Eshan V. Dave, Secretary of M&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate. Glaucio H. Paulino, Chairman of M&FGM2006 (Hawaii)

Size: px
Start display at page:

Download "Eshan V. Dave, Secretary of M&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate. Glaucio H. Paulino, Chairman of M&FGM2006 (Hawaii)"

Transcription

1 Asphalt Pavement Aging and Temperature Dependent Properties through a Functionally Graded Viscoelastic Model I: Development, Implementation and Verification Eshan V. Dave, Secretary of M&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate Glaucio H. Paulino, Chairman of M&FGM2006 (Hawaii) Donald Biggar Willett Professor of Engineering William G. Buttlar Professor and Narbey Khachaturian Faculty Scholar Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign

2 Outline Part I Graded Finite Elements Viscoelasticity and FGMs Finite Element Formulations Verification Concluding Remarks Part II (Companion presentation) Asphalt Pavements Effect of Aging Simulations Concluding Remarks 2

3 Objectives Develop efficient and accurate simulation scheme for viscoelastic functionally graded materials (VFGMs) Correspondence Principle based formulation Application: Asphalt concrete pavements (Part II) E 1 E 2 E 3 E h η 1 η 2 η 3 η h 3

4 Graded Finite Elements Homogeneous Graded Graded Elements: Account for material non-homogeneity within elements unlike conventional (homogeneous) elements Lee and Erdogan (1995) and Santare and Lambros (2000) Direct Gaussian integration (properties sampled at integration points) Kim and Paulino (2002) Generalized isoparametric formulation (GIF) Paulino and Kim (2007) and Paulino et al. (2007) further explored GIF graded elements Proposed patch tests GIF elements should be preferred for multiphysics applications Buttlar et al. (2006) demonstrated need of graded FE for asphalt pavements (elastic analysis) 4

5 Generalized Isoparametric Formulation (GIF) Material properties are sampled at the element nodes Iso-parametric mapping provides material properties at integration points Natural extension of the conventional isoparametric formulation Material Properties (eg. Ε(x, y)) y z=e(x,y) x y (0,0) x E N N i m i1 i E i Shape function corresponding m Number of nodes per element to node, i Conventional Homogeneous GIF 5

6 Viscoelasticity: Basics Constitutive Relationship for linear viscoelastic body: o σ ij are stresses, ε ij are strains o Superscript d represents deviatoric components o G ijkl and K ijkl : shear and bulk moduli (space and time dependent) o Assumptions: no body forces, small deformations o Equilibrium: o Strain-Displacement: o u i : displacements t t d ij x, t 2 Gijkl x, t t kl x, t dt d t t t kk x, t 3 Kkkll x, t t ll x, t dt ij, j 0 t 1 2 u u ij i, j j, i 6

7 Viscoelasticity: Correspondence Principle Correspondence Principle (Elastic-Viscoelastic Analogy): Equivalency between transformed (Laplace, Fourier etc.) viscoelastic and elasticity equations Elastic Constitutive Law : d 3 2G d K Transformed Viscoelastic Constitutive Law : ~ ~~ d 2G d ~ ~ 3K ~ Extensively utilized to solve variety of nonhomogeneous viscoelastic problems: Hilton and Piechocki (1962): Shear center of non-homogeneous viscoelastic beams Chang et al. (2007): Thermal stresses in graded viscoelastic films 7

8 Viscoelastic Model Prony series form: Generalized Maxwell Model Equivalency between compliance and relaxation forms Flexibility in fitting experimental data Transformations are well established Readily applicable to asphaltic and other viscoelastic materials (polymers, etc) E( t) i i E i h E i1 i Exp t / i E 1 E 2 E 3 E h η 1 η 2 η 3 η h 8

9 Viscoelastic FGMs Paulino and Jin (2001); Mukherjee and Paulino (2003) Material with Separable Form E x, t E( x) f( t) E 1 (x) E 2 (x) E 3 (x) E h (x) η 1 η 2 η 3 η h 9

10 General FE Implementation Correspondence principle based implementation using Laplace transform (Yi and Hilton, 1998) Variational Principle (Potential): (Taylor et al., 1970) 10

11 δ Stationarity: FE Implementation: Basis t t t tt xt, C x t t t x t x t dt dt d t t u t t * kl ijkl, ijkl ijkl ij, ij, u t t u x, t Pi x t t dt d t t, i 0. Ω : volume, S surface with traction Pi C ijkl : constitutive properties ε ij : mechanical strains, ε ij * : thermal strains, u i : displacements, ξ: reduced time related to real time through time-temperature superposition principle given by: t () t a T t dt 0 a is time-temperature shift factor, and T is temperature 11

12 Element stiffness matrix: Force vectors: Mechanical: Thermal: FEM T,, k x t B x C x t B x d ij ik kl lj u u,, f x t N x P x t d i ij j xt, f x t B x C x t t dt d t * th l i, ik kl, ( ) u t u k ij : element stiffness matrix, shape functions N ij and their f i : element force (load) vector derivatives B ij u i : displacement vector ε i : strains related to nodal degrees of ui x, t Nij xq j t freedom q j through isoparametric x, t B xq t i ij j 12

13 FEM: Assembly and Solution Assembling provides global stiffness matrix, K ij and force vectors, F i Equilibrium: Correspondence principle: t U K x t U K x t t dt F x t F x t t j ij, j 0 ij,,, i i t 0,, th, K x s U s F x s F x s ij j i i ã(s) is Laplace transform of a(t), s is transformation variable a( s) a( t) Exp[ st] dt 0 th 13

14 FEM: Implementation Define problem in time-domain (evaluate load vector, F(x, t) and stiffness matrix components K(x) and Λ(t)) Perform Laplace transform to evaluate F ~ (x, s) and Λ ~ (s) Solve linear system of equations to evaluate nodal displacement, U ~ (x,s) Perform inverse Laplace transforms to get the solution, U(x,t) Post-process to evaluate field quantities of interest 14

15 FEM: Verification MATLAB code using GIF and correspondence principle GIF Compare analytical and numerical solutions for graded boundary value problems Viscoelasticity Compare analytical and numerical solutions for viscoelastic bar imposed with creep loading Comparison with Commercial Code ABAQUS (Layered Approach) 15

16 Graded Finite Element Performance Bending example Analytical Solution (line) y b 10 Numerical Solution (markers) x E( x) E E Exp x 16

17 Homogeneous Viscoelastic Verification Creep example shown here y t Numerical inversion performed with 20-Collocation points t time x E( t) E E Exp t / t 17

18 FGM Verification with ABAQUS Simply supported beam in 3-point bending 100-second creep loading Graded viscoelastic material properties FE simulation: Homogeneous: Averaged properties Layered (ABAQUS): 6-Layers 12-Layers Graded: Same mesh structure as 6-Layers 18

19 Reference Material Properties 19

20 FEM Meshes 6-Layers / FGM / Homogeneous 3146 DOFs 6-node triangle elements 12-Layers 6878 DOFs 6-node triangle elements 20

21 Numerical Results (100-Collocation points) 21

22 Main Contribution: Concluding Remarks development of graded viscoelastic elements Extension of the Generalized Isoparametric Formulation (Elastic) to rate-dependent materials (viscoelastic) Correspondence Principle based formulation: separable material properties Companion presentation (paper) demonstrates application of this work to field of asphalt pavements Extension: Graded Viscoelastic formulation in time domain 22

23 Thank you for your attention!! z y x E 1 E 2 E N τ 1 τ 2 τ N 23

William G. Buttlar Glaucio H. Paulino Harry H. Hilton Phillip B. Blankenship Hervé DiBenedetto. All colleagues and friends

William G. Buttlar Glaucio H. Paulino Harry H. Hilton Phillip B. Blankenship Hervé DiBenedetto. All colleagues and friends Ph.D. Final Exam Asphalt Pavement Aging and Temperature Dependent Properties using a Functionally Graded Viscoelastic Model Eshan V. Dave June 5th 29 Department of Civil and Environmental Engineering University

More information

Creep Compliance Analysis Technique for the Flattened Indirect Tension Test of Asphalt Concrete

Creep Compliance Analysis Technique for the Flattened Indirect Tension Test of Asphalt Concrete Creep Compliance Analysis Technique for the Flattened Indirect Tension Test of Asphalt Concrete Eshan V. Dave Andrew F. Braham Prof. William G. Buttlar Prof. Glaucio H. Paulino CONCREEP8, Ise-Shima, Japan

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

The Elastic-Viscoelastic Correspondence Principle for Functionally Graded Materials, Revisited

The Elastic-Viscoelastic Correspondence Principle for Functionally Graded Materials, Revisited S. Mukherjee ASME Fellow Department of Theoretical and Applied Mechanics, Cornell University, Kimball Hall, Ithaca, NY 14853 e-mail: sm85@cornell.edu Glaucio H. Paulino 1 Mem. ASME Department of Civil

More information

Stress analysis of a stepped bar

Stress analysis of a stepped bar Stress analysis of a stepped bar Problem Find the stresses induced in the axially loaded stepped bar shown in Figure. The bar has cross-sectional areas of A ) and A ) over the lengths l ) and l ), respectively.

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

USE OF A LINEAR VISCOELASTIC CONSTITUTIVE LAW TO MODEL THE TIME DEPENDENT BEHAVIOUR OF ORTHOTROPIC GLASSFIBRE REINFORCED PLASTIC

USE OF A LINEAR VISCOELASTIC CONSTITUTIVE LAW TO MODEL THE TIME DEPENDENT BEHAVIOUR OF ORTHOTROPIC GLASSFIBRE REINFORCED PLASTIC USE OF A LINEAR VISCOELASTIC CONSTITUTIVE LAW TO MODEL THE TIME DEPENDENT BEHAVIOUR OF ORTHOTROPIC GLASSFIBRE REINFORCED PLASTIC Roland. M. Hinterhoelzl 1, Guenther Schullerer 1, Kurt Moser 1 1 Institut

More information

Code No: RT41033 R13 Set No. 1 IV B.Tech I Semester Regular Examinations, November - 2016 FINITE ELEMENT METHODS (Common to Mechanical Engineering, Aeronautical Engineering and Automobile Engineering)

More information

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM)

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM) BACKGROUNDS Two Models of Deformable Body continuum rigid-body spring deformation expressed in terms of field variables assembly of rigid-bodies connected by spring Distinct Element Method (DEM) simple

More information

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Introduction Till now we dealt only with finite elements having straight edges.

More information

MODELLING BAMBOO AS A FUNCTIONALLY GRADED MATERIAL

MODELLING BAMBOO AS A FUNCTIONALLY GRADED MATERIAL MODELLING BAMBOO AS A FUNCTIONALLY GRADED MATERIAL Emílio Carlos Nelli Silva Associate Professor Department of ofmechatronics and Mechanical Systems Engineering Escola Politécnica da dauniversidade de

More information

Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials

Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials Jeong-Ho Kim Glaucio H. Paulino 2 e-mail: paulino@uiuc.edu Department of Civil and Environmental Engineering, Newmark Laboratory, The University of Illinois at Urbana-Champaign, 205 North Mathews Avenue,

More information

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method 9210-220 Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method You should have the following for this examination one answer book scientific calculator No

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

Numerical analyses of cement-based piezoelectric smart composites

Numerical analyses of cement-based piezoelectric smart composites Numerical analyses of cement-based piezoelectric smart composites *Jan Sladek 1, Pavol Novak 2, Peter L. Bishay 3, and Vladimir Sladek 1 1 Institute of Construction and Architecture, Slovak Academy of

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

Why Dynamic Analysis Is Needed?

Why Dynamic Analysis Is Needed? Impact of Wide-Base Tires on Pavement and Trucking Operation: Advanced Analysis Imad L. Al-Qadi Founder Professor of Engineering Illinois Center for Transportation Why Dynamic Analysis Is Needed? Quasi-static

More information

Computation of Mixed-Mode Stress Intensity Factors for Cracks in Three-Dimensional Functionally Graded Solids

Computation of Mixed-Mode Stress Intensity Factors for Cracks in Three-Dimensional Functionally Graded Solids Computation of Mixed-Mode Stress Intensity Factors for Cracks in Three-Dimensional Functionally Graded Solids Matthew C. Walters 1 ; Glaucio H. Paulino 2 ; and Robert H. Dodds Jr. 3 Abstract: This work

More information

JEPPIAAR ENGINEERING COLLEGE

JEPPIAAR ENGINEERING COLLEGE JEPPIAAR ENGINEERING COLLEGE Jeppiaar Nagar, Rajiv Gandhi Salai 600 119 DEPARTMENT OFMECHANICAL ENGINEERING QUESTION BANK VI SEMESTER ME6603 FINITE ELEMENT ANALYSIS Regulation 013 SUBJECT YEAR /SEM: III

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS The Q4 element has four nodes and eight nodal dof. The shape can be any quadrilateral; we ll concentrate on a rectangle now. The displacement field in terms

More information

ENGN 2290: Plasticity Computational plasticity in Abaqus

ENGN 2290: Plasticity Computational plasticity in Abaqus ENGN 229: Plasticity Computational plasticity in Abaqus The purpose of these exercises is to build a familiarity with using user-material subroutines (UMATs) in Abaqus/Standard. Abaqus/Standard is a finite-element

More information

ME FINITE ELEMENT ANALYSIS FORMULAS

ME FINITE ELEMENT ANALYSIS FORMULAS ME 2353 - FINITE ELEMENT ANALYSIS FORMULAS UNIT I FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS 01. Global Equation for Force Vector, {F} = [K] {u} {F} = Global Force Vector [K] = Global Stiffness

More information

Mechanical Models for Asphalt Behavior and Performance

Mechanical Models for Asphalt Behavior and Performance Mechanical Models for Asphalt Behavior and Performance All Attendees Are Muted Questions and Answers Please type your questions into your webinar control panel We will read your questions out loud, and

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

Extraction of Cohesive Properties of Elasto-Plastic material using Inverse Analysis

Extraction of Cohesive Properties of Elasto-Plastic material using Inverse Analysis th U.S. National Congress on Computational Mechanics Extraction of Cohesive Properties of Elasto-Plastic material using Inverse Analysis Arun Lal Gain, Jay Carroll, Glaucio H. Paulino, John Lambros University

More information

Mixed-Mode Crack Propagation in Functionally Graded Materials

Mixed-Mode Crack Propagation in Functionally Graded Materials Materials Science Forum Vols. 492-493 (25) pp. 49-414 online at http://www.scientific.net 25 Trans Tech Publications, Switzerland Mixed-Mode Crack Propagation in Functionally Graded Materials Jeong-Ho

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

University of Sheffield The development of finite elements for 3D structural analysis in fire

University of Sheffield The development of finite elements for 3D structural analysis in fire The development of finite elements for 3D structural analysis in fire Chaoming Yu, I. W. Burgess, Z. Huang, R. J. Plank Department of Civil and Structural Engineering StiFF 05/09/2006 3D composite structures

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Lecture 7 Constitutive Behavior of Asphalt Concrete

Lecture 7 Constitutive Behavior of Asphalt Concrete Lecture 7 Constitutive Behavior of Asphalt Concrete What is a Constitutive Model? A constitutive model or constitutive equation is a relation between two physical quantities that is specific to a material

More information

Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials

Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Engineering Mechanics Dissertations & Theses Mechanical & Materials Engineering, Department of Winter 12-9-2011 Generic

More information

Chapter 3 Variational Formulation & the Galerkin Method

Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 1 Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 2 Today s Lecture Contents: Introduction Differential formulation

More information

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen CIV-E16 Engineering Computation and Simulation Examination, December 12, 217 / Niiranen This examination consists of 3 problems rated by the standard scale 1...6. Problem 1 Let us consider a long and tall

More information

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup,

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup, Introduction to Finite Element Analysis Using MATLAB and Abaqus Amar Khennane Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

Three-Dimensional Explicit Parallel Finite Element Analysis of Functionally Graded Solids under Impact Loading. Ganesh Anandakumar and Jeong-Ho Kim

Three-Dimensional Explicit Parallel Finite Element Analysis of Functionally Graded Solids under Impact Loading. Ganesh Anandakumar and Jeong-Ho Kim Three-Dimensional Eplicit Parallel Finite Element Analsis of Functionall Graded Solids under Impact Loading Ganesh Anandaumar and Jeong-Ho Kim Department of Civil and Environmental Engineering, Universit

More information

My Fifty Years with Finite Elements

My Fifty Years with Finite Elements Robert L. Taylor Department of Civil & Environmental Engineering University of California, Berkeley WCCM8/ECCOMAS 2008 Congress: 20 June - 4 July 2008 Outline: Presentation summarizes: Historical overview

More information

The Finite Element Method for Solid and Structural Mechanics

The Finite Element Method for Solid and Structural Mechanics The Finite Element Method for Solid and Structural Mechanics Sixth edition O.C. Zienkiewicz, CBE, FRS UNESCO Professor of Numerical Methods in Engineering International Centre for Numerical Methods in

More information

BHAR AT HID AS AN ENGIN E ERI N G C O L L E G E NATTR A MPA LL I

BHAR AT HID AS AN ENGIN E ERI N G C O L L E G E NATTR A MPA LL I BHAR AT HID AS AN ENGIN E ERI N G C O L L E G E NATTR A MPA LL I 635 8 54. Third Year M E C H A NICAL VI S E M ES TER QUE S T I ON B ANK Subject: ME 6 603 FIN I T E E LE ME N T A N A L YSIS UNI T - I INTRODUCTION

More information

Concrete Fracture Prediction Using Virtual Internal Bond Model with Modified Morse Functional Potential

Concrete Fracture Prediction Using Virtual Internal Bond Model with Modified Morse Functional Potential Concrete Fracture Prediction Using Virtual Internal Bond Model with Modified Morse Functional Potential Kyoungsoo Park, Glaucio H. Paulino and Jeffery R. Roesler Department of Civil and Environmental Engineering,

More information

Theoretical Manual Theoretical background to the Strand7 finite element analysis system

Theoretical Manual Theoretical background to the Strand7 finite element analysis system Theoretical Manual Theoretical background to the Strand7 finite element analysis system Edition 1 January 2005 Strand7 Release 2.3 2004-2005 Strand7 Pty Limited All rights reserved Contents Preface Chapter

More information

Cohesive Zone Modeling of Dynamic Fracture: Adaptive Mesh Refinement and Coarsening

Cohesive Zone Modeling of Dynamic Fracture: Adaptive Mesh Refinement and Coarsening Cohesive Zone Modeling of Dynamic Fracture: Adaptive Mesh Refinement and Coarsening Glaucio H. Paulino 1, Kyoungsoo Park 2, Waldemar Celes 3, Rodrigo Espinha 3 1 Department of Civil and Environmental Engineering

More information

Finite Element Method

Finite Element Method Finite Element Method Finite Element Method (ENGC 6321) Syllabus Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered in this course one dimensional

More information

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed Structural Analysis of Truss Structures using Stiffness Matrix Dr. Nasrellah Hassan Ahmed FUNDAMENTAL RELATIONSHIPS FOR STRUCTURAL ANALYSIS In general, there are three types of relationships: Equilibrium

More information

ELASTOPLASTIC STEEL BEAM BENDING ANALYSIS BY USING ABAQUS

ELASTOPLASTIC STEEL BEAM BENDING ANALYSIS BY USING ABAQUS 11 ELASTOPLASTIC STEEL BEAM BENDING ANALYSIS BY USING ABAQUS Biswajit Jena * * Corresponding author: biswa.tech88@gmail.com Abstract: In recent years tremendous efforts have been made in development of

More information

EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM

EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM Proceedings of the International Conference on Mechanical Engineering 2007 (ICME2007) 29-31 December 2007, Dhaka, Bangladesh ICME2007-AM-76 EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE

More information

INVERSE ANALYSIS METHODS OF IDENTIFYING CRUSTAL CHARACTERISTICS USING GPS ARRYA DATA

INVERSE ANALYSIS METHODS OF IDENTIFYING CRUSTAL CHARACTERISTICS USING GPS ARRYA DATA Problems in Solid Mechanics A Symposium in Honor of H.D. Bui Symi, Greece, July 3-8, 6 INVERSE ANALYSIS METHODS OF IDENTIFYING CRUSTAL CHARACTERISTICS USING GPS ARRYA DATA M. HORI (Earthquake Research

More information

Fracture Test & Fracture Parameters of Self Compacting Concrete using ANSYS. Zeel Vashi 1,Megha Thomas 2 I. INTRODUCTION

Fracture Test & Fracture Parameters of Self Compacting Concrete using ANSYS. Zeel Vashi 1,Megha Thomas 2 I. INTRODUCTION International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 3.45 (SJIF-2015), e-issn: 2455-2584 Volume 3, Issue 05, May-2017 Fracture Test & Fracture Parameters

More information

A simple Galerkin boundary element method for three-dimensional crack problems in functionally graded materials

A simple Galerkin boundary element method for three-dimensional crack problems in functionally graded materials Materials Science Forum Vols. 492-493 (2005) pp 367-372 Online available since 2005/Aug/15 at www.scientific.net (2005) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.492-493.367

More information

Performance Evaluation of Various Smoothed Finite Element Methods with Tetrahedral Elements in Large Deformation Dynamic Analysis

Performance Evaluation of Various Smoothed Finite Element Methods with Tetrahedral Elements in Large Deformation Dynamic Analysis Performance Evaluation of Various Smoothed Finite Element Methods with Tetrahedral Elements in Large Deformation Dynamic Analysis Ryoya IIDA, Yuki ONISHI, Kenji AMAYA Tokyo Institute of Technology, Japan

More information

Chapter 2. Formulation of Finite Element Method by Variational Principle

Chapter 2. Formulation of Finite Element Method by Variational Principle Chapter 2 Formulation of Finite Element Method by Variational Principle The Concept of Variation of FUNCTIONALS Variation Principle: Is to keep the DIFFERENCE between a REAL situation and an APPROXIMATE

More information

Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load

Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load Arun Mukherjee 1, Dr. Sreyashi Das (nee Pal) 2 and Dr. A. Guha Niyogi 3 1 PG student, 2 Asst. Professor,

More information

. D CR Nomenclature D 1

. D CR Nomenclature D 1 . D CR Nomenclature D 1 Appendix D: CR NOMENCLATURE D 2 The notation used by different investigators working in CR formulations has not coalesced, since the topic is in flux. This Appendix identifies the

More information

Large deflection analysis of planar solids based on the Finite Particle Method

Large deflection analysis of planar solids based on the Finite Particle Method yuying@uiuc.edu 10 th US National Congress on Computational Mechanics Large deflection analysis of planar solids based on the Finite Particle Method 1, 2 Presenter: Ying Yu Advisors: Prof. Glaucio H. Paulino

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi Lecture 1-20 September, 2017

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi Lecture 1-20 September, 2017 The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Prof. Dr. Eleni Chatzi Lecture 1-20 September, 2017 Institute of Structural Engineering Method of Finite Elements II 1 Course

More information

Due Tuesday, September 21 st, 12:00 midnight

Due Tuesday, September 21 st, 12:00 midnight Due Tuesday, September 21 st, 12:00 midnight The first problem discusses a plane truss with inclined supports. You will need to modify the MatLab software from homework 1. The next 4 problems consider

More information

A Basic Primer on the Finite Element Method

A Basic Primer on the Finite Element Method A Basic Primer on the Finite Element Method C. Berdin A. Rossoll March 1st 2002 1 Purpose Complex geometry and/or boundary conditions Local solution Non-linearities: geometric (large deformations/displacements)

More information

Strain Response of Hot-Mix Asphalt Overlays for Bottom-Up Reflective Cracking

Strain Response of Hot-Mix Asphalt Overlays for Bottom-Up Reflective Cracking Strain Response of Hot-Mix Asphalt Overlays for Bottom-Up Reflective Cracking Z. G. Ghauch and G. G. Abou Jaoude Department of Civil and Environmental Engineering, Lebanese American University, Byblos,

More information

Multi-mode revisited

Multi-mode revisited Multi-mode revisited Testing the application of shift factors S.J.M Hellenbrand 515217 MT 7.29 Coaches: Ir. L.C.A. van Breemen Dr. Ir. L.E. Govaert 2-7- 7 Contents Contents 1 Introduction 2 I Polymers

More information

A sandwich bar element for geometric nonlinear thermo-elastic analysis

A sandwich bar element for geometric nonlinear thermo-elastic analysis Applied and Computational Mechanics 2 2008) 25 36 A sandwich bar element for geometric nonlinear thermo-elastic analysis R. Ďuriš a,,j.murín b a Faculty of Materials Science and Technology, Slovak University

More information

ME 1401 FINITE ELEMENT ANALYSIS UNIT I PART -A. 2. Why polynomial type of interpolation functions is mostly used in FEM?

ME 1401 FINITE ELEMENT ANALYSIS UNIT I PART -A. 2. Why polynomial type of interpolation functions is mostly used in FEM? SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI 621 105 Department of Mechanical Engineering ME 1401 FINITE ELEMENT ANALYSIS 1.

More information

Modelling Anisotropic, Hyperelastic Materials in ABAQUS

Modelling Anisotropic, Hyperelastic Materials in ABAQUS Modelling Anisotropic, Hyperelastic Materials in ABAQUS Salvatore Federico and Walter Herzog Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary 2500 University Drive NW, Calgary,

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY. k a. N t

MATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY. k a. N t MATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY N t i Gt () G0 1 i ( 1 e τ = α ) i= 1 k a k b τ PART A RELAXING PLASTIC PAPERCLIP Consider an ordinary paperclip made of plastic, as they more

More information

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

NONLINEAR CONTINUUM FORMULATIONS CONTENTS NONLINEAR CONTINUUM FORMULATIONS CONTENTS Introduction to nonlinear continuum mechanics Descriptions of motion Measures of stresses and strains Updated and Total Lagrangian formulations Continuum shell

More information

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Ever J. Barbero Department of Mechanical and Aerospace Engineering West Virginia University USA CRC Press Taylor &.Francis Group Boca Raton London New York

More information

Lecture notes Models of Mechanics

Lecture notes Models of Mechanics Lecture notes Models of Mechanics Anders Klarbring Division of Mechanics, Linköping University, Sweden Lecture 7: Small deformation theories Klarbring (Mechanics, LiU) Lecture notes Linköping 2012 1 /

More information

Mechanical Models for Asphalt Behavior and Performance

Mechanical Models for Asphalt Behavior and Performance Mechanical Models for Asphalt Behavior and Performance Introduction and Review of Linear Viscoelastic Behaviors About the webinar series Past, current, and future plan for webinar series Introduction to

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

International Journal of Advanced Engineering Technology E-ISSN

International Journal of Advanced Engineering Technology E-ISSN Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,

More information

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 48 (5) A TWO-PHASE SIMPLIFIED COLLAPSE ANALYSIS OF RC BUILDINGS PHASE : SPRING NETWORK PHASE Shanthanu RAJASEKHARAN, Muneyoshi

More information

TIME-DEPENDENT ANALYSIS OF PARTIALLY PRESTRESSED CONTINUOUS COMPOSITE BEAMS

TIME-DEPENDENT ANALYSIS OF PARTIALLY PRESTRESSED CONTINUOUS COMPOSITE BEAMS 2nd Int. PhD Symposium in Civil Engineering 998 Budapest IME-DEPENDEN ANAYSIS OF PARIAY PRESRESSED CONINUOUS COMPOSIE BEAMS M. Sar and Assoc. Prof. J. apos 2 Slova echnical University, Faculty of Civil

More information

MAE 323: Chapter 6. Structural Models

MAE 323: Chapter 6. Structural Models Common element types for structural analyis: oplane stress/strain, Axisymmetric obeam, truss,spring oplate/shell elements o3d solid ospecial: Usually used for contact or other constraints What you need

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 2014 Quiz #2 April 14, 2014 Name: SOLUTION ID#: PS1.:

More information

δ 25 Crack opening displacement parameter in cohesive zone models: experiments and simulations in asphalt concrete

δ 25 Crack opening displacement parameter in cohesive zone models: experiments and simulations in asphalt concrete Fatigue & Fracture of Engineering Materials & Structures doi:./j.46-2695.28.272.x Crack opening displacement parameter in cohesive zone models: experiments and simulations in asphalt concrete S. H. SONG,

More information

Chapter 2 Finite Element Formulations

Chapter 2 Finite Element Formulations Chapter 2 Finite Element Formulations The governing equations for problems solved by the finite element method are typically formulated by partial differential equations in their original form. These are

More information

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution Eric de Sturler", Chau Le'', Shun Wang", Glaucio Paulino'' " Department

More information

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS 1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 2011-01-14 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal

More information

Contents. Prologue Introduction. Classical Approximation... 19

Contents. Prologue Introduction. Classical Approximation... 19 Contents Prologue........................................................................ 15 1 Introduction. Classical Approximation.................................. 19 1.1 Introduction................................................................

More information

MODELLING MIXED-MODE RATE-DEPENDENT DELAMINATION IN LAYERED STRUCTURES USING GEOMETRICALLY NONLINEAR BEAM FINITE ELEMENTS

MODELLING MIXED-MODE RATE-DEPENDENT DELAMINATION IN LAYERED STRUCTURES USING GEOMETRICALLY NONLINEAR BEAM FINITE ELEMENTS PROCEEDINGS Proceedings of the 25 th UKACM Conference on Computational Mechanics 12-13 April 217, University of Birmingham Birmingham, United Kingdom MODELLING MIXED-MODE RATE-DEPENDENT DELAMINATION IN

More information

Interconversion of Dynamic Modulus to Creep Compliance and Relaxation Modulus: Numerical Modeling and Laboratory Validation

Interconversion of Dynamic Modulus to Creep Compliance and Relaxation Modulus: Numerical Modeling and Laboratory Validation Final Report September 2016 Interconversion of Dynamic Modulus to Creep Compliance and Relaxation Modulus: Numerical Modeling and Laboratory Validation SOLARIS Consortium, Tier 1 University Transportation

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

Topic 5: Finite Element Method

Topic 5: Finite Element Method Topic 5: Finite Element Method 1 Finite Element Method (1) Main problem of classical variational methods (Ritz method etc.) difficult (op impossible) definition of approximation function ϕ for non-trivial

More information

Enhancement of magnetoelectric coupling in multiferroic composites via FEM simulation

Enhancement of magnetoelectric coupling in multiferroic composites via FEM simulation Enhancement of magnetoelectric coupling in multiferroic composites via FEM simulation *Artjom Avakian 1), Andreas Ricoeur 2) 1), 2) Institute of Mechanics, University of Kassel, Kassel 34125, Germany 1)

More information

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems MECh300H Introduction to Finite Element Methods Finite Element Analysis (F.E.A.) of -D Problems Historical Background Hrenikoff, 94 frame work method Courant, 943 piecewise polynomial interpolation Turner,

More information

BAR ELEMENT WITH VARIATION OF CROSS-SECTION FOR GEOMETRIC NON-LINEAR ANALYSIS

BAR ELEMENT WITH VARIATION OF CROSS-SECTION FOR GEOMETRIC NON-LINEAR ANALYSIS Journal of Computational and Applied Mechanics, Vol.., No. 1., (2005), pp. 83 94 BAR ELEMENT WITH VARIATION OF CROSS-SECTION FOR GEOMETRIC NON-LINEAR ANALYSIS Vladimír Kutiš and Justín Murín Department

More information

Prepared by M. GUNASHANKAR AP/MECH DEPARTMENT OF MECHANICAL ENGINEERING

Prepared by M. GUNASHANKAR AP/MECH DEPARTMENT OF MECHANICAL ENGINEERING CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY-KARUR FINITE ELEMENT ANALYSIS 2 MARKS QUESTIONS WITH ANSWER Prepared by M. GUNASHANKAR AP/MECH DEPARTMENT OF MECHANICAL ENGINEERING FINITE ELEMENT ANALYSIS

More information

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials GG303 Lecture 2 0 9/4/01 1 RHEOLOGY & LINEAR ELASTICITY I II Main Topics A Rheology: Macroscopic deformation behavior B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS PART A (2 MARKS)

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS PART A (2 MARKS) DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS UNIT I : FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PART A (2 MARKS) 1. Write the types

More information

A MODEL AND FINITE ELEMENT IMPLEMENTATION FOR THE THERMO-MECHANICAL ANALYSIS OF POLYMER COMPOSITES EXPOSED TO FIRE

A MODEL AND FINITE ELEMENT IMPLEMENTATION FOR THE THERMO-MECHANICAL ANALYSIS OF POLYMER COMPOSITES EXPOSED TO FIRE A MODEL AND FINITE ELEMENT IMPLEMENTATION FOR THE THERMO-MECHANICAL ANALYSIS OF POLYMER COMPOSITES EXPOSED TO FIRE Z. Zhang and S.W. Case Materials Response Group, Department of Engineering Science & Mechanics

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

Neuro -Finite Element Static Analysis of Structures by Assembling Elemental Neuro -Modelers

Neuro -Finite Element Static Analysis of Structures by Assembling Elemental Neuro -Modelers Neuro -Finite Element Static Analysis of Structures by Assembling Elemental Neuro -Modelers Abdolreza Joghataie Associate Prof., Civil Engineering Department, Sharif University of Technology, Tehran, Iran.

More information

Constitutive Model for High Density Polyethylene to Capture Strain Reversal

Constitutive Model for High Density Polyethylene to Capture Strain Reversal Constitutive Model for High Density Polyethylene to Capture Strain Reversal Abdul Ghafar Chehab 1 and Ian D. Moore 2 1 Research Assistant, GeoEngineering Centre at Queen s RMC, Queen s University, Kingston,

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information