Math Assignment 1

Size: px
Start display at page:

Download "Math Assignment 1"

Transcription

1 Math Assignment 1 Dylan Zwick Spring 2014 Section 1.1-1, 12, 15, 20, 45 Section 1.2-1, 6, 11, 15, 27, 35, 43 Section 1.3-1, 6, 9, 11, 15, 21, 29 Section 1.4-1, 3, 17, 19, 31, 35, 53, 68 1

2 Section Differential Equations and Mathematical Models Verify by substitution that the given function is a solution of the given differential equation. Throughout these problems, primes denote derivatives with respect to x. y = 3x 2 ; y = x

3 Verify by substitution that the given function is a solution of the given differential equation. x 2 y xy + 2y = 0; y 1 = x cos (ln x), y 2 = x sin (ln x). 3

4 Substitute y = e rx into the given differential equation to determine all values of the constant r for which y = e rx is a solution of the equation y + y 2y = 0 4

5 First verify that y(x) satisfies the given differential equation. Then determine a value of the constant C so that y(x) satisfies the given initial condition. y = x y; y(x) = Ce x + x 1, y(0) = 10 5

6 Suppose a population P of rodents satisfies the differential equation dp/dt = kp 2. Initially, there are P(0) = 2 rodents, and their number is increasing at the rate of dp/dt = 1 rodent per month when there are P = 10 rodents. How long will it take for this population to grow to a hundred rodents? To a thousand? What s happening here? Note - In order to solve this problem you need a result from problem 43 of this section. Namely, that a differential equation of this form has a solution of the form: P(t) = 1 (C kt). 6

7 More room for Problem , if you need it. 7

8 Section Integrals as General and Particular Solutions Find a function y = f(x) satisfying the given differential equation and the prescribed initial condition. dy = 2x + 1; y(0) = 3. dx 8

9 1.2.6 Find a function y = f(x) satisfying the given differential equation and the prescribed initial condition. dy dx = x x y( 4) = 0. 9

10 Find the position function x(t) of a moving particle with the given acceleration a(t), initial position x 0 = x(0), and initial velocity v 0 = v(0). a(t) = 50, v 0 = 10, x 0 =

11 Find the position function x(t) of a moving particle with the given acceleration a(t), initial position x 0 = x(0), and initial velocity v 0 = v(0). a(t) = 4(t + 3) 2, v 0 = 1, x 0 = 1. 11

12 A ball is thrown straight downward from the top of a tall building. The initial speed of the ball is 10m/s. It strikes the ground with a speed of 60m/s. How tall is the building? 12

13 A stone is dropped from rest at an initial height h above the surface of the earth. Show that the speed with which it strikes the ground is v = 2gh. 13

14 Arthur Clark s The Wind from the Sun (1963) describes Diana, a spacecraft propelled by the solar wind. Its aluminized sail provides it with a constant acceleration of 0.001g = m/s 2. Suppose this spacecraft starts from rest at time t = 0 and simultaneously fires a projectile (straight ahead in the same direction) that travels at one-tenth of the speed c = m/s of light. How long will it take the spacecraft to catch up with the projectile, and how far will it have traveled by then? 14

15 thole x FIGURE f the (14) of s._ clx ixis alue nstance, 7 / / I Il//I 1 / \ 3 0 x 2 I I 2 / I / / / / 1,1 / 1W /.7 / I / / / I I 2 3 j 2 ditional points marked in each slope field. /11 solution curves. Sketch likel solution curves through the ad the left solution -3 rigin ider a through \ISS5\\\\ irantees I I I \\\\ / I I I I \ / I I I 13) the indicated difft i-ential equation, together with one or inon clx I/Ill In Pivblenis I thmugh 10, ne hai e provided the slope field of Ill/Il n Fig. 3,I,, /1/ II / / \ 7/I/I/I II I//I / / 1,/Ill /1 / 7/1/7/ clx I / / / / / / - clx 5. = y x + 1 / / / /1/1/1/ 7, /1/7/7 dy //1// / fl/i//i / I/Il / S \ I I/ I / / I / I / / / 51 / / / I / / III / / / / / / / Ill / / I ii I I 2 dx II / Il/Il / y many /1/1/ / II hus the / 3 7,I.IlIö\I IS.._ _- 7/ / / // /1/ \\//\\ SS,/ 7 3 dy I I/Ill Ill SI\l / Ill II. S\S\ / / / I/I//I,, 7/,, 7/, and See Below FIGURE FIGURE I S 5. I I 3 2 l 3 3. =y sinx 2 1 III / / I / II \I\\. /IIlIlII\ I\..- 7/..I I / I I 1111//Ill S - 7///..-j- I/l\\\S /1/f i/i\\\ss...,i//1,::--- Ill.S.- ////IIII 2. - = x ± v FIGURE I 2 f/i I/Il/f /7/11 1/1/ 1/I,, 1 ki._._, / I / I / / / I / I / / / \\\ \\\\\ III /1/1/ l / I I/ / / I,,,, / / \ \ \ \ \ I\ \ \ \ /1 1/ _/ I I, / / I. / /.3 S S.. I /1//Il/Il / 7e I I / / II I/S / / I I / / / 7 I I I \ S S / I / /5 I / I I S S S ( 3 /1 I, I I / / / / / / /7 S \\.-..S.. S S S S I I I I s S 5, / / / \, I / I II I I I / / / I / I, I I I / I III Il/Il SII\\\\\S I / / / / /.5 / / I//I/Il/I /1/ 111/11/1/ I, 7/7//Il / / 1_ Ill/Il I/I 7/I//I/Il d I I/I, /!1Il5IIl IS 7//llIII I ( v sinx 3 2 I 2 -_,p,,,.,, 3 I 7/I / / / / / / I//I = x - v + I FIGURE U I/I/Il//I / SS / ///9// I 1111/Ill? I/I/I li/ill/il I//I 7 ill/il//i //J/// lssiiiili /1/fl/I FIGURE i U 1 2 1,/If/I /1/fl /1(1 7/7/f//I / ////I / I / I , C 1/ - / I / / / /1//I /1/ / IIIss_. 7/Il//fl III\\I Sfl. 7/I/I \ 5\5\5..,, /11/1/ II Il/Il 7//I / / / / /1155 I/I / / / I/Il Il/IS / Ills S.. 7/I//I I 17/ /11 / / i//il / III / / / / / / / /,/ I / / / / / / / / I I! /,,.,j., I,.,.,.I,,. 11J ss\ I III /1/,/ II I S S s.. \ /.1.1 / / I I /7 / III \ \ / /,b /,, / 4. =x v

16 FIGURE FIGURE dv (li_. SS(( ((( /1) FIGURE E s. 3 2_.._V_i.VVV, 8. =.v- v V - ( i v =rx+v, v(0)=0; H. (5/! _555VV._ (1/ ( I (/// 55 dx dv (((((5 \5555 ((((5 5V._V V See Below /5/ -V I//_ 5 19._L. (/I_V_5I\\\ lution In Problems 11 through 20, dete,,nine whether Theorem I does ma/ac problem. hf existence is guaranteed, determine whether Jimeoremn I does or does not guarantee uniqueness of that so 14. = (0) = v = x 19. = In(1 + v2); y(o) = 0 dx dx dx dv dx vu) = 1 =xlnv: d or does not guarantee existence ofa solution oft/ic given initial FIGURE /1/1,1,,, H ii/_ S/Il ((555 /Si /N..\( S (// S(I\ S -.. II\\5. / (f_.\((\\ \III\ _V_/ //I\\(1(/ 5 dx - I/Il/I/I / /lliiiiii I! Ill//I I//I/Il II I Il//f! I//I/Il I II (III I h//il/i I 5/I /1? / / /1 / / / / / / I., I / 1 S S S S S S S S S S S S S S S 5 S S S S., S \ S S \ S S S S S S S S S S \ S S S 2 i U I (/VVVS\\ 555 I S S / / / S S S S S S S 5 I I // sss S5,/I - II (S : VV ///(( I/h Il//I ( ///// I ( ( ( I / / / / -, I I ( I ( I I I I II II I -I 3 2 I) 1 2 I( I x v l 2 I / \\ 5 I S S 55 I / / S S S III I / / / S I I / 5/ I / / II /1/, V, /5 5 / / I / I / /5 / / I I I 3 2 l S _// / / II I desired ia/ac oft/ic solution v(x). tial condition. Finally, use this solution cane to estimate the Then sketch the solution cane corresponding to the given ini =,jr-; y(2)= =,/ ; v(2)=1 In Probleni.s 2 I and 22, first use the method of LUamnple 2 to construct a slope field for the given diffrrential equation. 22. v ==v x, y(4)=o; v( 4)=? v( 4)=? 17. v =x 1; v(0)=1 = v(o) ( Is s \ ((((((55. SS\ 5( ((((((S S 555(5(5 (((( \\\(\ (\\\5V V.5 555(55 5 (I V (/.V 1 V 1; v(1) = 0 = x2 v2; (LU v(0) = 1 = 2.v 2v vu) = 1

17 Determine whether Theorem 1 does or does not guarantee existence of a solution of the given initial value problem. If existence is guaranteed, determine whether Theorem 1 does or does not guarantee uniqueness of that solution. dy dx = 2x2 y 2 y(1) = 1. 17

18 Determine whether Theorem 1 does or does not guarantee existence of a solution of the given initial value problem. If existence is guaranteed, determine whether Theorem 1 does or does not guarantee uniqueness of that solution. dy dx = x y y(2) = 2. 18

19 First use the method of Example 2 from the textbook to construct a slope field for the given differential equation. Then sketch the solution curve corresponding to the given initial condition. Finally, use this solution curve to estimate the desired value of the solution y(x). y = x + y, y(0) = 0; y( 4) =? 19

20 More room for Problem , if you need it. 20

21 Verify that if c is a constant, then the function defined piecewise by { y(x) = 0 x c, (x c) 3 x > c satisfies the differential equation y = 3y 2 3 for all x. Can you also use the left half of the cubic y = (x c) 3 in piecing together a solution curve of the differential equation? Sketch a variety of such solution curves. Is there a point (a, b) of the xy-plane such that the initial value problem y = 3y 3, 2 y(a) = b has either no solution or a unique solution that is defined for all x? Reconcile your answer with Theorem 1. 21

22 More room for Problem , if you need it. 22

23 Section Separable Equations and Applications Find the general solution (implicit if necessary, explicit if convenient) to the differential equation dy dx + 2xy = 0 23

24 1.4.3 Find the general solution (implicit if necessary, explicit if convenient) to the differential equation dy dx = y sin x 24

25 Find the general solution (implicit if necessary, explicit if convenient) to the differential equation y = 1 + x + y + xy. Primes denote the derivatives with respect to x. (Suggestion: Factor the right-hand side.) 25

26 Find the explicit particular solution to the initial value problem dy dx = yex, y(0) = 2e. 26

27 Discuss the difference between the differential equations (dy/dx) 2 = 4y and dy/dx = 2 y. Do they have the same solution curves? Why or why not? Determine the points (a, b) in the plane for which the initial value problem y = 2 y, y(a) = b has (a) no solution, (b) a unique solution, (c) infinitely many solutions. 27

28 More room for Problem , if you need it. 28

29 (Radiocarbon dating) Carbon extracted from an ancient skull contained only one-sixth as much 14 C as carbon extracted from presentday bone. How old is the skull? 29

30 Thousands of years ago ancestors of the Native Americans crossed the Bering Strait from Asia and entered the western hemisphere. Since then, they have fanned out across North and South America. The single language that the original Native Americans spoke has since split into many Indian language families. Assume that the number of these language families has been multiplied by 1.5 every 6000 years. There are now 150 Native American language families in the western hemisphere. About when did the ancestors of today s Native Americans arrive? 30

31 to The figure below shows a bead sliding down a frictionless wire from point P to point Q. The brachistochrone problem asks what shape the wire should be in order to minimize the bead s time of descent from P to Q. In June of 1696, John Bernoulli proposed this problem as a public challenge, with a 6-month deadline (later extended to Easter 1697 at George Leibniz s request). Isaac Newton, then retired from academic life and serving as Warden of the Mint in London, re ceived Bernoulli s challenge on January 29, The very next day he communicated his own solution - the curve of minimal descent time is an arc of an inverted cycloid - the Royal Society of London. For a modern derivation of this result, suppose the bead starts from rest at the origin P and let y y(x) be the equation of the desired curve in a coordinate system with the y-axis pointing downward. Then a mechanical analogue of Snell s law in optics implies that sin ct V = constant where c denotes the angle of deflection (from the vertical) of the tan gent line to the curve - so cot c y (x) (why?) - and v /2jj is the bead s velocity when it has descended a distance y vertically (from KE = mv 2 = mgy = -PE). p 31

32 (a) First derive from sin α/v = constant the differential equation dy 2a y dx = y where a is an appropriate positive constant. 32

33 (b) Substitute y = 2a sin 2 t, dy = 4a sin t costdt in the above differential equation to derive the solution x = a(2t sin 2t), y = a(1 cos 2t) for which t = y = 0 when x = 0. Finally, the substitution of θ = 2a in the equations for x and y yields the standard parametric equations x = a(θ sin θ), y = a(1 cosθ) of the cycloid that is generated by a point on the rim of a circular wheel of radius a as it rolls along the x-axis. 33

Math Assignment 1

Math Assignment 1 Math 2280 - Assignment 1 Dylan Zwick Spring 2014 Section 1.1-1, 12, 15, 20, 45 Section 1.2-1, 6, 11, 15, 27, 35, 43 Section 1.3-1, 6, 9, 11, 15, 21, 29 Section 1.4-1, 3, 17, 19, 31, 35, 53, 68 1 Section

More information

Math Assignment. Dylan Zwick. Spring Section 1.2-1, 6, 11, 15, 27, 35, 43 Section Section 1.1-1, 12, 15, 20, 45

Math Assignment. Dylan Zwick. Spring Section 1.2-1, 6, 11, 15, 27, 35, 43 Section Section 1.1-1, 12, 15, 20, 45 Math 2280 - Assignment 1 Dylan Zwick Spring 201 Section 1.1-1, 12, 15, 20, 45 Section 1.2-1, 6, 11, 15, 27, 5, 4 Section 1. - 1, 6, 9, 11, 15, 21, 29 1 Section 1.1 - Differential Equations and Mathe matical

More information

9.4 CALCULUS AND PARAMETRIC EQUATIONS

9.4 CALCULUS AND PARAMETRIC EQUATIONS 9.4 Calculus with Parametric Equations Contemporary Calculus 1 9.4 CALCULUS AND PARAMETRIC EQUATIONS The previous section discussed parametric equations, their graphs, and some of their uses for visualizing

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

1 Motion of a single particle - Linear momentum, work and energy principle

1 Motion of a single particle - Linear momentum, work and energy principle 1 Motion of a single particle - Linear momentum, work and energy principle 1.1 In-class problem A block of mass m slides down a frictionless incline (see Fig.). The block is released at height h above

More information

Lecture Notes for PHY 405 Classical Mechanics

Lecture Notes for PHY 405 Classical Mechanics Lecture Notes for PHY 45 Classical Mechanics From Thorton & Marion s Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary s University Department of Astronomy & Physics October 11, 25 Chapter

More information

The Brachistochrone Curve

The Brachistochrone Curve The Brachistochrone Curve Paige R MacDonald May 16, 2014 Paige R MacDonald The Brachistochrone Curve May 16, 2014 1 / 1 The Problem In 1696, Johann Bernoulli posed the following problem to the scientific

More information

This is example 3 on page 44 of BGH and example (b) on page 66 of Troutman.

This is example 3 on page 44 of BGH and example (b) on page 66 of Troutman. Chapter 4 The brachistochrone This is example 3 on page 44 of BGH and example (b) on page 66 of Troutman. We seek the shape of a frictionless wire starting at the origin and ending at some point (, d)

More information

Math Assignment 2

Math Assignment 2 Math 2280 - Assignment 2 Dylan Zwick Spring 2014 Section 1.5-1, 15, 21, 29, 38, 42 Section 1.6-1, 3, 13, 16, 22, 26, 31, 36, 56 Section 2.1-1, 8, 11, 16, 29 Section 2.2-1, 10, 21, 23, 24 1 Section 1.5

More information

Slopes, Derivatives, and Tangents. Matt Riley, Kyle Mitchell, Jacob Shaw, Patrick Lane

Slopes, Derivatives, and Tangents. Matt Riley, Kyle Mitchell, Jacob Shaw, Patrick Lane Slopes, Derivatives, and Tangents Matt Riley, Kyle Mitchell, Jacob Shaw, Patrick Lane S Introduction Definition of a tangent line: The tangent line at a point on a curve is a straight line that just touches

More information

Math 2413 General Review for Calculus Last Updated 02/23/2016

Math 2413 General Review for Calculus Last Updated 02/23/2016 Math 243 General Review for Calculus Last Updated 02/23/206 Find the average velocity of the function over the given interval.. y = 6x 3-5x 2-8, [-8, ] Find the slope of the curve for the given value of

More information

Fermat s Principle. Fermat s Principle states that a ray of light in a medium will follow the path which takes the least amount of time.

Fermat s Principle. Fermat s Principle states that a ray of light in a medium will follow the path which takes the least amount of time. Homework Fermat s Principle Fermat s Principle states that a ray of light in a medium will follow the path which takes the least amount of time. Solution: The traversal time for the path is T = where ds

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Hour Exam #2 Math 3 Oct. 31, 2012

Hour Exam #2 Math 3 Oct. 31, 2012 Hour Exam #2 Math 3 Oct. 31, 2012 Name (Print): Last First On this, the second of the two Math 3 hour-long exams in Fall 2012, and on the final examination I will work individually, neither giving nor

More information

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 611b Assignment #6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find a formula for the function graphed. 1) 1) A) f(x) = 5 + x, x < -

More information

YET ANOTHER ELEMENTARY SOLUTION OF THE BRACHISTOCHRONE PROBLEM

YET ANOTHER ELEMENTARY SOLUTION OF THE BRACHISTOCHRONE PROBLEM YET ANOTHER ELEMENTARY SOLUTION OF THE BRACHISTOCHRONE PROBLEM GARY BROOKFIELD In 1696 Johann Bernoulli issued a famous challenge to his fellow mathematicians: Given two points A and B in a vertical plane,

More information

Mathematical Methods of Physics I ChaosBook.org/ predrag/courses/phys Homework 1

Mathematical Methods of Physics I ChaosBook.org/ predrag/courses/phys Homework 1 PHYS 6124 Handout 6 23 August 2012 Mathematical Methods of Physics I ChaosBook.org/ predrag/courses/phys-6124-12 Homework 1 Prof. P. Goldbart School of Physics Georgia Tech Homework assignments are posted

More information

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB

AP Physics C Summer Homework. Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 1. AP Physics C Summer Homework NAME: Questions labeled in [brackets] are required only for students who have completed AP Calculus AB 2. Fill in the radian conversion of each angle and the trigonometric

More information

Differential Equations & Separation of Variables

Differential Equations & Separation of Variables Differential Equations & Separation of Variables SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 8. of the recommended textbook (or the equivalent

More information

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation Lecture 18 : Direction Fields and Euler s Method A Differential Equation is an equation relating an unknown function and one or more of its derivatives. Examples Population growth : dp dp = kp, or = kp

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Math 217 Fall 2000 Exam Suppose that y( x ) is a solution to the differential equation

Math 217 Fall 2000 Exam Suppose that y( x ) is a solution to the differential equation Math 17 Fall 000 Exam 1 Notational Remark: In this exam, the symbol x y( x ) means dy dx. 1. Suppose that y( x ) is a solution to the differential equation, x y( x ) F ( x, y( x )) y( x ) 0 y 0. Then y'(x

More information

Purdue University Study Guide for MA Credit Exam

Purdue University Study Guide for MA Credit Exam Purdue University Study Guide for MA 16010 Credit Exam Students who pass the credit exam will gain credit in MA16010. The credit exam is a two-hour long exam with multiple choice questions. No books or

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Module 10 - Lecture 24 Kinematics of a particle moving on a curve Today,

More information

MATH 18.01, FALL PROBLEM SET # 8

MATH 18.01, FALL PROBLEM SET # 8 MATH 18.01, FALL 01 - PROBLEM SET # 8 Professor: Jared Speck Due: by 1:45pm on Tuesday 11-7-1 (in the boxes outside of Room -55 during the day; stick it under the door if the room is locked; write your

More information

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation Chapter 2 Differentiation 2.1 Tangent Lines and Their Slopes 1) Find the slope of the tangent line to the curve y = 4x x 2 at the point (-1, 0). A) -1 2 C) 6 D) 2 1 E) -2 2) Find the equation of the tangent

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Basic Theory of Differential Equations

Basic Theory of Differential Equations page 104 104 CHAPTER 1 First-Order Differential Equations 16. The following initial-value problem arises in the analysis of a cable suspended between two fixed points y = 1 a 1 + (y ) 2, y(0) = a, y (0)

More information

Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017

Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017 Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

THE BRACHISTOCHRONE CURVE: THE PROBLEM OF QUICKEST DESCENT

THE BRACHISTOCHRONE CURVE: THE PROBLEM OF QUICKEST DESCENT International Journal of Pure and Applied Mathematics Volume 82 No. 3 2013, 409-419 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu THE BRACHISTOCHRONE CURVE: THE PROBLEM OF QUICKEST

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main FOUNDATION STUDIES EXAMINATIONS June 203 PHYSICS Semester One February Main Time allowed 2 hours for writing 0 minutes for reading This paper consists of 4 questions printed on 0 pages. PLEASE CHECK BEFORE

More information

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds? Mathematics 115 Professor Alan H. Stein April 18, 005 SOLUTIONS 1. Define what is meant by an antiderivative or indefinite integral of a function f(x). Solution: An antiderivative or indefinite integral

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1325 Ch.12 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the location and value of each relative extremum for the function. 1)

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS General properties of vectors displacement vector position and velocity vectors acceleration vector equations of motion in 2- and 3-dimensions Projectile motion

More information

2r 2 e rx 5re rx +3e rx = 0. That is,

2r 2 e rx 5re rx +3e rx = 0. That is, Math 4, Exam 1, Solution, Spring 013 Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only

More information

Problem 01 C. 50. What is the length of a line segment with a slope of 4/3, measured from the y-axis to a point (6,4)? B. 25 D. 75 A.

Problem 01 C. 50. What is the length of a line segment with a slope of 4/3, measured from the y-axis to a point (6,4)? B. 25 D. 75 A. FE Review-Math 1 2 3 4 Problem 01 What is the length of a line segment with a slope of 4/3, measured from the y-axis to a point (6,4)? A. 10 B. 25 C. 50 D. 75 5 Problem 02 What is the general form of the

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

MATH 1207 R02 FINAL SOLUTION

MATH 1207 R02 FINAL SOLUTION MATH 7 R FINAL SOLUTION SPRING 6 - MOON Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () Let f(x) = x cos x. (a)

More information

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1 Coordinator: Abdelmonem Monday, October 30, 006 Page: 1 Q1. An aluminum cylinder of density.70 g/cm 3, a radius of.30 cm, and a height of 1.40 m has the mass of: A) 6.8 kg B) 45.1 kg C) 13.8 kg D) 8.50

More information

Differential equations

Differential equations Differential equations Math 27 Spring 2008 In-term exam February 5th. Solutions This exam contains fourteen problems numbered through 4. Problems 3 are multiple choice problems, which each count 6% of

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam Math 122 Fall 2008 Handout 15: Review Problems for the Cumulative Final Exam The topics that will be covered on Final Exam are as follows. Integration formulas. U-substitution. Integration by parts. Integration

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Math 2300 Calculus II University of Colorado Final exam review problems

Math 2300 Calculus II University of Colorado Final exam review problems Math 300 Calculus II University of Colorado Final exam review problems. A slope field for the differential equation y = y e x is shown. Sketch the graphs of the solutions that satisfy the given initial

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

First Year Physics: Prelims CP1. Classical Mechanics: Prof. Neville Harnew. Problem Set III : Projectiles, rocket motion and motion in E & B fields

First Year Physics: Prelims CP1. Classical Mechanics: Prof. Neville Harnew. Problem Set III : Projectiles, rocket motion and motion in E & B fields HT017 First Year Physics: Prelims CP1 Classical Mechanics: Prof Neville Harnew Problem Set III : Projectiles, rocket motion and motion in E & B fields Questions 1-10 are standard examples Questions 11-1

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

MATH 1241 Common Final Exam Fall 2010

MATH 1241 Common Final Exam Fall 2010 MATH 1241 Common Final Exam Fall 2010 Please print the following information: Name: Instructor: Student ID: Section/Time: The MATH 1241 Final Exam consists of three parts. You have three hours for the

More information

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x Solutions to Homewor 1, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 problem 2. The problem says that the function yx = ce 2x + e x solves the ODE y + 2y = e x, and ass

More information

Lecture 13 - Wednesday April 29th

Lecture 13 - Wednesday April 29th Lecture 13 - Wednesday April 29th jacques@ucsdedu Key words: Systems of equations, Implicit differentiation Know how to do implicit differentiation, how to use implicit and inverse function theorems 131

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Workbook for Calculus I

Workbook for Calculus I Workbook for Calculus I By Hüseyin Yüce New York 2007 1 Functions 1.1 Four Ways to Represent a Function 1. Find the domain and range of the function f(x) = 1 + x + 1 and sketch its graph. y 3 2 1-3 -2-1

More information

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1 Physics 125: Classical Physics A 1 Practice Problems for Midterm Exam 1 Problem 1 The Figure 1 depicts velocity as a function of time for a short run. Find: a) The acceleration at t = 5 seconds. b) The

More information

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test NAME: SCHOOL: 1. Let f be some function for which you know only that if 0 < x < 1, then f(x) 5 < 0.1. Which of the following

More information

Particle Motion Problems

Particle Motion Problems Particle Motion Problems Particle motion problems deal with particles that are moving along the x or y axis. Thus, we are speaking of horizontal or vertical movement. The position, velocity, or acceleration

More information

Vectors and Projectile Motion on the TI-89

Vectors and Projectile Motion on the TI-89 1 Vectors and Projectile Motion on the TI-89 David K. Pierce Tabor Academy Marion, Massachusetts 2738 dpierce@taboracademy.org (58) 748-2 ext. 2243 This paper will investigate various properties of projectile

More information

The most up-to-date version of this collection of homework exercises can always be found at bob/math365/mmm.pdf.

The most up-to-date version of this collection of homework exercises can always be found at   bob/math365/mmm.pdf. Millersville University Department of Mathematics MATH 365 Ordinary Differential Equations January 23, 212 The most up-to-date version of this collection of homework exercises can always be found at http://banach.millersville.edu/

More information

Learning Objectives for Math 166

Learning Objectives for Math 166 Learning Objectives for Math 166 Chapter 6 Applications of Definite Integrals Section 6.1: Volumes Using Cross-Sections Draw and label both 2-dimensional perspectives and 3-dimensional sketches of the

More information

Motion in 2- and 3-dimensions. Examples: non-linear motion (circles, planetary orbits, etc.) flight of projectiles (shells, golf balls, etc.

Motion in 2- and 3-dimensions. Examples: non-linear motion (circles, planetary orbits, etc.) flight of projectiles (shells, golf balls, etc. Motion in 2- and 3-dimensions Examples: HPTER 3 MOTION IN TWO & THREE DIMENSIONS General properties of vectors the displacement vector position and velocity vectors acceleration vector equations of motion

More information

CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS

CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS Today s Objectives: Students will be able to: 1. Determine the normal and tangential components of velocity and acceleration of a particle traveling

More information

Differential Equations: Homework 2

Differential Equations: Homework 2 Differential Equations: Homework Alvin Lin January 08 - May 08 Section.3 Exercise The direction field for provided x 0. dx = 4x y is shown. Verify that the straight lines y = ±x are solution curves, y

More information

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016 MATH 35 Calculus Solutions/Answers for Exam 3 Practice Problems November 8, 206 I. Find the indicated derivative(s) and simplify. (A) ( y = ln(x) x 7 4 ) x Solution: By the product rule and the derivative

More information

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec The exam is closed book and closed notes. Part I: There are 1 multiple choice questions, 1 point each. The answers for the multiple choice questions are to be placed on the SCANTRON form provided. Make

More information

1. Compute the derivatives of the following functions, by any means necessary. f (x) = (1 x3 )(1/2)(x 2 1) 1/2 (2x) x 2 1( 3x 2 ) (1 x 3 ) 2

1. Compute the derivatives of the following functions, by any means necessary. f (x) = (1 x3 )(1/2)(x 2 1) 1/2 (2x) x 2 1( 3x 2 ) (1 x 3 ) 2 Math 51 Exam Nov. 4, 009 SOLUTIONS Directions 1. SHOW YOUR WORK and be thorough in your solutions. Partial credit will only be given for work shown.. Any numerical answers should be left in exact form,

More information

Plane Curves and Parametric Equations

Plane Curves and Parametric Equations Plane Curves and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction We typically think of a graph as a curve in the xy-plane generated by the

More information

Tutorial-1, MA 108 (Linear Algebra)

Tutorial-1, MA 108 (Linear Algebra) Tutorial-1, MA 108 (Linear Algebra) 1. Verify that the function is a solution of the differential equation on some interval, for any choice of the arbitrary constants appearing in the function. (a) y =

More information

Second Midterm Exam Name: Practice Problems Septmber 28, 2015

Second Midterm Exam Name: Practice Problems Septmber 28, 2015 Math 110 4. Treibergs Second Midterm Exam Name: Practice Problems Septmber 8, 015 1. Use the limit definition of derivative to compute the derivative of f(x = 1 at x = a. 1 + x Inserting the function into

More information

Practice Problems for Exam 2 Solutions

Practice Problems for Exam 2 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A spring-loaded toy dart gun

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Name: Class: Date: Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Short Answer 1. Decide whether the following problem can be solved using precalculus, or whether calculus is required.

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

Math Assignment. Dylan Zwick. Spring Section 2.4-1, 5, 9, 26, 30 Section 3.1-1, 16, 18, 24, 39 Section 3.2-1, 10, 16, 24, 31

Math Assignment. Dylan Zwick. Spring Section 2.4-1, 5, 9, 26, 30 Section 3.1-1, 16, 18, 24, 39 Section 3.2-1, 10, 16, 24, 31 Math 2280 - Assignment 4 Dylan Zwick Spring 2013 Section 2.4-1, 5, 9, 26, 30 Section 3.1-1, 16, 18, 24, 39 Section 3.2-1, 10, 16, 24, 31 1 -z Section 2.4 - Method Numerical Approximation: Euler s 2.4.1

More information

AP Calculus Chapter 3 Testbank (Mr. Surowski)

AP Calculus Chapter 3 Testbank (Mr. Surowski) AP Calculus Chapter 3 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.). If f(x) = 0x 4 3 + x, then f (8) = (A) (B) 4 3 (C) 83 3 (D) 2 3 (E) 2

More information

WeBWorK demonstration assignment

WeBWorK demonstration assignment WeBWorK demonstration assignment The main purpose of this WeBWorK set is to familiarize yourself with WeBWorK. Here are some hints on how to use WeBWorK effectively: After first logging into WeBWorK change

More information

Two-Dimensional Motion Worksheet

Two-Dimensional Motion Worksheet Name Pd Date Two-Dimensional Motion Worksheet Because perpendicular vectors are independent of each other we can use the kinematic equations to analyze the vertical (y) and horizontal (x) components of

More information

Solutions to Math 41 Final Exam December 10, 2012

Solutions to Math 41 Final Exam December 10, 2012 Solutions to Math 4 Final Exam December,. ( points) Find each of the following limits, with justification. If there is an infinite limit, then explain whether it is or. x ln(t + ) dt (a) lim x x (5 points)

More information

θ θ θ θ current I Fig. 6.1 The conductor and the magnetic field are both in the plane of the paper. State

θ θ θ θ current I Fig. 6.1 The conductor and the magnetic field are both in the plane of the paper. State 3 1 (a) A straight conductor carrying a current I is at an angle θ to a uniform magnetic field of flux density B, as shown in Fig. 6.1. magnetic field, flux density B θ θ θ θ current I Fig. 6.1 The conductor

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

Concepts in Physics. Friday, October 16th

Concepts in Physics. Friday, October 16th 1206 - Concepts in Physics Friday, October 16th Notes Assignment #4 due Wednesday, October 21 st in class (no later than noon) There are still assignments #1 and #2 in my office to be picked up... If you

More information

Exam 2 - Practice Test

Exam 2 - Practice Test Exam 2 - Practice Test Saturday, June 11, 2016 Name: There are seven problems on this exam. You must show all your work to get full credit. Please box your final answers. Problem 1: Two balls are tossed

More information

Review Test 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) ds dt = 4t3 sec 2 t -

Review Test 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) ds dt = 4t3 sec 2 t - Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the derivative. ) = 7 + 0 sec ) A) = - 7 + 0 tan B) = - 7-0 csc C) = 7-0 sec tan

More information

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then 3.4 The Chain Rule To find the derivative of a function that is the composition of two functions for which we already know the derivatives, we can use the Chain Rule. The Chain Rule: Suppose F (x) = f(g(x)).

More information

VARIATIONAL PRINCIPLES

VARIATIONAL PRINCIPLES CHAPTER - II VARIATIONAL PRINCIPLES Unit : Euler-Lagranges s Differential Equations: Introduction: We have seen that co-ordinates are the tools in the hands of a mathematician. With the help of these co-ordinates

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information