterminate-length quantum coding Indeterminate-length quantum coding arxiv:quant-ph/0011014v1 2 Nov 2000 Benjamin Schumacher (1) and Michael D. Westmoreland (2) February 1, 2008 (1) Department of Physics, Kenyon College, Gambier, OH 43022

More information

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co.

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition *WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII 1 Introduction

More information

Quantum Entanglement: Detection, Classification, and Quantification

Quantum Entanglement: Detection, Classification, and Quantification Quantum Entanglement: Detection, Classification, and Quantification Diplomarbeit zur Erlangung des akademischen Grades,,Magister der Naturwissenschaften an der Universität Wien eingereicht von Philipp

More information

arxiv:quant-ph/ v1 13 Jan 2003

arxiv:quant-ph/ v1 13 Jan 2003 Deterministic Secure Direct Communication Using Ping-pong protocol without public channel Qing-yu Cai Laboratory of Magentic Resonance and Atom and Molecular Physics, Wuhan Institute of Mathematics, The

More information

Quantum Cryptography

Quantum Cryptography http://tph.tuwien.ac.at/ svozil/publ/2005-qcrypt-pres.pdf Institut für Theoretische Physik, University of Technology Vienna, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria svozil@tuwien.ac.at 16.

More information

arxiv:quant-ph/ v2 14 May 2002

arxiv:quant-ph/ v2 14 May 2002 arxiv:quant-ph/0106052v2 14 May 2002 Entanglement-Assisted Capacity of a Quantum Channel and the Reverse Shannon Theorem Charles H. Bennett, Peter W. Shor, John A. Smolin, and Ashish V. Thapliyal Abstract

More information

Remote State Preparation: Arbitrary remote control of photon polarizations for quantum communication

Remote State Preparation: Arbitrary remote control of photon polarizations for quantum communication Remote State Preparation: Arbitrary remote control of photon polarizations for quantum communication N. A. Peters a, J. T. Barreiro a, M. E. Goggin a,b, T.-C. Wei a, and P. G. Kwiat a a Physics Department,

More information

FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY

FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY Emina Soljanin Mathematical Sciences Research Center, Bell Labs April 16, 23 A FRAME 1 A sequence {x i } of vectors in a Hilbert space with the property

More information

Local cloning of entangled states

Local cloning of entangled states Local cloning of entangled states Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. March 16, 2010 Vlad Gheorghiu (CMU) Local cloning of entangled states March

More information

Multi-particle entanglement via two-party entanglement

Multi-particle entanglement via two-party entanglement INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICSA: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 34 (2001) 6807 6814 PII: S0305-4470(01)21903-9 Multi-particle entanglement via two-party entanglement

More information

Schur-Weyl duality, quantum data compression, tomography

Schur-Weyl duality, quantum data compression, tomography PHYSICS 491: Symmetry and Quantum Information April 25, 2017 Schur-Weyl duality, quantum data compression, tomography Lecture 7 Michael Walter, Stanford University These lecture notes are not proof-read

More information

Physics 239/139 Spring 2018 Assignment 6

Physics 239/139 Spring 2018 Assignment 6 University of California at San Diego Department of Physics Prof. John McGreevy Physics 239/139 Spring 2018 Assignment 6 Due 12:30pm Monday, May 14, 2018 1. Brainwarmers on Kraus operators. (a) Check that

More information

arxiv:quant-ph/ v1 13 Mar 2007

arxiv:quant-ph/ v1 13 Mar 2007 Quantumness versus Classicality of Quantum States Berry Groisman 1, Dan Kenigsberg 2 and Tal Mor 2 1. Centre for Quantum Computation, DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce

More information

Other Topics in Quantum Information

Other Topics in Quantum Information p. 1/23 Other Topics in Quantum Information In a course like this there is only a limited time, and only a limited number of topics can be covered. Some additional topics will be covered in the class projects.

More information

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 Lecturer: Dr. Mark Tame Introduction With the emergence of new types of information, in this case

More information

Report on Conceptual Foundations and Foils for QIP at the Perimeter Institute, May 9 May

Report on Conceptual Foundations and Foils for QIP at the Perimeter Institute, May 9 May Report on Conceptual Foundations and Foils for QIP at the Perimeter Institute, May 9 May 13 2011 Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. May 19, 2011

More information

Quantum Data Compression

Quantum Data Compression PHYS 476Q: An Introduction to Entanglement Theory (Spring 2018) Eric Chitambar Quantum Data Compression With the basic foundation of quantum mechanics in hand, we can now explore different applications.

More information

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata An Introduction to Quantum Information By Aditya Jain Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata 1. Introduction Quantum information is physical information that is held in the state of

More information

Security of Quantum Key Distribution with Imperfect Devices

Security of Quantum Key Distribution with Imperfect Devices Security of Quantum Key Distribution with Imperfect Devices Hoi-Kwong Lo Dept. of Electrical & Comp. Engineering (ECE); & Dept. of Physics University of Toronto Email:hklo@comm.utoronto.ca URL: http://www.comm.utoronto.ca/~hklo

More information

arxiv:quant-ph/ v3 12 Mar 1998

arxiv:quant-ph/ v3 12 Mar 1998 Quantum Entanglement and the Communication Complexity of the Inner Product Function Richard Cleve, Wim van Dam, Michael Nielsen, and Alain Tapp arxiv:quant-ph/970809v Mar 998 University of Calgary University

More information

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface XIII 1 Introduction and

More information

Quantum Cryptography

Quantum Cryptography Quantum Cryptography Christian Schaffner Research Center for Quantum Software Institute for Logic, Language and Computation (ILLC) University of Amsterdam Centrum Wiskunde & Informatica Winter 17 QuantumDay@Portland

More information

Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties

Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties Commun. Theor. Phys. 67 (2017) 377 382 Vol. 67, No. 4, April 1, 2017 Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties Lei Shi ( 石磊

More information

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable,

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, A qubit: a sphere of values, which is spanned in projective sense by two quantum

More information

Entanglement and information

Entanglement and information Ph95a lecture notes for 0/29/0 Entanglement and information Lately we ve spent a lot of time examining properties of entangled states such as ab è 2 0 a b è Ý a 0 b è. We have learned that they exhibit

More information

Parallel Entanglement Distribution on Hypercube Networks

Parallel Entanglement Distribution on Hypercube Networks Parallel Entanglement Distribution on Hypercube Networks by Christopher Chudzicki with Frederick W. Strauch, Advisor A thesis submitted in partial fulfillment of the requirements for the Degree of Bachelor

More information

Example: sending one bit of information across noisy channel. Effects of the noise: flip the bit with probability p.

Example: sending one bit of information across noisy channel. Effects of the noise: flip the bit with probability p. Lecture 20 Page 1 Lecture 20 Quantum error correction Classical error correction Modern computers: failure rate is below one error in 10 17 operations Data transmission and storage (file transfers, cell

More information

A Survey on Quantum Channel Capacities

A Survey on Quantum Channel Capacities 1 A Survey on Quantum Channel Capacities Laszlo Gyongyosi, 1,2,3, Member, IEEE, Sandor Imre, 2 Senior Member, IEEE, and Hung Viet Nguyen, 1 Member, IEEE 1 School of Electronics and Computer Science, University

More information

Cryptography in a quantum world

Cryptography in a quantum world T School of Informatics, University of Edinburgh 25th October 2016 E H U N I V E R S I T Y O H F R G E D I N B U Outline What is quantum computation Why should we care if quantum computers are constructed?

More information

arxiv: v2 [quant-ph] 21 Oct 2013

arxiv: v2 [quant-ph] 21 Oct 2013 Genuine hidden quantum nonlocality Flavien Hirsch, 1 Marco Túlio Quintino, 1 Joseph Bowles, 1 and Nicolas Brunner 1, 1 Département de Physique Théorique, Université de Genève, 111 Genève, Switzerland H.H.

More information

arxiv: v1 [quant-ph] 3 Jan 2008

arxiv: v1 [quant-ph] 3 Jan 2008 A paradigm for entanglement theory based on quantum communication Jonathan Oppenheim 1 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge U.K. arxiv:0801.0458v1 [quant-ph]

More information

Port-based teleportation and its applications

Port-based teleportation and its applications 2 QUATUO Port-based teleportation and its applications Satoshi Ishizaka Graduate School of Integrated Arts and Sciences Hiroshima University Collaborator: Tohya Hiroshima (ERATO-SORST) Outline Port-based

More information

entanglement and cryptography

entanglement and cryptography More about Entanglement and Cryptography More about entanglement and cryptography Charles H. Bennett Windsor Summer School 13 August 2007 1. A linear vector space with complex coefficients and inner product

More information

arxiv:quant-ph/ v2 17 Sep 2002

arxiv:quant-ph/ v2 17 Sep 2002 Proof of security of quantum key distribution with two-way classical communications arxiv:quant-ph/0105121 v2 17 Sep 2002 Daniel Gottesman EECS: Computer Science Division University of California Berkeley,

More information

arxiv: v2 [quant-ph] 26 Mar 2012

arxiv: v2 [quant-ph] 26 Mar 2012 Optimal Probabilistic Simulation of Quantum Channels from the Future to the Past Dina Genkina, Giulio Chiribella, and Lucien Hardy Perimeter Institute for Theoretical Physics, 31 Caroline Street North,

More information