Anomalous diffusion in cells: experimental data and modelling

Size: px
Start display at page:

Download "Anomalous diffusion in cells: experimental data and modelling"

Transcription

1 Anomalous diffusion in cells: experimental data and modelling Hugues BERRY INRIA Lyon, France CIMPA School Mathematical models in biology and medicine H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, Mauritius, Dec Dec hugues.berry@inria.fr

2 H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

3 The ongoing revolution of super-resolution fluorescence microscopy Go below the diffraction limit (10-40 nm) to localize singlemolecules and their trajectories in living cells Das et al PNAS 2015 Rac1 (membrane) Izzedin et al elife 2014 c-myc (nucleus) Ibac et al PLoS One 2015 EGFR (membrane) H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

4 New experimental methods generate new questions Now that we can see individual molecule movements: Do they have remarkable properties / specificities beyond (partial) stochasticity? Nair D et al. J Neurosci AMPAR For instance, a hallmark of the classical Brownian motion / diffusion is the linear scaling with time of the mean-squared displacement (MSD): x 2 (t) =2Dt H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

5 In cells, the MSD is frequently sublinear with time: Cell$ Probe$ Methods$ scale$ α$ Ref$ E.#coli#(C)$ mrna$par,cles$ spt/videomic$ 1s$ $10 3 s$ 0.71$ Golding@Cox$PRL$2006$ S.#pombe#(C)# lipid$granules$ spt/videomic$ 10ms$ $1s$ 0.80$ Jeon$et$al$PRL$2011$ Min@6$(C)$ Insulin$granules$ spt/confocal$ 1@100s$ 0.76$ Tabei$et$al$PNAS#2013$ mammal$(n)$ P@TEFb$ sptpalm$ 10@100ms$ 0.60$ Izeddin$et$al$eLife$2015$ rodent$(m)$ IgE$receptor$ FRAP,$spt$ 1@100s$ 0.65$ Feder$et$al$Biophys#J$1996$ oligoden.$(m)$ MOG$(prot.)$ FCS$ 0.01@100ms$ 0.59$ Gielen$et$al$C#R#Biol#2005$ HeLa$(M)$ Gal@Transferase$ FCS$ 0.3@100$ms$ 0.75$ Weiss$et$al$Biophys#J$2003$ HEK$(M)$ K TIRFM$ 0.1@100s$ 0.80$ Weigel$et$al$PNAS$2011$ Cos@7$(M)$ Gag$(HIV@1)$ sptpalm$ 20@500$ms$ 0.60$ Manley$et$al$Nat#Meth'08$ see e.g. Höfling and Franosch Rep Prog Phys 2013 anomalous diffusion / subdiffusion H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

6 New experimental methods generate new questions Now that we can see individual molecule movements: Do they have remarkable properties / specificities beyond (partial) stochasticity? YES: subdiffusion Nair D et al. J Neurosci AMPAR What are the underlying microscopic mechanisms that are responsible for subdiffusion? When coupled with reaction, doe subdiffusion change the spatio-temporal dynamics of the biochemical reactions? H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

7 Outline 1. The Reference: Brownian Motion 2. Continuous-Time Random Walks (CTRW) as Models for subdiffusion 3. From CTRW to fractional diffusion and to renewal equation H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

8 1. THE REFERENCE : BROWNIAN MOTION H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

9 Microscopic origins of Brownian motion A random walk is the result H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

10 Continuous-space model for Brownian motion Lattice-free (overdamped) Langevin dynamics where i are i.i.d. N (0, 1) H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

11 Properties of Brownian motion R(t) = 0 in 1d: x(t + t) =x(t)+ p 2D t R 1 (t) R 2 (t) R 3 (t) so that hx(t) x(0)i = p 2Dt h i =0 The$mean$distance$is$zero$ H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

12 MSD as a hallmark of Brownian motion time (t) Ensemble Average MSD : x 2 (t) =1/N P N i=1 [x i(t) x i (0)] 2 space (x) in 1d: x(t + t) =x(t)+ p 2D t 10 2 so that D(x(t) x(0)) 2E = 2Dt 2 = 2DtVar( ) = 2Dt H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

13 2. CONTINUOUS-TIME RANDOM WALKS (CTRW) AS MODELS FOR SUBDIFFUSION H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

14 The main models for subdiffusion I. Fractional Brownian motion Brownian motion with long time correlations Motion in a viscoelastic fluid II. Brownian motion over a fractal space Randomly located immobile obstacles close to the percolation threshold : molecular crowding III. Continuous-time random walks Power-law distributed residence time: trapping and interactions (no clear microscopic mechanism for power-law) H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

15 Continuous Time Random Walks (CTRW) Metzler & Klafter, Phys Rep 2000 Introduced by Montroll & Weiss in 1965 (J. Math. Phys. 6:167) Both the time between two consecutive jumps and the jump distance are random variable: The waiting time (residence) between two jumps is a random variable τ with distribution ( ) The jump distance is a random variable ξ with distribution ( ) H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

16 Continuous Time Random Walks (CTRW) Metzler & Klafter, Phys Rep 2000 Define p(x, t) =p(x, 0) time t (master equation): Noting: apple 1 p(x, t) Z t 0 as the probability that the RW is at position x at (t 0 )dt 0 + Z t 0 ˆf(s)= Laplace transform (in time) of f(t) Z R (t t 0 ) (x x 0 )p(x x 0,t t 0 )dt 0 dx 0 so that ˆ p(k, s) = 1 s ˆ(s) p(k, 0) 1 ˆ(s) (k) H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

17 The case of finite mean residence time For illustration, assume Poissonian residence ( ) = and Gaussian lengths ( ) =(2 2 ) 1/2 e m e /m then and 1 ˆ(s) = ms +1 1 ms + O(s2 ) for s! 0 (k) =e k k2 + O(k 4 ) for k! 0 2 p(k, 0) ˆ p(k, s) s + Dk 2 with D = 2m and O(sk2 )! 0 ) sˆ p(k, s) p(k, 0) = Dk 2 ˆ p(k, s) now, inverse transformation t p(x, t) =D@ xx p(x, t) and using dhx 2 i(s) kk ˆ p(0,s) : x 2 (t) =2Dt yields Brownian motion / diffusion H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

18 The case of infinite mean residence time Now, assume power-law residence where Z 1 O ( )d!1if 0 < < 1 ( ) =A m (1+ ) then ˆ(s) 1 (ms) + O(s 2 ) for s! 0 TauberianTh. and ˆ p(k, s) = 1 ˆ(s) p(k, 0) s 1 ˆ(s) (k) p(k, 0) ) ˆ p(k, s) s(1 + K s k 2 ) with K = 2 2m and O(s k 2 )! 0 so that x 2 (t) = 2K (1 + ) t yields subdiffusion H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

19 3. FROM CTRW TO FRACTIONAL DIFFUSION AND TO RENEWAL EQUATION H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

20 The diffusion equation with CTRW ˆ p(k, s) = p(k, 0) s(1 + K s k 2 ) ) sˆ p(k, s) p(k, 0) = K s 1 k 2 ˆ p(k, s) inverse Fourrier gives s p(x, s) p(x, 0) = K s xx p(x, s) then inverse Laplace t p(x, t) =K 0 Dt xx p(x, t) with the Riemann-Liouville operator for fractional differentiation so CTRW gives subdiffusion and a fractional diffusion equation H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

21 CTRWs as a Mean-Field / Continuous limit to anomalous diffusion 1 α = α = t = t = p(x,t) 0.4 p(x,t) space x Anomalous subdiffusion space x Brownian diffusion H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

22 However, the Riemann-Liouville operator makes things complicated First, it is non-local in time i.e. non-markovian: 0Dt xx p(x, t) = 1 Z t xx p(x, t 0 ) (t t 0 ) 1 dt0 As a result, Reaction-Diffusion independence is lost, e.g.: Brownian diffusion: H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

23 Ex.: (Henry et al. PRE t A(x, t) =D e applet 0D t 1 e xx A(x, t) applea(x, t) n(x,t) n(x,t) x x H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

24 Even worse, the macroscopic description depends on microscopic details The correct macroscopic equation depends on e.g. whether reaction occurs only upon a jump or can occur between jumps or Henry et al. PRE 2006 H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

25 Modeling CTRW as an age-renewal equation with age-resetting jumps with V. Calvez, T. Lepoutre & A Mateos Define the age a of the walker as the time spent at the same position since the last jump Denote u(t, x, a) the concentration of walkers that are at position x at time t and that have been there for the last a time steps Upon a jump the age is reset to zero This defines a Markovian age-structured PDE model 8 t u(t, x, a)+@ a u(t, x, a)+ (a)u(t, x, a) =0 u(t, x, 0) = R 1 R 0 R >: (a) (x x0 )u(t, x 0,a)dxda u(0,x,a)=u 0 (x, a). H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

26 Modeling CTRW as an age-renewal equation with age-resetting jumps Relation with residence time distribution: leads to Brownian diffusion whereas, e.g. (a) = yields subdiffusion 1+a with V. Calvez, T. Lepoutre & A Mateos Reaction-Diffusion is still separable, ex. 8 t u(t, x, a)+@ a u(t, x, a)+ (a)u(t, x, a)+ku(t, x, a) =0 u(t, x, 0) = R 1 R 0 R >: (a) (x x0 )u(t, x 0,a)dxda u(0,x,a)=u 0 (x, a). However microscopic details are also an issue, ex. 8 >< >: A + A * apple t u(t, x, a)+@ a u(t, x, a)+ (a)u(t, x, a)+ku(t, x, a) R R u(t, x, a0 )da 0 =0 u(t, x, 0) = R 1 R 0 R (a) (x x0 )u(t, x 0,a)dxda u(0,x,a)=u 0 (x, a). H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

27 Thanks Funding: for$computer$ressources$ Collaborations: Beagle Group INRIA Lyon H. Berry G. Beslon B. Caré A.S. Coquel P. Gabriel A. Lo Van H. Soula M. Vangkeosay INRIA Lyon V. Calvez T. Lepoutre A. Mateos School Maths. Univ Manchester UK S. Fedotov H. BERRY - Anomalous diffusion in cells CIMPA School Mauritius, 08 Dec

Weak Ergodicity Breaking. Manchester 2016

Weak Ergodicity Breaking. Manchester 2016 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Burov, Froemberg, Garini, Metzler PCCP 16 (44), 24128 (2014) Akimoto, Saito Manchester 2016 Outline Experiments: anomalous diffusion of single molecules

More information

arxiv: v1 [q-bio.nc] 5 Dec 2015

arxiv: v1 [q-bio.nc] 5 Dec 2015 Modelling axon growing using CTRW arxiv:1512.02603v1 [q-bio.nc] 5 Dec 2015 Xavier Descombes, Inria Sophia Antipolis, France Elena Zhizhina, Sergey Komech Institute for Information Transmission Problems,

More information

Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking WCHAOS 2011 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

More information

Weak Ergodicity Breaking

Weak Ergodicity Breaking Weak Ergodicity Breaking Eli Barkai Bar-Ilan University 215 Ergodicity Ergodicity: time averages = ensemble averages. x = lim t t x(τ)dτ t. x = xp eq (x)dx. Ergodicity out of equilibrium δ 2 (, t) = t

More information

Lecture 25: Large Steps and Long Waiting Times

Lecture 25: Large Steps and Long Waiting Times Lecture 25: Large Steps and Long Waiting Times Scribe: Geraint Jones (and Martin Z. Bazant) Department of Economics, MIT Proofreader: Sahand Jamal Rahi Department of Physics, MIT scribed: May 10, 2005,

More information

Anomalous Transport and Fluctuation Relations: From Theory to Biology

Anomalous Transport and Fluctuation Relations: From Theory to Biology Anomalous Transport and Fluctuation Relations: From Theory to Biology Aleksei V. Chechkin 1, Peter Dieterich 2, Rainer Klages 3 1 Institute for Theoretical Physics, Kharkov, Ukraine 2 Institute for Physiology,

More information

Weak chaos, infinite ergodic theory, and anomalous diffusion

Weak chaos, infinite ergodic theory, and anomalous diffusion Weak chaos, infinite ergodic theory, and anomalous diffusion Rainer Klages Queen Mary University of London, School of Mathematical Sciences Marseille, CCT11, 24 May 2011 Weak chaos, infinite ergodic theory,

More information

Brownian motion 18.S995 - L03 & 04

Brownian motion 18.S995 - L03 & 04 Brownian motion 18.S995 - L03 & 04 Typical length scales http://www2.estrellamountain.edu/faculty/farabee/biobk/biobookcell2.html dunkel@math.mit.edu Brownian motion Brownian motion Jan Ingen-Housz (1730-1799)

More information

From discrete time random walks to numerical methods for fractional order differential equations

From discrete time random walks to numerical methods for fractional order differential equations From discrete time random walks to numerical methods for fractional order differential equations Click to edit Present s Name Dr. Christopher Angstmann SANUM 2016 Never Stand Still Faculty of Science School

More information

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights Anomalous diffusion in biology: fractional Brownian motion, Lévy flights Jan Korbel Faculty of Nuclear Sciences and Physical Engineering, CTU, Prague Minisymposium on fundamental aspects behind cell systems

More information

Age-structured model in subdiffusion

Age-structured model in subdiffusion Age-structured model in subdiffusion T. LEPOUTRE thomas.lepoutre@inria.fr INRIA-Rhone Alpes (DRACULA) and ICJ (Univ. Lyon ) (StG: MESOPROBIO) Model u(t, x, a) : density of particles of age a R + at time

More information

arxiv: v1 [cond-mat.stat-mech] 23 Apr 2010

arxiv: v1 [cond-mat.stat-mech] 23 Apr 2010 Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces. B.. Henry Department of Applied Mathematics, School of Mathematics and Statistics, University of New South Wales,

More information

CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES

CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES CONTINUOUS TIME RANDOM WALK WITH CORRELATED WAITING TIMES Aleksei V. Chechkin, 1,2 Michael Hofmann 3, and Igor M. Sokolov 3 1 School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

Lecture 1: Random walk

Lecture 1: Random walk Lecture : Random walk Paul C Bressloff (Spring 209). D random walk q p r- r r+ Figure 2: A random walk on a D lattice. Consider a particle that hops at discrete times between neighboring sites on a one

More information

Brownian motion and the Central Limit Theorem

Brownian motion and the Central Limit Theorem Brownian motion and the Central Limit Theorem Amir Bar January 4, 3 Based on Shang-Keng Ma, Statistical Mechanics, sections.,.7 and the course s notes section 6. Introduction In this tutorial we shall

More information

A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION

A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION THERMAL SCIENCE: Year 7, Vol., Suppl., pp. S-S7 S A SPATIAL STRUCTURAL DERIVATIVE MODEL FOR ULTRASLOW DIFFUSION by Wei XU a, Wen CHEN a*, Ying-Jie LIANG a*, and Jose WEBERSZPIL b a State Key Laboratory

More information

Noisy continuous time random walks

Noisy continuous time random walks Noisy continuous time random walks Jae-Hyung Jeon, Eli Barkai, and Ralf Metzler Citation: J. Chem. Phys. 139, 121916 (2013); doi: 10.1063/1.4816635 View online: http://dx.doi.org/10.1063/1.4816635 View

More information

From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion

From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion Rainer Klages Queen Mary University of London, School of Mathematical Sciences Sperlonga, 20-24 September 2010 From normal to

More information

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT September 24, Anomalous diffusion

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT September 24, Anomalous diffusion Lecture notes for 12.086/12.586, Modeling Environmental Complexity D. H. Rothman, MIT September 24, 2014 Contents 1 Anomalous diffusion 1 1.1 Beyond the central limit theorem................ 2 1.2 Large

More information

The Portevin-Le Chatelier effect in the Continuous Time Random Walk. framework

The Portevin-Le Chatelier effect in the Continuous Time Random Walk. framework The Portevin-Le Chatelier effect in the Continuous Time Random Walk framework A. Sarkar * and P. Barat Variable Energy Cyclotron Centre 1/AF Bidhan Nagar, Kolkata 764, India PACS numbers: 62.2.Fe, 5.4.Fb,

More information

Volatility and Returns in Korean Futures Exchange Markets

Volatility and Returns in Korean Futures Exchange Markets Volatility and Returns in Korean Futures Exchange Markets Kyungsik Kim*,, Seong-Min Yoon and Jum Soo Choi Department of Physics, Pukyong National University, Pusan 608-737, Korea Division of Economics,

More information

Random walk through Anomalous processes: some applications of Fractional calculus

Random walk through Anomalous processes: some applications of Fractional calculus Random walk through Anomalous processes: some applications of Fractional calculus Nickolay Korabel Fractional Calculus Day @ UCMerced 12 June 2013 Fractional Calculus Mathematics Engineering Physics Levy

More information

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Theory of fractional Lévy diffusion of cold atoms in optical lattices Theory of fractional Lévy diffusion of cold atoms in optical lattices, Erez Aghion, David Kessler Bar-Ilan Univ. PRL, 108 230602 (2012) PRX, 4 011022 (2014) Fractional Calculus, Leibniz (1695) L Hospital:

More information

A short story about FRAP (fluourescence recovery after photobleaching)

A short story about FRAP (fluourescence recovery after photobleaching) 1 A short story about FRAP (fluourescence recovery after photobleaching) Bob Pego (Carnegie Mellon) work involving team leader: James McNally (NCI Lab of Receptor Biology & Gene Expression) Biophysicists:

More information

PERSISTENT RANDOM WALK EFFECT IN THE SUBDIFFUSION-REACTION PROCESS

PERSISTENT RANDOM WALK EFFECT IN THE SUBDIFFUSION-REACTION PROCESS Vol. 45 (214) ACTA PHYSICA POLONICA B No 9 PERSISTENT RANDOM WALK EFFECT IN THE SUBDIFFUSION-REACTION PROCESS Tadeusz Kosztołowicz, Mateusz Piwnik Institute of Physics, Jan Kochanowski University Świętokrzyska

More information

Chapter 1. An Introduction to Fractional Diffusion

Chapter 1. An Introduction to Fractional Diffusion Chapter An Introduction to Fractional Diffusion B.I. Henry, T.A.M. Langlands and P. Straka School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 252 Australia b.henry@unsw.edu.au

More information

SUBDYNAMICS OF FINANCIAL DATA FROM FRACTIONAL FOKKER PLANCK EQUATION

SUBDYNAMICS OF FINANCIAL DATA FROM FRACTIONAL FOKKER PLANCK EQUATION Vol. 4 (29) ACTA PHYSICA POLONICA B No 5 SUBDYNAMICS OF FINANCIAL DATA FROM FRACTIONAL FOKKER PLANCK EQUATION Joanna Janczura, Agnieszka Wyłomańska Institute of Mathematics and Computer Science Hugo Steinhaus

More information

Continuous time random walks in finite domains and general boundary conditions: some formal considerations

Continuous time random walks in finite domains and general boundary conditions: some formal considerations IOP PUBISHING JOURNA OF PHYSICS A: MATHEMATICA AND THEORETICA J. Phys. A: Math. Theor. 41 (008) 15004 (11pp) doi:10.1088/1751-8113/41/1/15004 Continuous time random walks in finite domains and general

More information

Introduction: the plague. The Scaling Laws Of Human Travel. Introduction: SARS (severe acute respiratory syndrom)

Introduction: the plague. The Scaling Laws Of Human Travel. Introduction: SARS (severe acute respiratory syndrom) The Scaling Laws Of Human Travel Verena Zuber Department of Statistics University of Munich 7. July 2006 Introduction: the plague highly infectious disease several pandemics have influenced the human history

More information

arxiv: v1 [cond-mat.stat-mech] 23 Feb 2017

arxiv: v1 [cond-mat.stat-mech] 23 Feb 2017 First passage properties in a crowded environment Vincent Tejedor 1 1 Cour des comptes, 13, rue Cambon, 75 001 Paris, France February 27, 2017 arxiv:1702.07394v1 [cond-mat.stat-mech] 23 Feb 2017 Introduction

More information

Anomalous diffusion of volcanic earthquakes

Anomalous diffusion of volcanic earthquakes Anomalous diffusion of volcanic earthquakes SUMIYOSHI ABE 1,2 and NORIKAZU SUZUKI 3 1 Department of Physical Engineering, Mie University, Mie 514-8507, Japan 2 Institute of Physics, Kazan Federal University,

More information

CTRW Limits: Governing Equations and Fractal Dimensions

CTRW Limits: Governing Equations and Fractal Dimensions CTRW Limits: Governing Equations and Fractal Dimensions Erkan Nane DEPARTMENT OF MATHEMATICS AND STATISTICS AUBURN UNIVERSITY August 19-23, 2013 Joint work with Z-Q. Chen, M. D Ovidio, M.M. Meerschaert,

More information

arxiv: v1 [cond-mat.stat-mech] 15 Jan 2012

arxiv: v1 [cond-mat.stat-mech] 15 Jan 2012 arxiv:2.32v [cond-mat.stat-mech] 5 Jan 22 The nonextensive entropy approach versus the stochastic in describing subdiffusion Tadeusz Koszto lowicz Institute of Physics, Jan Kochanowski University, ul.

More information

On the applicability of Fick s law to diffusion in inhomogeneous systems

On the applicability of Fick s law to diffusion in inhomogeneous systems INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 6 (005) 93 95 EUROPEAN JOURNAL OF PHYSICS doi:0.088/043-0807/6/5/03 On the applicability of Fick s law to diffusion in inhomogeneous systems B Ph van Milligen,PDBons,BACarreras

More information

Supporting Information. Even Hard Sphere Colloidal Suspensions Display. Fickian yet Non-Gaussian Diffusion

Supporting Information. Even Hard Sphere Colloidal Suspensions Display. Fickian yet Non-Gaussian Diffusion Supporting Information Even Hard Sphere Colloidal Suspensions Display Fickian yet Non-Gaussian Diffusion Juan Guan, a Bo Wang, a and Steve Granick a,b,c,* Departments of Materials Science, a Chemistry,

More information

Fractional diffusion and Lévy stable processes

Fractional diffusion and Lévy stable processes PHYSICAL REVIEW E VOLUME 55, NUMBER JANUARY 997 Fractional diffusion and Lévy stable processes Bruce J. West and Paolo Grigolini Center for Nonlinear Science, University of North Texas, Denton, Texas 76203

More information

Fractional Laplacian

Fractional Laplacian Fractional Laplacian Grzegorz Karch 5ème Ecole de printemps EDP Non-linéaire Mathématiques et Interactions: modèles non locaux et applications Ecole Supérieure de Technologie d Essaouira, du 27 au 30 Avril

More information

Numerical methods in molecular dynamics and multiscale problems

Numerical methods in molecular dynamics and multiscale problems Numerical methods in molecular dynamics and multiscale problems Two examples T. Lelièvre CERMICS - Ecole des Ponts ParisTech & MicMac project-team - INRIA Horizon Maths December 2012 Introduction The aim

More information

Cover times of random searches

Cover times of random searches Cover times of random searches by Chupeau et al. NATURE PHYSICS www.nature.com/naturephysics 1 I. DEFINITIONS AND DERIVATION OF THE COVER TIME DISTRIBUTION We consider a random walker moving on a network

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

Semi-Markov approach to continuous time random walk limit processes

Semi-Markov approach to continuous time random walk limit processes Semi-Markov approach to continuous time random walk limit processes Joint Mathematics Meetings San Antonio, TX January 13, 2015 Mark M. Meerschaert Michigan State University East Lansing, Michigan, USA

More information

Lecture 13. Drunk Man Walks

Lecture 13. Drunk Man Walks Lecture 13 Drunk Man Walks H. Risken, The Fokker-Planck Equation (Springer-Verlag Berlin 1989) C. W. Gardiner, Handbook of Stochastic Methods (Springer Berlin 2004) http://topp.org/ http://topp.org/species/mako_shark

More information

Random Walk Model with Waiting Times Depending on the Preceding Jump Length

Random Walk Model with Waiting Times Depending on the Preceding Jump Length Journal of Statistical Physics, Vol. 123, No. 4, May 2006 ( C 2006 ) DOI: 10.1007/s10955-006-9104-z Random Walk Model with Waiting Times Depending on the Preceding Jump Length Vasily Yu. Zaburdaev 1 Received

More information

Time fractional Schrödinger equation

Time fractional Schrödinger equation Time fractional Schrödinger equation Mark Naber a) Department of Mathematics Monroe County Community College Monroe, Michigan, 48161-9746 The Schrödinger equation is considered with the first order time

More information

Covariance structure of continuous time random walk limit processes

Covariance structure of continuous time random walk limit processes Covariance structure of continuous time random walk limit processes Alla Sikorskii Department of Statistics and Probability Michigan State University Fractional Calculus, Probability and Non-local Operators:

More information

Search for Food of Birds, Fish and Insects

Search for Food of Birds, Fish and Insects Search for Food of Birds, Fish and Insects Rainer Klages Max Planck Institute for the Physics of Complex Systems, Dresden Queen Mary University of London, School of Mathematical Sciences Diffusion Fundamentals

More information

Session 1: Probability and Markov chains

Session 1: Probability and Markov chains Session 1: Probability and Markov chains 1. Probability distributions and densities. 2. Relevant distributions. 3. Change of variable. 4. Stochastic processes. 5. The Markov property. 6. Markov finite

More information

Fractional Derivatives and Fractional Calculus in Rheology, Meeting #3

Fractional Derivatives and Fractional Calculus in Rheology, Meeting #3 Fractional Derivatives and Fractional Calculus in Rheology, Meeting #3 Metzler and Klafter. (22). From stretched exponential to inverse power-law: fractional dynamics, Cole Cole relaxation processes, and

More information

FRACTIONAL BROWNIAN MOTION AND DYNAMIC APPROACH TO COMPLEXITY. Rasit Cakir. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY

FRACTIONAL BROWNIAN MOTION AND DYNAMIC APPROACH TO COMPLEXITY. Rasit Cakir. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY FRACTIONAL BROWNIAN MOTION AND DYNAMIC APPROACH TO COMPLEXITY Rasit Cakir Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS August 27 APPROVED: Paolo Grigolini, Major

More information

Cauchy Problems in Bounded Domains and Iterated Processes

Cauchy Problems in Bounded Domains and Iterated Processes Cauchy Problems in Bounded Domains and Iterated Processes Erkan Nane DEPARTMENT OF MATHEMATICS AND STATISTICS AUBURN UNIVERSITY August 18, 21 Continuous time random walks R d X 2 X 3 X 1 J 1 J 2 J 3 J

More information

Normal and Anomalous Diffusion: A Tutorial

Normal and Anomalous Diffusion: A Tutorial Normal and Anomalous Diffusion: A Tutorial Loukas Vlahos, Heinz Isliker Department of Physics, University of Thessaloniki, 54124 Thessaloniki, Greece Yannis Kominis, and Kyriakos Hizanidis School of Electrical

More information

RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS. = Au(t), t > 0 u(0) = x,

RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS. = Au(t), t > 0 u(0) = x, Electronic Journal of Differential Equations, Vol. 216 (216, No. 249, pp. 1 14. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS

More information

On the Solution of the Nonlinear Fractional Diffusion-Wave Equation with Absorption: a Homotopy Approach

On the Solution of the Nonlinear Fractional Diffusion-Wave Equation with Absorption: a Homotopy Approach On the Solution of the Nonlinear Fractional Diffusion-Wave Equation with Absorption: a Homotopy Approach Vivek Mishra a, Kumar Vishal b, Subir Das a, and Seng Huat Ong c a Department of Mathematical Sciences,

More information

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8

LANGEVIN THEORY OF BROWNIAN MOTION. Contents. 1 Langevin theory. 1 Langevin theory 1. 2 The Ornstein-Uhlenbeck process 8 Contents LANGEVIN THEORY OF BROWNIAN MOTION 1 Langevin theory 1 2 The Ornstein-Uhlenbeck process 8 1 Langevin theory Einstein (as well as Smoluchowski) was well aware that the theory of Brownian motion

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

ITÔ FORMULA FOR SUBORDINATED LANGEVIN EQUATION. A CASE OF TIME DEPENDENT FORCE

ITÔ FORMULA FOR SUBORDINATED LANGEVIN EQUATION. A CASE OF TIME DEPENDENT FORCE Vol. 4 (29) ACTA PHYSICA POLONICA B No 5 ITÔ FORMULA FOR SUBORDINATED LANGEVIN EQUATION. A CASE OF TIME DEPENDENT FORCE Alesander Weron Hugo Steinhaus Center, Institute of Mathematics and Computer Science

More information

SLE and nodal lines. Eugene Bogomolny, Charles Schmit & Rémy Dubertrand. LPTMS, Orsay, France. SLE and nodal lines p.

SLE and nodal lines. Eugene Bogomolny, Charles Schmit & Rémy Dubertrand. LPTMS, Orsay, France. SLE and nodal lines p. SLE and nodal lines p. SLE and nodal lines Eugene Bogomolny, Charles Schmit & Rémy Dubertrand LPTMS, Orsay, France SLE and nodal lines p. Outline Motivations Loewner Equation Stochastic Loewner Equation

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Continuous Time Random Walk Limits in Bounded Domains

Continuous Time Random Walk Limits in Bounded Domains Continuous Time Random Walk Limits in Bounded Domains Erkan Nane DEPARTMENT OF MATHEMATICS AND STATISTICS AUBURN UNIVERSITY May 16, 2012 Acknowledgement Boris Baeumer, University of Otago, New Zealand.

More information

Cauchy Problems Solved by Running Subordinate Processes

Cauchy Problems Solved by Running Subordinate Processes Cauchy Problems Solved by Running Subordinate Processes Erkan Nane DEPARTMENT OF MATHEMATICS AND STATISTICS AUBURN UNIVERSITY August 18, 21 Continuous time random walks R d X 2 X 3 X 1 J 1 J 2 J 3 J 4

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Random walks in a 1D Levy random environment

Random walks in a 1D Levy random environment Random Combinatorial Structures and Statistical Mechanics, University of Warwick, Venice, 6-10 May, 2013 Random walks in a 1D Levy random environment Alessandra Bianchi Mathematics Department, University

More information

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 11 Oct 2002

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 11 Oct 2002 arxiv:cond-mat/21166v2 [cond-mat.dis-nn] 11 Oct 22 REVISITING THE DERIVATION OF THE FRACTIONAL DIFFUSION EQUATION ENRICO SCALAS Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale

More information

TEXTURE EVOLUTION VIA CONTINUOUS TIME RANDOM WALK THEORY

TEXTURE EVOLUTION VIA CONTINUOUS TIME RANDOM WALK THEORY TEXTURE EVOLUTION VIA CONTINUOUS TIME RANDOM WALK THEORY M. EMELIANENKO, D. GOLOVATY, D. KINDERLEHRER, AND S. TA ASAN Abstract. Under standard processing conditions, many materials possess polycrystalline

More information

Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium

Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium 2064 Biophysical Journal Volume 105 November 2013 2064 2073 Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium Hédi Soula, * Bertrand Caré, Guillaume Beslon, and Hugues Berry

More information

BioNewMetrics and stochastic analysis of superresolution. David Holcman Ecole Normale Superieure

BioNewMetrics and stochastic analysis of superresolution. David Holcman Ecole Normale Superieure BioNewMetrics and stochastic analysis of superresolution trajectories David Holcman Ecole Normale Superieure What is Bionewmetrics? www.bionewmetrics.org Founded in 2009: Mathematical methods applied to

More information

THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC FRACTAL POROUS MEDIA

THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC FRACTAL POROUS MEDIA Cai, W., et al.: Three-Dimensional Hausdorff Derivative Diffusion Model... THERMAL SCIENCE: Year 08, Vol., Suppl., pp. S-S6 S THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC

More information

arxiv: v1 [cond-mat.soft] 21 Aug 2015

arxiv: v1 [cond-mat.soft] 21 Aug 2015 Particle dynamics in fluids with random interactions Lenin S. Shagolsem and Yitzhak Rabin Department of Physics, and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 59,

More information

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that From Random Numbers to Monte Carlo Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that Random Walk Through Life Random Walk Through Life If you flip the coin 5 times you will

More information

arxiv: v2 [cond-mat.stat-mech] 12 Apr 2011

arxiv: v2 [cond-mat.stat-mech] 12 Apr 2011 epl draft arxiv:8.762v2 cond-mat.stat-mech] 2 Apr 2 Raman Research Institute, Bangalore 568, India PACS 2.5.-r Probability theory, stochastic processes, and statistics PACS 5.4.-a Fluctuation phenomena,

More information

Introduction to the mathematical modeling of multi-scale phenomena

Introduction to the mathematical modeling of multi-scale phenomena Introduction to the mathematical modeling of multi-scale phenomena Diffusion Brownian motion Brownian motion (named after botanist Robert Brown) refers to the random motion of particles suspended in a

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror Diffusion CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror 1 Outline How do molecules move around in a cell? Diffusion as a random walk (particle-based perspective) Continuum view of diffusion

More information

Contents. Preface. Notation

Contents. Preface. Notation Contents Preface Notation xi xv 1 The fractional Laplacian in one dimension 1 1.1 Random walkers with constant steps.............. 1 1.1.1 Particle number density distribution.......... 2 1.1.2 Numerical

More information

Fractional Diffusion Theory and Applications Part II

Fractional Diffusion Theory and Applications Part II Fractional Diffusion Theory and Applications Part II p. 1/2 Fractional Diffusion Theory and Applications Part II 22nd Canberra International Physics Summer School 28 Bruce Henry (Trevor Langlands, Peter

More information

2007 Summer College on Plasma Physics

2007 Summer College on Plasma Physics SMR/1856-10 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Dielectric relaxation and ac universality in materials with disordered structure. J. Juul Rasmussen Risø National Laboratory

More information

Exact Simulation of the Stationary Distribution of M/G/c Queues

Exact Simulation of the Stationary Distribution of M/G/c Queues 1/36 Exact Simulation of the Stationary Distribution of M/G/c Queues Professor Karl Sigman Columbia University New York City USA Conference in Honor of Søren Asmussen Monday, August 1, 2011 Sandbjerg Estate

More information

Diffusion in a Logarithmic Potential Anomalies, Aging & Ergodicity Breaking

Diffusion in a Logarithmic Potential Anomalies, Aging & Ergodicity Breaking Diffusion in a Logarithmic Potential Anomalies, Aging & Ergodicity Breaking David Kessler Bar-Ilan Univ. E. Barkai (Bar-Ilan) A. Dechant (Augsburg) E. Lutz (Augsburg) PRL, 105 120602 (2010) arxiv:1105.5496

More information

A finite element method for time fractional partial differential equations

A finite element method for time fractional partial differential equations CHESTER RESEARCH ONLINE Research in Mathematics and its Applications ISSN 25-661 Series Editors: CTH Baker, NJ Ford A finite element method for time fractional partial differential equations Neville J.

More information

MORTAL CREEPERS SEARCHING FOR A TARGET

MORTAL CREEPERS SEARCHING FOR A TARGET MORTAL CREEPERS SEARCHING FOR A TARGET D. Campos, E. Abad, V. Méndez, S. B. Yuste, K. Lindenberg Barcelona, Extremadura, San Diego We present a simple paradigm for detection of an immobile target by a

More information

Diffusion in the cell

Diffusion in the cell Diffusion in the cell Single particle (random walk) Microscopic view Macroscopic view Measuring diffusion Diffusion occurs via Brownian motion (passive) Ex.: D = 100 μm 2 /s for typical protein in water

More information

NMR Advanced methodologies to investigate water diffusion in materials and biological systems

NMR Advanced methodologies to investigate water diffusion in materials and biological systems NMR Advanced methodologies to investigate water diffusion in materials and biological systems PhD Candidate _Silvia De Santis PhD Supervisors _dott. Silvia Capuani _prof. Bruno Maraviglia Outlook Introduction:

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

Simulation methods for stochastic models in chemistry

Simulation methods for stochastic models in chemistry Simulation methods for stochastic models in chemistry David F. Anderson anderson@math.wisc.edu Department of Mathematics University of Wisconsin - Madison SIAM: Barcelona June 4th, 21 Overview 1. Notation

More information

Fractional Fokker-Planck dynamics: Numerical algorithm and simulations

Fractional Fokker-Planck dynamics: Numerical algorithm and simulations Fractional Fokker-Planck dynamics: Numerical algorithm and simulations E. Heinsalu, 1,2 M. Patriarca, 1 I. Goychuk, 1 G. Schmid, 1 and P. Hänggi 1 1 Institut für Physik, Universität Augsburg, Universitätsstrasse

More information

t = no of steps of length s

t = no of steps of length s s t = no of steps of length s Figure : Schematic of the path of a diffusing molecule, for example, one in a gas or a liquid. The particle is moving in steps of length s. For a molecule in a liquid the

More information

THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY RUDOLF GORENFLO Free University of Berlin Germany Email:gorenflo@mi.fu.berlin.de

More information

Active microrheology: Brownian motion, strong forces and viscoelastic media

Active microrheology: Brownian motion, strong forces and viscoelastic media OR1394 DFG Research Unit Nonlinear Response to Probe Vitrification Active microrheology: Brownian motion, strong forces and viscoelastic media Matthias Fuchs Fachbereich Physik, Universität Konstanz New

More information

4. The Green Kubo Relations

4. The Green Kubo Relations 4. The Green Kubo Relations 4.1 The Langevin Equation In 1828 the botanist Robert Brown observed the motion of pollen grains suspended in a fluid. Although the system was allowed to come to equilibrium,

More information

arxiv: v1 [physics.data-an] 6 Jul 2017

arxiv: v1 [physics.data-an] 6 Jul 2017 Non-Poisson Renewal Events and Memory Rohisha Tuladhar,, Mauro Bologna, 2 and Paolo Grigolini, Center for Nonlinear Science, University of North Texas, P.O. Box 3427, Denton, Texas 7623-427 2 Instituto

More information

Solution structure and dynamics of biopolymers

Solution structure and dynamics of biopolymers Solution structure and dynamics of biopolymers Atomic-detail vs. low resolution structure Information available at different scales Mobility of macromolecules in solution Brownian motion, random walk,

More information

Chaotic diffusion in randomly perturbed dynamical systems

Chaotic diffusion in randomly perturbed dynamical systems Chaotic diffusion in randomly perturbed dynamical systems Rainer Klages Queen Mary University of London, School of Mathematical Sciences Max Planck Institute for Mathematics in the Sciences Leipzig, 30

More information

Front propagation in reaction-dispersal models with finite jump speed

Front propagation in reaction-dispersal models with finite jump speed PHYSICAL REVIEW E 70, 036121 (2004) Front propagation in reaction-dispersal models with finite jump speed Vicenç Méndez, 1 Daniel Campos, 2 and Sergei Fedotov 3 1 Departament de Medicina, Facultat de Ciències

More information

Simulations of transport in porous media

Simulations of transport in porous media Simulations of transport in porous media Igor Stanković, Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia e-mail: igor.stankovic@scl.rs url: www.scl.rs Simulations of transport in

More information

When do diffusion-limited trajectories become memoryless?

When do diffusion-limited trajectories become memoryless? When do diffusion-limited trajectories become memoryless? Maciej Dobrzyński CWI (Center for Mathematics and Computer Science) Kruislaan 413, 1098 SJ Amsterdam, The Netherlands Abstract Stochastic description

More information

arxiv: v1 [q-bio.bm] 20 Dec 2007

arxiv: v1 [q-bio.bm] 20 Dec 2007 Abstract arxiv:0712.3467v1 [q-bio.bm] 20 Dec 2007 The mean time required by a transcription factor (TF) or an enzyme to find a target in the nucleus is of prime importance for the initialization of transcription,

More information

and , (8) K = thereby turning Eq. (6) into 1 ˆψ(u) 1 ˆψ(u) K, (6)

and , (8) K = thereby turning Eq. (6) into 1 ˆψ(u) 1 ˆψ(u) K, (6) to an initial condition with system of interest and bath uncorrelated one from the other, a non-stationary state. As we shall see, to create a master equation compatible with the Onsager principle, in

More information

Fractional Cauchy Problems for time-changed Processes

Fractional Cauchy Problems for time-changed Processes Fractional Cauchy Problems for time-changed Processes Erkan Nane Department of Mathematics and Statistics Auburn University February 17, 211 Erkan Nane (Auburn University) Fractional Cauchy Problems February

More information

Experimental evidence of power-law trapping-time distributions in porous media

Experimental evidence of power-law trapping-time distributions in porous media PHYSICAL REVIEW E VOLUME 60, NUMBER 5 NOVEMBER 1999 Experimental evidence of power-law trapping-time distributions in porous media German Drazer* Grupo de Medios Porosos, Facultad de Ingeniería, Universidad

More information