Simultaneous Linear Equations

Size: px
Start display at page:

Download "Simultaneous Linear Equations"

Transcription

1 Simultaneous Linear Equations PHYSICAL PROBLEMS Truss Problem Pressure vessel problem a a b c b

2 Polynomial Regression We are to fit the data to the polynomial regression model Simultaneous Linear Equations Naive Gaussian Elimination (Naïve and the Not That So Innocent Also) Naïve Gaussian Elimination A method to solve simultaneous linear equations of the form [A][X]=[C] The goal of forward elimination is to transform the coefficient matrix into an upper triangular matrix Two steps 1. 2.

3 Exercise: Show the steps for this slide (10 minutes). Solve each equation starting from the last equation Example of a system of 3 equations A set of n equations and n unknowns Step 1 For Equation 2, divide Equation 1 by multiply by. and (n-1) steps of forward elimination

4 Subtract the result from Equation 2. Repeat this procedure for the remaining equations to reduce the set of equations as... or End of Step 1 Step 2 Repeat the same procedure for the 3 rd term of Equation 3. At the end of (n-1) steps, the system of equations will look like End of Step 2 End of Step (n-1)

5 Matrix Form at End of Forward Elimination Solve each equation starting from the last equation Example of a system of 3 equations Starting Eqns Start with the last equation because it has only one unknown

6 Naïve Gauss Elimination Example Example 1 The upward velocity of a rocket is given at three different times Table 1 Velocity vs. time data. Time, Velocity, Assume Example 1 Cont. Results in a matrix template of the form: Using data from Table 1, the matrix becomes: The velocity data is approximated by a polynomial as: Find the velocity at t=6 seconds.

7 Example 1 Cont Number of Steps of Number of steps of forward elimination is (n 1) (3 1) 2 : Step 1 Divide Equation 1 by 25 and multiply it by 64,.. Subtract the result from Equation 2 Substitute new equation for Equation 2

8 : Step 1 (cont.) Divide Equation 1 by 25 and multiply it by 144,. : Step 2 Divide Equation 2 by 4.8 and multiply it by 16.8,. Subtract the result from Equation 3. Subtract the result from Equation 3 Substitute new equation for Equation 3 Substitute new equation for Equation 3 Solving for a 3

9 (cont.) (cont.) Solving for a 2 Solving for a 1 Naïve Gaussian Elimination Solution Example 1 Cont. Solution The solution vector is The polynomial that passes through the three data points is then:

10 Determinant of a Square Matrix Using Naïve Gauss Elimination Example Theorem of Determinants If a multiple of one row of [A] nxn is added or subtracted to another row of [A] nxn to result in [B] nxn then det(a)=det(b) Theorem of Determinants The determinant of an upper triangular, lower triangular or diagonal matrix [A] nxn is given by of a Square Matrix Using forward elimination to transform [A] nxn to an upper triangular matrix, [U] nxn.

11 Example Using Naive Gaussian Elimination method, find the determinant of the following square matrix. Finding the Determinant After forward elimination steps.

Simultaneous Linear Equations

Simultaneous Linear Equations Simultaneous Linear Equations A farmer had 196 cows. When he rounded them up, he had 200 cows. (Reader s Digest) 1 The name of the person in the picture is A. A$AP Rocky B. Kid Cudi C. MC Hammer D. T.I.

More information

Chapter 9: Gaussian Elimination

Chapter 9: Gaussian Elimination Uchechukwu Ofoegbu Temple University Chapter 9: Gaussian Elimination Graphical Method The solution of a small set of simultaneous equations, can be obtained by graphing them and determining the location

More information

Matrix notation. A nm : n m : size of the matrix. m : no of columns, n: no of rows. Row matrix n=1 [b 1, b 2, b 3,. b m ] Column matrix m=1

Matrix notation. A nm : n m : size of the matrix. m : no of columns, n: no of rows. Row matrix n=1 [b 1, b 2, b 3,. b m ] Column matrix m=1 Matrix notation A nm : n m : size of the matrix m : no of columns, n: no of rows Row matrix n=1 [b 1, b 2, b 3,. b m ] Column matrix m=1 n = m square matrix Symmetric matrix Upper triangular matrix: matrix

More information

Numerical Analysis Fall. Gauss Elimination

Numerical Analysis Fall. Gauss Elimination Numerical Analysis 2015 Fall Gauss Elimination Solving systems m g g m m g x x x k k k k k k k k k 3 2 1 3 2 1 3 3 3 2 3 2 2 2 1 0 0 Graphical Method For small sets of simultaneous equations, graphing

More information

Section Matrices and Systems of Linear Eqns.

Section Matrices and Systems of Linear Eqns. QUIZ: strings Section 14.3 Matrices and Systems of Linear Eqns. Remembering matrices from Ch.2 How to test if 2 matrices are equal Assume equal until proved wrong! else? myflag = logical(1) How to test

More information

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices.

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices. MATH 2050 Assignment 8 Fall 2016 [10] 1. Find the determinant by reducing to triangular form for the following matrices. 0 1 2 (a) A = 2 1 4. ANS: We perform the Gaussian Elimination on A by the following

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

Y = ax + b. Numerical Applications Least-squares. Start with Self-test 10-1/459. Linear equation. Error function: E = D 2 = (Y - (ax+b)) 2

Y = ax + b. Numerical Applications Least-squares. Start with Self-test 10-1/459. Linear equation. Error function: E = D 2 = (Y - (ax+b)) 2 Ch.10 Numerical Applications 10-1 Least-squares Start with Self-test 10-1/459. Linear equation Y = ax + b Error function: E = D 2 = (Y - (ax+b)) 2 Regression Formula: Slope a = (N ΣXY - (ΣX)(ΣY)) / (N

More information

y b where U. matrix inverse A 1 ( L. 1 U 1. L 1 U 13 U 23 U 33 U 13 2 U 12 1

y b where U. matrix inverse A 1 ( L. 1 U 1. L 1 U 13 U 23 U 33 U 13 2 U 12 1 LU decomposition -- manual demonstration Instructor: Nam Sun Wang lu-manualmcd LU decomposition, where L is a lower-triangular matrix with as the diagonal elements and U is an upper-triangular matrix Just

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations November 6, 2013 Introduction The type of problems that we have to solve are: Solve the system: A x = B, where a 11 a 1N a 12 a 2N A =.. a 1N a NN x = x 1 x 2. x N B = b 1 b 2. b N To find A 1 (inverse

More information

2.1 Gaussian Elimination

2.1 Gaussian Elimination 2. Gaussian Elimination A common problem encountered in numerical models is the one in which there are n equations and n unknowns. The following is a description of the Gaussian elimination method for

More information

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 The test lasts 1 hour and 15 minutes. No documents are allowed. The use of a calculator, cell phone or other equivalent electronic

More information

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark DM559 Linear and Integer Programming LU Factorization Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark [Based on slides by Lieven Vandenberghe, UCLA] Outline

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

ECON 331 Homework #2 - Solution. In a closed model the vector of external demand is zero, so the matrix equation writes:

ECON 331 Homework #2 - Solution. In a closed model the vector of external demand is zero, so the matrix equation writes: ECON 33 Homework #2 - Solution. (Leontief model) (a) (i) The matrix of input-output A and the vector of level of production X are, respectively:.2.3.2 x A =.5.2.3 and X = y.3.5.5 z In a closed model the

More information

Solving Consistent Linear Systems

Solving Consistent Linear Systems Solving Consistent Linear Systems Matrix Notation An augmented matrix of a system consists of the coefficient matrix with an added column containing the constants from the right sides of the equations.

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1 Chapter 01.01 Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 Chapter 01.02 Measuring errors 11 True error 11 Relative

More information

6-3 Solving Systems by Elimination

6-3 Solving Systems by Elimination Another method for solving systems of equations is elimination. Like substitution, the goal of elimination is to get one equation that has only one variable. To do this by elimination, you add the two

More information

6.3. MULTIVARIABLE LINEAR SYSTEMS

6.3. MULTIVARIABLE LINEAR SYSTEMS 6.3. MULTIVARIABLE LINEAR SYSTEMS What You Should Learn Use back-substitution to solve linear systems in row-echelon form. Use Gaussian elimination to solve systems of linear equations. Solve nonsquare

More information

Adding and Subtracting Rational Expressions. Add and subtract rational expressions with the same denominator.

Adding and Subtracting Rational Expressions. Add and subtract rational expressions with the same denominator. Chapter 7 Section 7. Objectives Adding and Subtracting Rational Expressions 1 3 Add and subtract rational expressions with the same denominator. Find a least common denominator. Add and subtract rational

More information

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to: MAC 2 Module Determinants Learning Objectives Upon completing this module, you should be able to:. Determine the minor, cofactor, and adjoint of a matrix. 2. Evaluate the determinant of a matrix by cofactor

More information

30.3. LU Decomposition. Introduction. Prerequisites. Learning Outcomes

30.3. LU Decomposition. Introduction. Prerequisites. Learning Outcomes LU Decomposition 30.3 Introduction In this Section we consider another direct method for obtaining the solution of systems of equations in the form AX B. Prerequisites Before starting this Section you

More information

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4 Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math Week # 1 Saturday, February 1, 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Linear algebra is the study of; linear sets of equations and their transformation properties. Linear algebra allows the analysis of; rotations in space, least squares fitting,

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Operations and Elementary Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.1 Linear System Math 2331 Linear Algebra 1.1 Systems of Linear Equations Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu, University

More information

Chapter 3 - From Gaussian Elimination to LU Factorization

Chapter 3 - From Gaussian Elimination to LU Factorization Chapter 3 - From Gaussian Elimination to LU Factorization Maggie Myers Robert A. van de Geijn The University of Texas at Austin Practical Linear Algebra Fall 29 http://z.cs.utexas.edu/wiki/pla.wiki/ 1

More information

Solving Linear Systems Using Gaussian Elimination. How can we solve

Solving Linear Systems Using Gaussian Elimination. How can we solve Solving Linear Systems Using Gaussian Elimination How can we solve? 1 Gaussian elimination Consider the general augmented system: Gaussian elimination Step 1: Eliminate first column below the main diagonal.

More information

Find two positive factors of 24 whose sum is 10. Make an organized list.

Find two positive factors of 24 whose sum is 10. Make an organized list. 9.5 Study Guide For use with pages 582 589 GOAL Factor trinomials of the form x 2 1 bx 1 c. EXAMPLE 1 Factor when b and c are positive Factor x 2 1 10x 1 24. Find two positive factors of 24 whose sum is

More information

MAC Module 1 Systems of Linear Equations and Matrices I

MAC Module 1 Systems of Linear Equations and Matrices I MAC 2103 Module 1 Systems of Linear Equations and Matrices I 1 Learning Objectives Upon completing this module, you should be able to: 1. Represent a system of linear equations as an augmented matrix.

More information

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to : MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..

More information

Chapter 4. Solving Systems of Equations. Chapter 4

Chapter 4. Solving Systems of Equations. Chapter 4 Solving Systems of Equations 3 Scenarios for Solutions There are three general situations we may find ourselves in when attempting to solve systems of equations: 1 The system could have one unique solution.

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Matrix Solutions to Linear Equations

Matrix Solutions to Linear Equations Matrix Solutions to Linear Equations Augmented matrices can be used as a simplified way of writing a system of linear equations. In an augmented matrix, a vertical line is placed inside the matrix to represent

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices MAC05-College Algebra Chapter 5-Systems of Equations & Matrices 5. Systems of Equations in Two Variables Solving Systems of Two Linear Equations/ Two-Variable Linear Equations A system of equations is

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

6: Introduction to Elimination. Lecture

6: Introduction to Elimination. Lecture Math 2270 - Lecture 6: Introduction to Elimination Dylan Zwick Fall 2012 This lecture covers section 2.2 of the textbook. 1 Elimination for Equations Involving Two Vari ables We re going to start our discussion

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

9 Appendix. Determinants and Cramer s formula

9 Appendix. Determinants and Cramer s formula LINEAR ALGEBRA: THEORY Version: August 12, 2000 133 9 Appendix Determinants and Cramer s formula Here we the definition of the determinant in the general case and summarize some features Then we show how

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II MAC 1140 Module 10 System of Equations and Inequalities II Learning Objectives Upon completing this module, you should be able to 1. represent systems of linear equations with matrices. 2. transform a

More information

Math 313 Chapter 1 Review

Math 313 Chapter 1 Review Math 313 Chapter 1 Review Howard Anton, 9th Edition May 2010 Do NOT write on me! Contents 1 1.1 Introduction to Systems of Linear Equations 2 2 1.2 Gaussian Elimination 3 3 1.3 Matrices and Matrix Operations

More information

Solving Ax = b w/ different b s: LU-Factorization

Solving Ax = b w/ different b s: LU-Factorization Solving Ax = b w/ different b s: LU-Factorization Linear Algebra Josh Engwer TTU 14 September 2015 Josh Engwer (TTU) Solving Ax = b w/ different b s: LU-Factorization 14 September 2015 1 / 21 Elementary

More information

Lecture 12 Simultaneous Linear Equations Gaussian Elimination (1) Dr.Qi Ying

Lecture 12 Simultaneous Linear Equations Gaussian Elimination (1) Dr.Qi Ying Lecture 12 Simultaneous Linear Equations Gaussian Elimination (1) Dr.Qi Ying Objectives Understanding forward elimination and back substitution in Gaussian elimination method Understanding the concept

More information

1.Chapter Objectives

1.Chapter Objectives LU Factorization INDEX 1.Chapter objectives 2.Overview of LU factorization 2.1GAUSS ELIMINATION AS LU FACTORIZATION 2.2LU Factorization with Pivoting 2.3 MATLAB Function: lu 3. CHOLESKY FACTORIZATION 3.1

More information

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information

Math 250B Midterm I Information Fall 2018

Math 250B Midterm I Information Fall 2018 Math 250B Midterm I Information Fall 2018 WHEN: Wednesday, September 26, in class (no notes, books, calculators I will supply a table of integrals) EXTRA OFFICE HOURS: Sunday, September 23 from 8:00 PM

More information

MCR3U Unit 7 Lesson Notes

MCR3U Unit 7 Lesson Notes 7.1 Arithmetic Sequences Sequence: An ordered list of numbers identified by a pattern or rule that may stop at some number or continue indefinitely. Ex. 1, 2, 4, 8,... Ex. 3, 7, 11, 15 Term (of a sequence):

More information

3.3 Dividing Polynomials. Copyright Cengage Learning. All rights reserved.

3.3 Dividing Polynomials. Copyright Cengage Learning. All rights reserved. 3.3 Dividing Polynomials Copyright Cengage Learning. All rights reserved. Objectives Long Division of Polynomials Synthetic Division The Remainder and Factor Theorems 2 Dividing Polynomials In this section

More information

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Outcomes

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Outcomes The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a 0has a reciprocal b written as a or such that a ba = ab =. Similarly a square matrix A may have an inverse B = A where AB =

More information

10.2 Systems of Linear Equations

10.2 Systems of Linear Equations 10.2 Systems of Linear Equations in Several Variables Copyright Cengage Learning. All rights reserved. Objectives Solving a Linear System The Number of Solutions of a Linear System Modeling Using Linear

More information

Introduction to Systems of Equations

Introduction to Systems of Equations Introduction to Systems of Equations Introduction A system of linear equations is a list of m linear equations in a common set of variables x, x,, x n. a, x + a, x + Ù + a,n x n = b a, x + a, x + Ù + a,n

More information

Learning Module 1 - Basic Algebra Review (Appendix A)

Learning Module 1 - Basic Algebra Review (Appendix A) Learning Module 1 - Basic Algebra Review (Appendix A) Element 1 Real Numbers and Operations on Polynomials (A.1, A.2) Use the properties of real numbers and work with subsets of the real numbers Determine

More information

CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University

CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution

More information

Determinant: 3.2 Evaluation of Determinant with Elementary

Determinant: 3.2 Evaluation of Determinant with Elementary Determinant: 3.2 Evaluation of Determinant with Elementary Operations September 18 As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not

More information

Numerical Methods for Chemical Engineers

Numerical Methods for Chemical Engineers Numerical Methods for Chemical Engineers Chapter 3: System of Linear Algebraic Equation Morteza Esfandyari Email: Esfandyari.morteza@yahoo.com Mesfandyari.mihanblog.com Page 4-1 System of Linear Algebraic

More information

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4 Department of Aerospace Engineering AE6 Mathematics for Aerospace Engineers Assignment No.. Decide whether or not the following vectors are linearly independent, by solving c v + c v + c 3 v 3 + c v :

More information

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is Solutions to Homework Additional Problems. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. (a) x + y = 8 3x + 4y = 7 x + y = 3 The augmented matrix of this linear system

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

MTH50 Spring 07 HW Assignment 7 {From [FIS0]}: Sec 44 #4a h 6; Sec 5 #ad ac 4ae 4 7 The due date for this assignment is 04/05/7 Sec 44 #4a h Evaluate the erminant of the following matrices by any legitimate

More information

Computational Methods. Systems of Linear Equations

Computational Methods. Systems of Linear Equations Computational Methods Systems of Linear Equations Manfred Huber 2010 1 Systems of Equations Often a system model contains multiple variables (parameters) and contains multiple equations Multiple equations

More information

7.3. Determinants. Introduction. Prerequisites. Learning Outcomes

7.3. Determinants. Introduction. Prerequisites. Learning Outcomes Determinants 7.3 Introduction Among other uses, determinants allow us to determine whether a system of linear equations has a unique solution or not. The evaluation of a determinant is a key skill in engineering

More information

UNIT 3 INTERSECTIONS OF LINES AND PLANES

UNIT 3 INTERSECTIONS OF LINES AND PLANES UNIT 3 INTERSECTIONS OF LINES AND PLANES UNIT 3 INTERSECTIONS OF LINES AND PLANES...1 VECTOR EQUATIONS OF LINES IN SCALAR EQUATION OF LINES IN EQUATIONS OF LINES IN 2...2 2...4 3...6 VECTOR AND SCALAR

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA2501 Numerical Methods Spring 2015 Solutions to exercise set 3 1 Attempt to verify experimentally the calculation from class that

More information

Math Lecture 26 : The Properties of Determinants

Math Lecture 26 : The Properties of Determinants Math 2270 - Lecture 26 : The Properties of Determinants Dylan Zwick Fall 202 The lecture covers section 5. from the textbook. The determinant of a square matrix is a number that tells you quite a bit about

More information

Chapter 6 Page 1 of 10. Lecture Guide. Math College Algebra Chapter 6. to accompany. College Algebra by Julie Miller

Chapter 6 Page 1 of 10. Lecture Guide. Math College Algebra Chapter 6. to accompany. College Algebra by Julie Miller Chapter 6 Page 1 of 10 Lecture Guide Math 105 - College Algebra Chapter 6 to accompany College Algebra by Julie Miller Corresponding Lecture Videos can be found at Prepared by Stephen Toner & Nichole DuBal

More information

After we have found an eigenvalue λ of an n n matrix A, we have to find the vectors v in R n such that

After we have found an eigenvalue λ of an n n matrix A, we have to find the vectors v in R n such that 7.3 FINDING THE EIGENVECTORS OF A MATRIX After we have found an eigenvalue λ of an n n matrix A, we have to find the vectors v in R n such that A v = λ v or (λi n A) v = 0 In other words, we have to find

More information

COMPUTING AND DATA ANALYSIS WITH EXCEL. Matrix manipulation and systems of linear equations

COMPUTING AND DATA ANALYSIS WITH EXCEL. Matrix manipulation and systems of linear equations COMPUTING AND DATA ANALYSIS WITH EXCEL Matrix manipulation and systems of linear equations Outline 1 Matrices Addition Subtraction Excel functions that return more than one cell Solving systems of linear

More information

The Solution of Linear Systems AX = B

The Solution of Linear Systems AX = B Chapter 2 The Solution of Linear Systems AX = B 21 Upper-triangular Linear Systems We will now develop the back-substitution algorithm, which is useful for solving a linear system of equations that has

More information

Gauss Elimination. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Gauss Elimination. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Gauss Elimination Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Solving small numbers of equations by graphical method The location of the intercept provides

More information

Linear Algebra. Solving Linear Systems. Copyright 2005, W.R. Winfrey

Linear Algebra. Solving Linear Systems. Copyright 2005, W.R. Winfrey Copyright 2005, W.R. Winfrey Topics Preliminaries Echelon Form of a Matrix Elementary Matrices; Finding A -1 Equivalent Matrices LU-Factorization Topics Preliminaries Echelon Form of a Matrix Elementary

More information

Lesson 2: Introduction to Variables

Lesson 2: Introduction to Variables Lesson 2: Introduction to Variables Topics and Objectives: Evaluating Algebraic Expressions Some Vocabulary o Variable o Term o Coefficient o Constant o Factor Like Terms o Identifying Like Terms o Combining

More information

Math 343 Midterm I Fall 2006 sections 002 and 003 Instructor: Scott Glasgow

Math 343 Midterm I Fall 2006 sections 002 and 003 Instructor: Scott Glasgow Math 343 Midterm I Fall 006 sections 00 003 Instructor: Scott Glasgow 1 Assuming A B are invertible matrices of the same size, prove that ( ) 1 1 AB B A 1 = (11) B A 1 1 is the inverse of AB if only if

More information

Section 6.2 Larger Systems of Linear Equations

Section 6.2 Larger Systems of Linear Equations Section 6.2 Larger Systems of Linear Equations Gaussian Elimination In general, to solve a system of linear equations using its augmented matrix, we use elementary row operations to arrive at a matrix

More information

Cofactors and Laplace s expansion theorem

Cofactors and Laplace s expansion theorem Roberto s Notes on Linear Algebra Chapter 5: Determinants Section 3 Cofactors and Laplace s expansion theorem What you need to know already: What a determinant is. How to use Gauss-Jordan elimination to

More information

Gauss-Jordan Row Reduction and Reduced Row Echelon Form

Gauss-Jordan Row Reduction and Reduced Row Echelon Form Gauss-Jordan Row Reduction and Reduced Row Echelon Form If we put the augmented matrix of a linear system in reduced row-echelon form, then we don t need to back-substitute to solve the system. To put

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations 1 Fundamentals Consider the set of linear algebraic equations n a ij x i b i represented by Ax b j with [A b ] [A b] and (1a) r(a) rank of A (1b) Then Axb has a solution iff

More information

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0.

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0. ) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

TMA4125 Matematikk 4N Spring 2017

TMA4125 Matematikk 4N Spring 2017 Norwegian University of Science and Technology Institutt for matematiske fag TMA15 Matematikk N Spring 17 Solutions to exercise set 1 1 We begin by writing the system as the augmented matrix.139.38.3 6.

More information

Gauss-Jordan elimination ( used in the videos below) stops when the augmented coefficient

Gauss-Jordan elimination ( used in the videos below) stops when the augmented coefficient To review these matrix methods for solving systems of linear equations, watch the following set of YouTube videos. They are followed by several practice problems for you to try, covering all the basic

More information

Matrix Algebra: Introduction

Matrix Algebra: Introduction Matrix Algebra: Introduction Matrices and Determinants were discovered and developed in the eighteenth and nineteenth centuries. Initially, their development dealt with transformation of geometric objects

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker.

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker. Integration Topic: Trapezoidal Rule Major: General Engineering Author: Autar Kaw, Charlie Barker 1 What is Integration Integration: The process of measuring the area under a function plotted on a graph.

More information

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and

Elementary Matrices. which is obtained by multiplying the first row of I 3 by -1, and Elementary Matrices In this special handout of material not contained in the text, we introduce the concept of elementary matrix. Elementary matrices are useful in several ways that will be shown in this

More information

CE 206: Engineering Computation Sessional. System of Linear Equations

CE 206: Engineering Computation Sessional. System of Linear Equations CE 6: Engineering Computation Sessional System of Linear Equations Gauss Elimination orward elimination Starting with the first row, add or subtract multiples of that row to eliminate the first coefficient

More information

LPSS MATHCOUNTS Lecture 1: Arithmetic Series 4/6/04

LPSS MATHCOUNTS Lecture 1: Arithmetic Series 4/6/04 LPSS MATHCOUNTS 004 005 Lecture 1: Arithmetic Series 4/6/04 Coach: Dr. Simon 383-801 peter_simon@ieee.org 1 Sequences and Series Definition: Asequence is a list of numbers (in a particular order). The

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS n n Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

Solving Systems of Linear and Quadratic Equations

Solving Systems of Linear and Quadratic Equations 9.5 Solving Systems of Linear and Quadratic Equations How can you solve a system of two equations when one is linear and the other is quadratic? ACTIVITY: Solving a System of Equations Work with a partner.

More information

Matrix Algebra and Inverses

Matrix Algebra and Inverses restart; with(inearalgebra): We start with two random 3x3 matrices by using the Randomatrix command. A:=Randomatrix(3,3,generator=-9..9); 9 0 7 A := 2 1 7 0 4 8 B:=Randomatrix(3,3,generator=-9..9); 1 8

More information

MATRICES The numbers or letters in any given matrix are called its entries or elements

MATRICES The numbers or letters in any given matrix are called its entries or elements MATRICES A matrix is defined as a rectangular array of numbers. Examples are: 1 2 4 a b 1 4 5 A : B : C 0 1 3 c b 1 6 2 2 5 8 The numbers or letters in any given matrix are called its entries or elements

More information