Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Size: px
Start display at page:

Download "Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky"

Transcription

1 Monte Carlo Lecture 15 4/9/18 1

2 Sampling with dynamics In Molecular Dynamics we simulate evolution of a system over time according to Newton s equations, conserving energy Averages (thermodynamic properties) only includes phenomena that occur in the time scale of the MD simulation Sometimes excitations of the system are beyond MD time scale A i i A e i e E E i i 1 T T 0 A( t) dt Rely on ergodicity to sample the entire phase space Need to know dynamics! 2

3 Simulation boundary conditions Specify the macroscopic boundary conditions What thermodynamic variable are kept constant? Need to specify one out of each conjugate pair of variables du TdS PdV dn... 3

4 Counting excitations If excitations are easily countable can construct free energies explicitly using ensemble statistics F( V, T ) E( V ) EZP ( V ) TS( V, T ) Bose Einstein statistics V FV T EV k T, V q q,, B ln 1 exp q, 2 q, vibrational spectrum C v Ab initio [1]... Expt [2] 4

5 Sampling with dynamics Difficult to explore the entire configuration space if potential energy fluctuates and rare events need to be included Solution: bias dynamics to evenly explore (free) energy landscape along a low dimensional collective variable Umbrella sampling, metadynamics, hyperdynamics Either explicitly constrain dynamics or encourage exploration of barriers 5

6 Random sampling Configuration space (x, p) has high dimensionality ~6N Number of configurations / excitations to sample is very large Instead of following time dynamics, would it makes sense to just choose configurations randomly and compute averages? How do you properly average over such random samples? The key is to average with the correct weights, given by the probability that a system is found in particular microstate U P i E A i P A i i i i Probability distributions are given by statistical mechanics 6

7 Monte Carlo algorithm 1. Define a domain of possible inputs (groups of states) 2. Generate inputs randomly from a probability distribution over the domain 3. Compute observable quantities: Perform a deterministic computation on the inputs 4. Aggregate the results 7

8 Random variables Random numbers on computers are pseudo random, they are generated deterministically using a mathematical formula, e.g. X 0 = seed Built in library functions often have poor statistical properties and some will repeat patterns after tens of thousands of trials For 32 bit integers maximum period is 2 32, or about 4 billion Need: uncorrelated, uniform, fast, portable, reproducible True random numbers can only be obtained from physical devices sampling thermal noise, radioactive decay, etc 8

9 Testing randomness PHP rand() on Microsoft Windows 2008: Debian GNU/Linux OpenSSL vulnerability due to reduced randomness in security keys 9

10 Probability distributions A continuous random variable X is distributed according to a probability density function f X : Example: Get an exponential random variable Given a uniform random variable p on [0,1] will be exponentially distributed 10

11 Monte Carlo integration Randomly throwing darts in a square and counting fraction inside the circle can give an estimate of π 11

12 Buffon needle (1777) Needles dropped randomly. What is the probability of a needle falling on one of parallel lines? 12

13 Monte Carlo integration MC can be an efficient way to perform difficult integrations Track the fraction of times you randomly end up below the curve, and multiply by the area of the box A bit silly in 2 or 3 dimensions can use uniform grids What about 6N dimensions? Can t possibly sample everywhere Need m 6N grid points 100 atoms, 5 points = > universe 13

14 Unbiased sampling Want to include only statistically significant states The number of available states at high energy is much larger... Mainly pick states with low weights This is similar to trying to integrate a non uniform function A b a f ( x) dx 1 M M i1 f ( x i ) 14

15 Canonical ensemble A i P i A i Probability of finding a state decreases exponentially with energy 15

16 Importance sampling When most of the weight of the integral comes from a small important range of x where f(x) is large, sampling more often in this region increases accuracy Instead of uniformly random {x i } choose using probability p(x) 16 M i i i b a x p b a x p x f M x p x f dx x p x p x f dx x f A 1 ) ( ) ( ) ( 1 ) ( ) ( ) ( ) ( ) ( ) (

17 Biased sampling Brute force unbiased sampling of the free energy landscape is difficult if it is not smooth and has deep minima and barriers Probability of sampling a 1eV barrier is ~ at 300K Can bias the sampling in order to explore high energy regions with more probability True potential Ideal biasing potential No barrier, perfect sampling 17

18 Biased sampling Perform a simulation in a modified ensemble with probabilities where W(r N ) is a biasing weight function biasing function of r N The effect of introducing the weight function W is equivalent to adding a biasing potential to the Hamiltonian We can use the bias to increase probability of sampling unlikely regions of phase space Need to correct the calculated result to remove the bias 18

19 Biased sampling The average of a quantity A in the canonical ensemble is Unbiased free energy profile can be calculated by subtracting the biasing potential from the biased free energy profile 19

20 Estimators and variance p(x) is chosen to bias the random sample to reduce variance A f f f / p f / p p M M p Choose p(x) to resemble f(x) as much as possible Variance can be made much smaller Need fewer samples to get an accurate estimate of the integral 20

21 Importance sampling If p(x)=cf(x) then variance is zero Perfect estimation with one sample A b a f ( x) dx 1 M M i i1 p( xi ) f ( x ) 21

22 Sampling the canonical ensemble Can we pick states from the ensemble with a probability proportional to Boltzmann weights? How to construct probability weighted sample? Catch: can t sample p B (R), since there are many configurations and normalization Z (partition function) is unknown 22

23 Importance sampling Calculating the average depth of a river with a random walk Only accept moves that are in the river uniform sampling importance sampling D. Frenkel and B. Smit, Understanding Molecular Simulations 23

24 Markov chain Monte Carlo (MCMC) Goal: generate a collection of states according to a desired distribution P B (R), which cannot be sampled directly Hint: we know the relative probabilities of states because we know the ratio of the numerators We will try to indirectly sample the distribution Do this by executing a sequence of random steps through configuration space transition probabilities 24

25 Markov chain Random walk across a set of states with given transition probabilities The steady state probability distribution is encoded in the transition matrix This amounts to finding eigenvector with eigenvalue 1 Example: Google's PageRank algorithm is essentially a Markov chain over the graph of the Web 25

26 Metropolis formalism Probability of finding the system at a later time in another state: This is a matrix equation in the space of probability distributions Markov chain should be ergodic: any state can reach any state We want to reach the steady state equilibrium distribution 26

27 Detailed balance Global balance (necessary at equilibrium) Detailed balance (sufficient but not necessary) no Z We have freedom to choose transition probabilities selection probability acceptance ratio 27

28 Metropolis algorithm 1. Start from initial (random) configuration 2. Randomly perturb the system (e.g. displace particles) 3. Compute energy difference between two states 4. Make a transition with probability use random numbers here ΔE 0 : always accept new configuration ΔE > 0 : accept with probability 5. Repeat steps 2 4, accumulating average 28

29 Model systems Markov chain Monte Carlo (MCMC) algorithms are generally used for sampling from multi dimensional distributions, especially when the number of dimensions is high Atomic liquids Real space moves with small displacements x( t dt) x( t) x (rand[0,1] ) x( t dt ) x( t) x (rand[-0.5, not detail balanced 0.5] ) Smaller moves: better acceptance rate, slower sampling (correlation) Bigger moves: faster sampling, lower acceptance rate Can do one particle or many particle moves (with care) Energies from pair potentials 29

30 Simulation of hard shapes No need to define physical dynamics for problems of packing Joshua A. Anderson, M. Eric Irrgang, Sharon C. Glotzer, Computer Physics Communications,

31 Acceptance ratio Is there a single optimal acceptance ratio? 50% is often cited as a target acceptance ratio. But it really depends on the specifics of your system. Does computation time to test whether a trial move is accepted depend on the magnitude of the move? Not for continuous potentials, but it does for hard spheres a move can be rejected as soon as neighbor overlap is detected. Thus, for hard spheres, rejection is cheap, and we can accommodate lower acceptance ratios (20%). 31

Random Walks A&T and F&S 3.1.2

Random Walks A&T and F&S 3.1.2 Random Walks A&T 110-123 and F&S 3.1.2 As we explained last time, it is very difficult to sample directly a general probability distribution. - If we sample from another distribution, the overlap will

More information

3.320 Lecture 18 (4/12/05)

3.320 Lecture 18 (4/12/05) 3.320 Lecture 18 (4/12/05) Monte Carlo Simulation II and free energies Figure by MIT OCW. General Statistical Mechanics References D. Chandler, Introduction to Modern Statistical Mechanics D.A. McQuarrie,

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Length Scales (c) ICAMS: http://www.icams.de/cms/upload/01_home/01_research_at_icams/length_scales_1024x780.png Goals for today: Background

More information

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds)

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds) Advanced sampling ChE210D Today's lecture: methods for facilitating equilibration and sampling in complex, frustrated, or slow-evolving systems Difficult-to-simulate systems Practically speaking, one is

More information

Basics of Statistical Mechanics

Basics of Statistical Mechanics Basics of Statistical Mechanics Review of ensembles Microcanonical, canonical, Maxwell-Boltzmann Constant pressure, temperature, volume, Thermodynamic limit Ergodicity (see online notes also) Reading assignment:

More information

Monte Carlo (MC) Simulation Methods. Elisa Fadda

Monte Carlo (MC) Simulation Methods. Elisa Fadda Monte Carlo (MC) Simulation Methods Elisa Fadda 1011-CH328, Molecular Modelling & Drug Design 2011 Experimental Observables A system observable is a property of the system state. The system state i is

More information

Lecture 20. Randomness and Monte Carlo. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico

Lecture 20. Randomness and Monte Carlo. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico Lecture 20 Randomness and Monte Carlo J. Chaudhry Department of Mathematics and Statistics University of New Mexico J. Chaudhry (UNM) CS 357 1 / 40 What we ll do: Random number generators Monte-Carlo integration

More information

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that From Random Numbers to Monte Carlo Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that Random Walk Through Life Random Walk Through Life If you flip the coin 5 times you will

More information

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ 3.320: Lecture 19 (4/14/05) F(µ,T) = F(µ ref,t) + < σ > dµ µ µ ref Free Energies and physical Coarse-graining T S(T) = S(T ref ) + T T ref C V T dt Non-Boltzmann sampling and Umbrella sampling Simple

More information

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission.

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission. Course MP3 Lecture 4 13/11/2006 Monte Carlo method I An introduction to the use of the Monte Carlo method in materials modelling Dr James Elliott 4.1 Why Monte Carlo? The name derives from the association

More information

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry JNCASR August 20, 21 2009 Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles Srikanth Sastry Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore

More information

Random processes and probability distributions. Phys 420/580 Lecture 20

Random processes and probability distributions. Phys 420/580 Lecture 20 Random processes and probability distributions Phys 420/580 Lecture 20 Random processes Many physical processes are random in character: e.g., nuclear decay (Poisson distributed event count) P (k, τ) =

More information

A simple algorithm that will generate a sequence of integers between 0 and m is:

A simple algorithm that will generate a sequence of integers between 0 and m is: Using the Pseudo-Random Number generator Generating random numbers is a useful technique in many numerical applications in Physics. This is because many phenomena in physics are random, and algorithms

More information

Markov Chain Monte Carlo Simulations and Their Statistical Analysis An Overview

Markov Chain Monte Carlo Simulations and Their Statistical Analysis An Overview Markov Chain Monte Carlo Simulations and Their Statistical Analysis An Overview Bernd Berg FSU, August 30, 2005 Content 1. Statistics as needed 2. Markov Chain Monte Carlo (MC) 3. Statistical Analysis

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture 0 Simple Biasing Methods David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo simulation Markov chain to generate

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Importance Sampling in Monte Carlo Simulation of Rare Transition Events

Importance Sampling in Monte Carlo Simulation of Rare Transition Events Importance Sampling in Monte Carlo Simulation of Rare Transition Events Wei Cai Lecture 1. August 1, 25 1 Motivation: time scale limit and rare events Atomistic simulations such as Molecular Dynamics (MD)

More information

Classical Monte-Carlo simulations

Classical Monte-Carlo simulations Classical Monte-Carlo simulations Graduate Summer Institute Complex Plasmas at the Stevens Insitute of Technology Henning Baumgartner, A. Filinov, H. Kählert, P. Ludwig and M. Bonitz Christian-Albrechts-University

More information

MONTE CARLO METHOD. Reference1: Smit Frenkel, Understanding molecular simulation, second edition, Academic press, 2002.

MONTE CARLO METHOD. Reference1: Smit Frenkel, Understanding molecular simulation, second edition, Academic press, 2002. MONTE CARLO METHOD Reference1: Smit Frenkel, Understanding molecular simulation, second edition, Academic press, 2002. Reference 2: David P. Landau., Kurt Binder., A Guide to Monte Carlo Simulations in

More information

Monte Carlo Methods. PHY 688: Numerical Methods for (Astro)Physics

Monte Carlo Methods. PHY 688: Numerical Methods for (Astro)Physics Monte Carlo Methods Random Numbers How random is random? From Pang: we want Long period before sequence repeats Little correlation between numbers (plot ri+1 vs ri should fill the plane) Fast Typical random

More information

Computational Physics (6810): Session 13

Computational Physics (6810): Session 13 Computational Physics (6810): Session 13 Dick Furnstahl Nuclear Theory Group OSU Physics Department April 14, 2017 6810 Endgame Various recaps and followups Random stuff (like RNGs :) Session 13 stuff

More information

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint

Chapter 4: Monte Carlo Methods. Paisan Nakmahachalasint Chapter 4: Monte Carlo Methods Paisan Nakmahachalasint Introduction Monte Carlo Methods are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo

More information

Markov Chain Monte Carlo Method

Markov Chain Monte Carlo Method Markov Chain Monte Carlo Method Macoto Kikuchi Cybermedia Center, Osaka University 6th July 2017 Thermal Simulations 1 Why temperature 2 Statistical mechanics in a nutshell 3 Temperature in computers 4

More information

3.320 Lecture 23 (5/3/05)

3.320 Lecture 23 (5/3/05) 3.320 Lecture 23 (5/3/05) Faster, faster,faster Bigger, Bigger, Bigger Accelerated Molecular Dynamics Kinetic Monte Carlo Inhomogeneous Spatial Coarse Graining 5/3/05 3.320 Atomistic Modeling of Materials

More information

Monte Carlo integration (naive Monte Carlo)

Monte Carlo integration (naive Monte Carlo) Monte Carlo integration (naive Monte Carlo) Example: Calculate π by MC integration [xpi] 1/21 INTEGER n total # of points INTEGER i INTEGER nu # of points in a circle REAL x,y coordinates of a point in

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Numerical integration and importance sampling

Numerical integration and importance sampling 2 Numerical integration and importance sampling 2.1 Quadrature Consider the numerical evaluation of the integral I(a, b) = b a dx f(x) Rectangle rule: on small interval, construct interpolating function

More information

4/18/2011. Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania

4/18/2011. Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania 1. Introduction Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania Bibliography Computer experiments Ensemble averages and time averages Molecular

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS (Semester I: AY 2014-15) Time Allowed: 2 Hours INSTRUCTIONS TO CANDIDATES 1. Please write your student number only. 2. This examination

More information

Importance Sampling in Monte Carlo Simulation of Rare Transition Events

Importance Sampling in Monte Carlo Simulation of Rare Transition Events Importance Sampling in Monte Carlo Simulation of Rare Transition Events Wei Cai Lecture 1. August 1, 25 1 Motivation: time scale limit and rare events Atomistic simulations such as Molecular Dynamics (MD)

More information

Basics of Statistical Mechanics

Basics of Statistical Mechanics Basics of Statistical Mechanics Review of ensembles Microcanonical, canonical, Maxwell-Boltzmann Constant pressure, temperature, volume, Thermodynamic limit Ergodicity (see online notes also) Reading assignment:

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals From Micro to Macro Statistical Mechanics (Statistical

More information

Monte Carlo Methods in Statistical Mechanics

Monte Carlo Methods in Statistical Mechanics Monte Carlo Methods in Statistical Mechanics Mario G. Del Pópolo Atomistic Simulation Centre School of Mathematics and Physics Queen s University Belfast Belfast Mario G. Del Pópolo Statistical Mechanics

More information

Intro. Each particle has energy that we assume to be an integer E i. Any single-particle energy is equally probable for exchange, except zero, assume

Intro. Each particle has energy that we assume to be an integer E i. Any single-particle energy is equally probable for exchange, except zero, assume Intro Take N particles 5 5 5 5 5 5 Each particle has energy that we assume to be an integer E i (above, all have 5) Particle pairs can exchange energy E i! E i +1andE j! E j 1 5 4 5 6 5 5 Total number

More information

7.1 Coupling from the Past

7.1 Coupling from the Past Georgia Tech Fall 2006 Markov Chain Monte Carlo Methods Lecture 7: September 12, 2006 Coupling from the Past Eric Vigoda 7.1 Coupling from the Past 7.1.1 Introduction We saw in the last lecture how Markov

More information

2.3 Estimating PDFs and PDF Parameters

2.3 Estimating PDFs and PDF Parameters .3 Estimating PDFs and PDF Parameters estimating means - discrete and continuous estimating variance using a known mean estimating variance with an estimated mean estimating a discrete pdf estimating a

More information

Optimization Methods via Simulation

Optimization Methods via Simulation Optimization Methods via Simulation Optimization problems are very important in science, engineering, industry,. Examples: Traveling salesman problem Circuit-board design Car-Parrinello ab initio MD Protein

More information

Monte Carlo Methods for Computation and Optimization (048715)

Monte Carlo Methods for Computation and Optimization (048715) Technion Department of Electrical Engineering Monte Carlo Methods for Computation and Optimization (048715) Lecture Notes Prof. Nahum Shimkin Spring 2015 i PREFACE These lecture notes are intended for

More information

Brief Review of Statistical Mechanics

Brief Review of Statistical Mechanics Brief Review of Statistical Mechanics Introduction Statistical mechanics: a branch of physics which studies macroscopic systems from a microscopic or molecular point of view (McQuarrie,1976) Also see (Hill,1986;

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS Markus Holzmann LPMMC, UJF, Grenoble, and LPTMC, UPMC, Paris markus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/markus (Dated: January 24, 2012)

More information

Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase. Andy Long Kridsanaphong Limtragool

Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase. Andy Long Kridsanaphong Limtragool Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase Andy Long Kridsanaphong Limtragool Motivation We want to study the spontaneous formation of micelles and vesicles Applications

More information

Multi-Ensemble Markov Models and TRAM. Fabian Paul 21-Feb-2018

Multi-Ensemble Markov Models and TRAM. Fabian Paul 21-Feb-2018 Multi-Ensemble Markov Models and TRAM Fabian Paul 21-Feb-2018 Outline Free energies Simulation types Boltzmann reweighting Umbrella sampling multi-temperature simulation accelerated MD Analysis methods

More information

Computer simulation methods (1) Dr. Vania Calandrini

Computer simulation methods (1) Dr. Vania Calandrini Computer simulation methods (1) Dr. Vania Calandrini Why computational methods To understand and predict the properties of complex systems (many degrees of freedom): liquids, solids, adsorption of molecules

More information

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21 Preface Reference tables Table A Counting and combinatorics formulae Table B Useful integrals, expansions, and approximations Table C Extensive thermodynamic potentials Table D Intensive per-particle thermodynamic

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5215 NUMERICAL RECIPES WITH APPLICATIONS. (Semester I: AY ) Time Allowed: 2 Hours NATIONAL UNIVERSITY OF SINGAPORE PC55 NUMERICAL RECIPES WITH APPLICATIONS (Semester I: AY 0-) Time Allowed: Hours INSTRUCTIONS TO CANDIDATES. This examination paper contains FIVE questions and comprises

More information

Lecture V: Multicanonical Simulations.

Lecture V: Multicanonical Simulations. Lecture V: Multicanonical Simulations. 1. Multicanonical Ensemble 2. How to get the Weights? 3. Example Runs (2d Ising and Potts models) 4. Re-Weighting to the Canonical Ensemble 5. Energy and Specific

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Kinetic Monte Carlo (KMC)

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Molecular Dynamics (MD): high-frequency motion dictate the time-step (e.g., vibrations). Time step is short: pico-seconds. Direct Monte Carlo (MC): stochastic (non-deterministic)

More information

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo Workshop on Heterogeneous Computing, 16-20, July 2012 No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo K. P. N. Murthy School of Physics, University of Hyderabad July 19, 2012 K P N Murthy

More information

Reduction of Variance. Importance Sampling

Reduction of Variance. Importance Sampling Reduction of Variance As we discussed earlier, the statistical error goes as: error = sqrt(variance/computer time). DEFINE: Efficiency = = 1/vT v = error of mean and T = total CPU time How can you make

More information

Data Analysis I. Dr Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK. 10 lectures, beginning October 2006

Data Analysis I. Dr Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK. 10 lectures, beginning October 2006 Astronomical p( y x, I) p( x, I) p ( x y, I) = p( y, I) Data Analysis I Dr Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK 10 lectures, beginning October 2006 4. Monte Carlo Methods

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC CompSci 590.02 Instructor: AshwinMachanavajjhala Lecture 4 : 590.02 Spring 13 1 Recap: Monte Carlo Method If U is a universe of items, and G is a subset satisfying some property,

More information

Quantum Monte Carlo. Matthias Troyer, ETH Zürich

Quantum Monte Carlo. Matthias Troyer, ETH Zürich Quantum Monte Carlo Matthias Troyer, ETH Zürich 1 1. Monte Carlo Integration 2 Integrating a function Convert the integral to a discrete sum b! f (x)dx = b " a N a N ' i =1 # f a + i b " a % $ N & + O(1/N)

More information

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany Langevin Methods Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 1 D 55128 Mainz Germany Motivation Original idea: Fast and slow degrees of freedom Example: Brownian motion Replace

More information

Today: Fundamentals of Monte Carlo

Today: Fundamentals of Monte Carlo Today: Fundamentals of Monte Carlo What is Monte Carlo? Named at Los Alamos in 940 s after the casino. Any method which uses (pseudo)random numbers as an essential part of the algorithm. Stochastic - not

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Why Water Freezes (A probabilistic view of phase transitions)

Why Water Freezes (A probabilistic view of phase transitions) Why Water Freezes (A probabilistic view of phase transitions) Mark Huber Dept. of Mathematics and Institute of Statistics and Decision Sciences Duke University mhuber@math.duke.edu www.math.duke.edu/~mhuber

More information

Lecture 14: Advanced Conformational Sampling

Lecture 14: Advanced Conformational Sampling Lecture 14: Advanced Conformational Sampling Dr. Ronald M. Levy ronlevy@temple.edu Multidimensional Rough Energy Landscapes MD ~ ns, conformational motion in macromolecules ~µs to sec Interconversions

More information

Parallel Tempering Algorithm in Monte Carlo Simulation

Parallel Tempering Algorithm in Monte Carlo Simulation Parallel Tempering Algorithm in Monte Carlo Simulation Tony Cheung (CUHK) Kevin Zhao (CUHK) Mentors: Ying Wai Li (ORNL) Markus Eisenbach (ORNL) Kwai Wong (UTK/ORNL) Metropolis Algorithm on Ising Model

More information

16. Working with the Langevin and Fokker-Planck equations

16. Working with the Langevin and Fokker-Planck equations 16. Working with the Langevin and Fokker-Planck equations In the preceding Lecture, we have shown that given a Langevin equation (LE), it is possible to write down an equivalent Fokker-Planck equation

More information

Monte Carlo Integration. Computer Graphics CMU /15-662, Fall 2016

Monte Carlo Integration. Computer Graphics CMU /15-662, Fall 2016 Monte Carlo Integration Computer Graphics CMU 15-462/15-662, Fall 2016 Talk Announcement Jovan Popovic, Senior Principal Scientist at Adobe Research will be giving a seminar on Character Animator -- Monday

More information

Today: Fundamentals of Monte Carlo

Today: Fundamentals of Monte Carlo Today: Fundamentals of Monte Carlo What is Monte Carlo? Named at Los Alamos in 1940 s after the casino. Any method which uses (pseudo)random numbers as an essential part of the algorithm. Stochastic -

More information

Monte Carlo Techniques

Monte Carlo Techniques Physics 75.502 Part III: Monte Carlo Methods 40 Monte Carlo Techniques Monte Carlo refers to any procedure that makes use of random numbers. Monte Carlo methods are used in: Simulation of natural phenomena

More information

Homework 2 will be posted by tomorrow morning, due Friday, October 16 at 5 PM.

Homework 2 will be posted by tomorrow morning, due Friday, October 16 at 5 PM. Stationary Distributions: Application Monday, October 05, 2015 2:04 PM Homework 2 will be posted by tomorrow morning, due Friday, October 16 at 5 PM. To prepare to describe the conditions under which the

More information

Multiple time step Monte Carlo

Multiple time step Monte Carlo JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 18 8 NOVEMBER 2002 Multiple time step Monte Carlo Balázs Hetényi a) Department of Chemistry, Princeton University, Princeton, NJ 08544 and Department of Chemistry

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing

MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing Due Thursday Feb. 21 at 5pm in Durand 110. Evan Reed In this homework,

More information

Advanced Monte Carlo Methods Problems

Advanced Monte Carlo Methods Problems Advanced Monte Carlo Methods Problems September-November, 2012 Contents 1 Integration with the Monte Carlo method 2 1.1 Non-uniform random numbers.......................... 2 1.2 Gaussian RNG..................................

More information

Monte Carlo Lecture Notes II, Jonathan Goodman. Courant Institute of Mathematical Sciences, NYU. January 29, 1997

Monte Carlo Lecture Notes II, Jonathan Goodman. Courant Institute of Mathematical Sciences, NYU. January 29, 1997 Monte Carlo Lecture Notes II, Jonathan Goodman Courant Institute of Mathematical Sciences, NYU January 29, 1997 1 Introduction to Direct Sampling We think of the computer \random number generator" as an

More information

Approximate inference in Energy-Based Models

Approximate inference in Energy-Based Models CSC 2535: 2013 Lecture 3b Approximate inference in Energy-Based Models Geoffrey Hinton Two types of density model Stochastic generative model using directed acyclic graph (e.g. Bayes Net) Energy-based

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics KTH Royal Institute of Technology jimmyol@kth.se Lecture 2 Random number generation 27 March 2014 Computer Intensive Methods

More information

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 K. Kremer Max Planck Institute for Polymer Research, Mainz Overview Simulations, general considerations

More information

Monte Carlo Simulation of the Ising Model. Abstract

Monte Carlo Simulation of the Ising Model. Abstract Monte Carlo Simulation of the Ising Model Saryu Jindal 1 1 Department of Chemical Engineering and Material Sciences, University of California, Davis, CA 95616 (Dated: June 9, 2007) Abstract This paper

More information

Sources of randomness

Sources of randomness Random Number Generator Chapter 7 In simulations, we generate random values for variables with a specified distribution Ex., model service times using the exponential distribution Generation of random

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

1. Introductory Examples

1. Introductory Examples 1. Introductory Examples We introduce the concept of the deterministic and stochastic simulation methods. Two problems are provided to explain the methods: the percolation problem, providing an example

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Markov Processes. Stochastic process. Markov process

Markov Processes. Stochastic process. Markov process Markov Processes Stochastic process movement through a series of well-defined states in a way that involves some element of randomness for our purposes, states are microstates in the governing ensemble

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

Monte Carlo Methods in Statistical Physics: I. Error analysis for uncorrelated data

Monte Carlo Methods in Statistical Physics: I. Error analysis for uncorrelated data 1 Monte Carlo Methods in Statistical Physics: I. Error analysis for uncorrelated data Andrea Pelissetto Andrea.Pelissetto@roma1.infn.it Dipartimento di Fisica Università di Roma La Sapienza Statistical

More information

Brownian Motion and Langevin Equations

Brownian Motion and Langevin Equations 1 Brownian Motion and Langevin Equations 1.1 Langevin Equation and the Fluctuation- Dissipation Theorem The theory of Brownian motion is perhaps the simplest approximate way to treat the dynamics of nonequilibrium

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2015 http://www.astro.cornell.edu/~cordes/a6523 Lecture 23:! Nonlinear least squares!! Notes Modeling2015.pdf on course

More information

Scientific Computing: Monte Carlo

Scientific Computing: Monte Carlo Scientific Computing: Monte Carlo Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 April 5th and 12th, 2012 A. Donev (Courant Institute)

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Probabilistic Models of Cognition, 2011 http://www.ipam.ucla.edu/programs/gss2011/ Roadmap: Motivation Monte Carlo basics What is MCMC? Metropolis Hastings and Gibbs...more tomorrow.

More information

Random Number Generation. CS1538: Introduction to simulations

Random Number Generation. CS1538: Introduction to simulations Random Number Generation CS1538: Introduction to simulations Random Numbers Stochastic simulations require random data True random data cannot come from an algorithm We must obtain it from some process

More information

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 15: MCMC Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Course progress Learning from examples Definition + fundamental theorem of statistical learning,

More information

Monte Carlo and cold gases. Lode Pollet.

Monte Carlo and cold gases. Lode Pollet. Monte Carlo and cold gases Lode Pollet lpollet@physics.harvard.edu 1 Outline Classical Monte Carlo The Monte Carlo trick Markov chains Metropolis algorithm Ising model critical slowing down Quantum Monte

More information

Monte Carlo importance sampling and Markov chain

Monte Carlo importance sampling and Markov chain Monte Carlo importance sampling and Markov chain If a configuration in phase space is denoted by X, the probability for configuration according to Boltzman is ρ(x) e βe(x) β = 1 T (1) How to sample over

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Diffusion Monte Carlo

Diffusion Monte Carlo Diffusion Monte Carlo Notes for Boulder Summer School 2010 Bryan Clark July 22, 2010 Diffusion Monte Carlo The big idea: VMC is a useful technique, but often we want to sample observables of the true ground

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 The need for statistical mechanics 2 How to describe large systems In

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

Generating the Sample

Generating the Sample STAT 80: Mathematical Statistics Monte Carlo Suppose you are given random variables X,..., X n whose joint density f (or distribution) is specified and a statistic T (X,..., X n ) whose distribution you

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information