5.8 Laminar Boundary Layers

Size: px
Start display at page:

Download "5.8 Laminar Boundary Layers"

Transcription

1 2.2 Marine Hydrodynamics, Fall 218 ecture 19 Copyright c 218 MIT - Department of Mechanical Engineering, All rights reserved Marine Hydrodynamics ecture aminar Boundary ayers δ y U potential flow u, v viscous flow x Uo Assumptions 2D flow: w, z and u x, y), v x, y), p x, y), U x, y). Steady flow: t. For δ <<, use local body) coordinates x, y, with x tangential to the body and y normal to the body. u tangential and v normal to the body, viscous flow velocities used inside the boundary layer). U, V potential flow velocities used outside the boundary layer). 1

2 5.8.2 Governing Equations Continuity Navier-Stokes: u x + v y = 1) u u x + v u y = 1 ρ u v x + v v y = 1 ρ ) p 2 x + ν u x + 2 u 2 y 2 ) p 2 y + ν v x + 2 v 2 y 2 2) 3) Boundary Conditions KBC Inside the boundary layer: No-slip ux, y = ) = No-flux vx, y = ) = Outside the boundary layer the velocity has to match the P-Flow solution. et y y/δ, Y Y/, and x x/, X X/. Outside the boundary layer y but Y. We can write for the tangential and normal velocities ux, y ) = UX, Y ) and vx, y ) = V X, Y ) = No-flux P-Flow In short: ux, y ) = Ux, ) vx, y ) = DBC As y, the pressure has to match the P-Flow solution. The x-momentum equation at y = gives U U x + V U y = 1 dp ρ dx + ν 2 U y 2 dp dx = ρu U x 2

3 5.8.4 Boundary ayer Approximation Assume that R e >> 1, then u, v) is confined to a thin layer of thickness δ x) <<. For flows within this boundary layer, the appropriate order-of-magnitude scaling / normalization is: Variable Scale Normalization u U u = Uu x x = x y δ y = δy v V =? v = Vv Non-dimensionalize the continuity, Equation 1), to relate V to U U ) u + V x δ ) ) v δ = = V = O y U Non-dimensionalize the x-momentum, Equation 2), to compare δ with U 2 u u ) + UV v u ) = 1 p x }{{} δ y ρ x + νu ) δ 2 2 ) u 2 u + δ 2 2 x }{{ 2 y } 2 OU 2 /) ignore The inertial effects are of comparable magnitude to the viscous effects when: U 2 νu δ = δ ν 2 U = 1 << 1 Re The pressure gradient p x must be of comparable magnitude to the inertial effects p x = O ρ U ) 2 3

4 Non-dimensionalize the y-momentum, Equation 3), to compare p y p 2 v UV }{{} O U2 δ ) u v ) + V2 x }{{} δ O U2 The pressure gradient p y δ ) Comparing the magnitude of p x Note: v v ) = 1 y ρ y + νv }{{} 2 O U2 δ 3 3 ) x 2 ) + νv to p x δ 2 }{{} O U2 δ ) 2 v y 2 must be of comparable magnitude to the inertial effects p ρ y = O U ) 2 δ to p y we observe p = O ρ U ) 2 δ while p ρ y x = O U ) 2 = p << p = p y x y = p = px) - From continuity it was shown that V/U Oδ/) v << u, inside the boundary layer. - It was shown that p =, p = px) inside the boundary layer. This means that y the pressure across the boundary layer is constant and equal to the pressure outside the boundary layer imposed by the external P-Flow. ) 4

5 5.8.5 Summary of Dimensional BVP Governing equations for 2D, steady, laminar boundary layer Boundary Conditions KBC Continuity : u x + v y = x-momentum : u u x + v u y = y - momentum : p y = At y= : ux, ) = vx, ) = 1 dp ρ dx }{{} UdU/dx, y= At y/δ : ux, y/δ ) = Ux, ) vx, y/δ ) = +ν 2 u y 2 DBC dp dx U = ρu x or IN the b.l. px) = C 1 2 ρu 2 x, ) }{{} Bernoulli for the P-Flow at y = Definitions Displacement thickness δ 1 u ) dy U Momentum thickness θ u U 1 u ) dy U 5

6 Physical Meaning of δ and θ Assume a 2D steady flow over a flat plate. Recall for steady flow over flat plate dp dx = and pressure p = const. Choose a control volume [, x] [, y/δ ]) as shown in the figure below. y /δ Uo Q 4 CV Uo U o P - Flow 3 1 Boundary ayer x CV for steady flow over a flat plate. 2 uy) Control Volume book-keeping Surface ˆn v v ˆn v v ˆn) pˆn 1 î U o î U o Uo 2î pî 2 ĵ pĵ 3 î ux, y)î + vx, y)ĵ ux, y) u 2 x, y)î + ux, y)vx, y)ĵ pî 4 ĵ U o î + vx, y)ĵ vx, y) vx, y)u o î + v 2 x, y)ĵ pĵ 6

7 Conservation of mass, for steady CV v ˆndS = U o dy Q = U o dy udy = where ) are the dummy variables. Conservation of momentum in x, for steady CV ρ u v ˆn)dS = F x 1234 [ ρ Uo 2 dy + ρ ρ ρ ρu 2 o U 2 o dy + ρ U 2 o dy + ρ u 2 x, y )dy + x ux, y )dy + vx, y)dx = }{{} ) U o u)dy = U o 1 uuo dy Q = U δ }{{} δ x vx, y)u o dx ] = Q pdy x u 2 x, y )dy + ρu o vx, y)dx = F x,friction }{{} Q u 2 x, y )dy + ρu o U o u)dy = F x,friction ) Uo 2 + u 2 + Uo 2 U o u dy = F x,friction u 2 U 2 o u U o )dy = F x,friction ) Fx,friction = ρuo 2 u 1 uuo dy F x,friction = ρuo 2 θ U } o {{} θ pdy + F x,friction 7

8 5.9 Steady Flow over a Flat Plate: Blasius aminar Boundary ayer y U o x Steady flow over a flat plate: BB Derivation of BB Assumptions Steady, 2D flow. Flow over flat plate U = U, V =, dp dx = B governing equations Boundary conditions u x + v y = u u x + v u y = ν 2 u y 2 u = v = on y = v V =, u U o outside the B, i.e., y δ >> 1 ) Solution Mathematical solution in terms of similarity parameters. u U and η y Uo Similarity solution must have the form νx y x = u x, y) = F η) U } o {{} self similar solution 8 η νx y = η Rx U o

9 We can obtain a PDE for F by substituting into the governing equations. The PDE has no-known analytical solution. However, Blasius provided a numerical solution. Once again, once the velocity profile is evaluated we know everything about the flow Summary of BB Properties: δ, δ.99, δ, θ, τ o, D, C f u x, y) = F U o }{{} η) ; evaluated numerically η = y Uo νx ; νx y η ; U o y x = η Rx }{{} local R# νx δ U o δ.99 = 4.9 νx U o, i.e., η.99 = 4.9 δ = 1.72 νx U o, i.e., η = 1.72 δ x, δ 1/ Uo δ ν x U o x = 1 Rx θ νx =.664 U o ) 1/2 τ o τ w =.332ρU 2 Uo x o ν τ o 1 x =.332 ρu 2 o ) R 1/2 x }{{} local R# τ o U 3/2 o 9

10 Total drag on plate x B D = B }{{} width ) 1/2 τ o dx =.664 ) ρuo 2 Uo B) ν }{{} Re 1/2 D, D U 3/2 Friction drag) coefficient: D C f = 1 ρu 2 2 o ) B) = C f 1, C f 1 Re U.8 C f Blasius aminar Boundary ayer C f Re Turbulent Boundary ayer Turbulent Boundary ayer C f for flat plate JNN 2.3) Rex ~ 3 1 Transition at Reδ ~ 6 5 Re Skin friction coefficient as a function of R e. A look ahead: Turbulent Boundary ayers Observe form the previous figure that the function C f, laminar R e ) for a laminar boundary layer is different from the function C f, turbulent R e ) for a turbulent boundary layer for flow over a flat plate. Turbulent boundary layers will be discussed in proceeding ecture. 1

11 5.1 aminar Boundary ayers for Flow Over a Body of General Geometry The velocity profile given in BB is the exact velocity profile for a steady, laminar flow over a flat plate. What is the velocity profile for a flow over any arbitrary body? In general it is dp/dx and the boundary layer governing equations cannot be easily solved as was the case for the BB. In this paragraph we will describe a typical approximative procedure used to solve the problem of flow over a body of general geometry. 1. Solve P-Flow outside B B 2. Solve boundary layer equations with P term) get δ x) 3. From B + δ B 4. Repeat steps 1) to 3) until no change U y B x P U const. von Karman s zeroth moment integral equation τ ρ = d U 2 x)θx) ) + δ x)ux) du dx dx 4) Approximate solution method due to Pohlhausen for general geometry dp/dx ) using von Karman s momentum integrals. The basic idea is the following: we assume an approximate velocity profile e.g. linear, 4 th order polynomial,...) in terms of an unknown parameter δx). From the velocity profile we can immediately calculate δ, θ and τ o as functions of δx) and the P-Flow velocity Ux). Independently from the boundary layer approximation, we obtain the P-Flow solution outside the boundary layer Ux), du dx. Upon substitution of δ, θ, τ o, Ux), du in von Karman s moment integral equations) dx we form an ODE for δ in terms of x. 11

12 Example for a 4 th order polynomial Pohlhausen velocity profile Pohlhausen profiles - a family of profiles as a function of a single parameter Λx) shape function factor). Assume an approximate velocity profile, say a 4 th order polynomial: u x, y) U x, ) = a x) y y ) 2 y ) 3 y ) 4 δ + b x) + c x) + d x) 5) δ δ δ There can be no constant term in 5) for the no-slip BC to be satisfied y =, i.e, ux, ) =. We use three BC s at y = δ u U = 1, u y =, 2 u =, at y = δ 6) y2 From 6) in 5), we re-write the coefficients ax), bx), cx) and dx) in terms of Λx) a = 2 + Λ/6, b = Λ/2, c = 2 + Λ/2, d = 1 Λ/6 To specify the approximate velocity profile ux,y) in terms of a single unknown Ux,) parameter δ we use the x-momentum equation at y =, where u = v = u u x + v u y = U U + ν 2 u x }{{} y 2 b = 1 ) du δ 2 Λx) = du δ 2 x) }{{ y= 2 dx ν dx ν } 1 dp ρ dx ν 2bU δ 2 Observe: Λ du { Λ > : favorable pressure gradient dx Λ < : adverse pressure gradient Putting everything together: u x, y) U x, ) = 2 y ) y ) 3 y ) δ δ δ + du [ δ 2 1 y ) 1y dx ν 6 δ 2 δ ) y δ ) ] y ) 4 δ 12

13 Once the approximate velocity profile ux,y) is given in terms of a single unknown Ux,) parameter δx), then δ, θ and τ o are evaluated Notes: δ = θ = δ 1 u ) 3 dy = δ U 1 1 du 12 dx δ 2 ) ) ν u 1 u ) 37 dy = δ U U du 945 dx τ o = µ u y = µu y= δ du 6 dx δ 2 ) ) ν δ 2 ) 1 du ν 972 dx ) δ 2 ) 2 ν - Incipient flow τ o = ) for Λ = 12. However, recall that once the flow is separated the boundary layer theory is no longer valid. - For du = Λ = Pohlhausen profile differs from Blasius B only by a dx few percent. After we solve the P-Flow and determine Ux), du we substitute everything into dx von Karman s momentum integral equation 4) to obtain dδ dx = 1 du U dx gδ) + d2 U/dx 2 du/dx hδ) where g, h are known rational polynomial functions of δ. This is an ODE for δ = δx) where U, du, d2 U are specified from the P-Flow dx dx 2 solution. General procedure: 1. Make a reasonable approximation in the form of 5), 2. Apply sufficient BC s at y = δ, and the x-momentum at y = to reduce 5) as a function a single unknown δ, 3. Determine Ux) from P-Flow, and 4. Finally substitute into Von Karman s equation to form an ODE for δx). Solve either analytically or numerically to determine the boundary layer growth as a function of x. 13

14 Appendix A 14

15 15

16 16

17 17

18 18

19 19

9. Boundary layers. Flow around an arbitrarily-shaped bluff body. Inner flow (strong viscous effects produce vorticity) BL separates

9. Boundary layers. Flow around an arbitrarily-shaped bluff body. Inner flow (strong viscous effects produce vorticity) BL separates 9. Boundary layers Flow around an arbitrarily-shaped bluff body Inner flow (strong viscous effects produce vorticity) BL separates Wake region (vorticity, small viscosity) Boundary layer (BL) Outer flow

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1

More information

Boundary Layer Theory. v = 0, ( v)v = p + 1 Re 2 v. Consider a cylinder of length L kept in a inviscid irrotational flow.

Boundary Layer Theory. v = 0, ( v)v = p + 1 Re 2 v. Consider a cylinder of length L kept in a inviscid irrotational flow. 1 Boundary Layer Theory 1 Introduction Consider the steady flow of a viscous fluid. The governing equations based on length scale L and velocity scale U is given by v =, ( v)v = p + 1 Re 2 v For small

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 009 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 014 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. MEK4300/9300 Viscous flow og turbulence

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. MEK4300/9300 Viscous flow og turbulence UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: Day of examination: Friday 15. June 212 Examination hours: 9. 13. This problem set consists of 5 pages. Appendices: Permitted

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

ME19b. FINAL REVIEW SOLUTIONS. Mar. 11, 2010.

ME19b. FINAL REVIEW SOLUTIONS. Mar. 11, 2010. ME19b. FINAL REVIEW SOLTIONS. Mar. 11, 21. EXAMPLE PROBLEM 1 A laboratory wind tunnel has a square test section with side length L. Boundary-layer velocity profiles are measured at two cross-sections and

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume Analysis 4. Differential Analysis of Fluid Flow 5. Viscous

More information

External Flows. Dye streak. turbulent. laminar transition

External Flows. Dye streak. turbulent. laminar transition Eternal Flos An internal flo is surrounded by solid boundaries that can restrict the development of its boundary layer, for eample, a pipe flo. An eternal flo, on the other hand, are flos over bodies immersed

More information

M E 320 Professor John M. Cimbala Lecture 38

M E 320 Professor John M. Cimbala Lecture 38 M E 320 Professor John M. Cimbala Lecture 38 Today, we will: Discuss displacement thickness in a laminar boundary layer Discuss the turbulent boundary layer on a flat plate, and compare with laminar flow

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of boundary layer Thickness and classification Displacement and momentum thickness Development of laminar and turbulent flows in circular pipes

More information

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible 13.01 Marine Hydrodynamics, Fall 004 Lecture 9 Copyright c 004 MIT - Department of Ocean Engineering, All rights reserved. Vorticity Equation 13.01 - Marine Hydrodynamics Lecture 9 Return to viscous incompressible

More information

3.5 Vorticity Equation

3.5 Vorticity Equation .0 - Marine Hydrodynamics, Spring 005 Lecture 9.0 - Marine Hydrodynamics Lecture 9 Lecture 9 is structured as follows: In paragraph 3.5 we return to the full Navier-Stokes equations (unsteady, viscous

More information

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged Navier-Stokes equations Consider the RANS equations with

More information

Chapter 9. Flow over Immersed Bodies

Chapter 9. Flow over Immersed Bodies Chapter 9 Flow over Immersed Bodies We consider flows over bodies that are immersed in a fluid and the flows are termed external flows. We are interested in the fluid force (lift and drag) over the bodies.

More information

CEE 3310 External Flows (Boundary Layers & Drag, Nov. 14, Re 0.5 x x 1/2. Re 1/2

CEE 3310 External Flows (Boundary Layers & Drag, Nov. 14, Re 0.5 x x 1/2. Re 1/2 CEE 3310 External Flows (Boundary Layers & Drag, Nov. 14, 2016 159 7.10 Review Momentum integral equation τ w = ρu 2 dθ dx Von Kármán assumed and found δ x = 5.5 Rex 0.5 u(x, y) U = 2y δ y2 δ 2 δ = 5.5

More information

BOUNDARY LAYER FLOWS HINCHEY

BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER PHENOMENA When a body moves through a viscous fluid, the fluid at its surface moves with it. It does not slip over the surface. When a body moves at high speed,

More information

Investigation of laminar boundary layers with and without pressure gradients

Investigation of laminar boundary layers with and without pressure gradients Investigation of laminar boundary layers with and without pressure gradients FLUID MECHANICS/STRÖMNINGSMEKANIK SG1215 Lab exercise location: Lab exercise duration: Own material: Strömningsfysiklaboratoriet

More information

Chapter 6 Laminar External Flow

Chapter 6 Laminar External Flow Chapter 6 aminar Eternal Flow Contents 1 Thermal Boundary ayer 1 2 Scale analysis 2 2.1 Case 1: δ t > δ (Thermal B.. is larger than the velocity B..) 3 2.2 Case 2: δ t < δ (Thermal B.. is smaller than

More information

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

CEE 3310 External Flows (Boundary Layers & Drag, Nov. 12, Re 0.5 x x 1/2. Re 1/2

CEE 3310 External Flows (Boundary Layers & Drag, Nov. 12, Re 0.5 x x 1/2. Re 1/2 CEE 3310 External Flows (Boundary Layers & Drag, Nov. 12, 2018 155 7.11 Review Momentum integral equation τ w = ρu 2 dθ dx Von Kármán assumed and found and δ x = 5.5 Rex 0.5 u(x, y) U = 2y δ y2 δ 2 δ =

More information

Laminar and Turbulent developing flow with/without heat transfer over a flat plate

Laminar and Turbulent developing flow with/without heat transfer over a flat plate Laminar and Turbulent developing flow with/without heat transfer over a flat plate Introduction The purpose of the project was to use the FLOLAB software to model the laminar and turbulent flow over a

More information

arxiv:physics/ v2 [physics.flu-dyn] 3 Jul 2007

arxiv:physics/ v2 [physics.flu-dyn] 3 Jul 2007 Leray-α model and transition to turbulence in rough-wall boundary layers Alexey Cheskidov Department of Mathematics, University of Michigan, Ann Arbor, Michigan 4819 arxiv:physics/6111v2 [physics.flu-dyn]

More information

Chapter 3 Lecture 8. Drag polar 3. Topics. Chapter-3

Chapter 3 Lecture 8. Drag polar 3. Topics. Chapter-3 Chapter 3 ecture 8 Drag polar 3 Topics 3.2.7 Boundary layer separation, adverse pressure gradient and favourable pressure gradient 3.2.8 Boundary layer transition 3.2.9 Turbulent boundary layer over a

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

INTEGRAL ANALYSIS OF LAMINAR INDIRECT FREE CONVECTION BOUNDARY LAYERS WITH WEAK BLOWING FOR SCHMIDT NO. 1

INTEGRAL ANALYSIS OF LAMINAR INDIRECT FREE CONVECTION BOUNDARY LAYERS WITH WEAK BLOWING FOR SCHMIDT NO. 1 INTEGRA ANAYSIS OF AMINAR INDIRECT FREE CONVECTION BOUNDARY AYERS WITH WEAK BOWING FOR SCHMIDT NO. Baburaj A.Puthenveettil and Jaywant H.Arakeri Department of Mechanical Engineering, Indian Institute of

More information

UNIVERSITY OF EAST ANGLIA

UNIVERSITY OF EAST ANGLIA UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2007 2008 FLUIDS DYNAMICS WITH ADVANCED TOPICS Time allowed: 3 hours Attempt question ONE and FOUR other questions. Candidates must

More information

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Proceedings of,, BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Yunho Jang Department of Mechanical and Industrial Engineering University of Massachusetts Amherst, MA 01002 Email:

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

7.11 Turbulent Boundary Layer Growth Rate

7.11 Turbulent Boundary Layer Growth Rate CEE 3310 Eternal Flows (Boundary Layers & Drag, Nov. 16, 2015 159 7.10 Review Momentum integral equation τ w = ρu 2 dθ d Von Kármán assumed u(, y) U = 2y δ y2 δ 2 and found δ = 5.5 Re 0.5 δ = 5.5 Re 0.5

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

ME 509, Spring 2016, Final Exam, Solutions

ME 509, Spring 2016, Final Exam, Solutions ME 509, Spring 2016, Final Exam, Solutions 05/03/2016 DON T BEGIN UNTIL YOU RE TOLD TO! Instructions: This exam is to be done independently in 120 minutes. You may use 2 pieces of letter-sized (8.5 11

More information

A combined application of the integral wall model and the rough wall rescaling-recycling method

A combined application of the integral wall model and the rough wall rescaling-recycling method AIAA 25-299 A combined application of the integral wall model and the rough wall rescaling-recycling method X.I.A. Yang J. Sadique R. Mittal C. Meneveau Johns Hopkins University, Baltimore, MD, 228, USA

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations Laminar Boundary Layers Answers to problem sheet 1: Navier-Stokes equations The Navier Stokes equations for d, incompressible flow are + v ρ t + u + v v ρ t + u v + v v = 1 = p + µ u + u = p ρg + µ v +

More information

Homework #4 Solution. μ 1. μ 2

Homework #4 Solution. μ 1. μ 2 Homework #4 Solution 4.20 in Middleman We have two viscous liquids that are immiscible (e.g. water and oil), layered between two solid surfaces, where the top boundary is translating: y = B y = kb y =

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2011 2012 FLUID DYNAMICS MTH-3D41 Time allowed: 3 hours Attempt FIVE questions. Candidates must show on each answer book the type

More information

Spatial discretization scheme for incompressible viscous flows

Spatial discretization scheme for incompressible viscous flows Spatial discretization scheme for incompressible viscous flows N. Kumar Supervisors: J.H.M. ten Thije Boonkkamp and B. Koren CASA-day 2015 1/29 Challenges in CFD Accuracy a primary concern with all CFD

More information

Chapter 5 Principles of Convection heat transfer (Text: J. P. Holman, Heat Transfer, 8 th ed., McGraw Hill, NY)

Chapter 5 Principles of Convection heat transfer (Text: J. P. Holman, Heat Transfer, 8 th ed., McGraw Hill, NY) hapter 5 Principles of onvection heat transfer (Tet: J. P. Holman, Heat Transfer, 8 th ed., McGra Hill, NY) onsider a fluid flo over a flat plate ith different temperatures (Fig 5-1) q A ha( T T ) since

More information

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies 13th February 2015 Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk 1 2D Flows - Shear flows Example 1. Flow over an inclined plane A

More information

6. Laminar and turbulent boundary layers

6. Laminar and turbulent boundary layers 6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary

More information

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils 1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II External Flows 1 Introduction In this chapter we will consider several fundamental flows, namely: the flat plate, the cylinder, the sphere, several other body shapes, and banks

More information

3 Generation and diffusion of vorticity

3 Generation and diffusion of vorticity Version date: March 22, 21 1 3 Generation and diffusion of vorticity 3.1 The vorticity equation We start from Navier Stokes: u t + u u = 1 ρ p + ν 2 u 1) where we have not included a term describing a

More information

APPLICATION OF THE DEFECT FORMULATION TO THE INCOMPRESSIBLE TURBULENT BOUNDARY LAYER

APPLICATION OF THE DEFECT FORMULATION TO THE INCOMPRESSIBLE TURBULENT BOUNDARY LAYER APPLICATION OF THE DEFECT FORMULATION TO THE INCOMPRESSIBLE TURBULENT BOUNDARY LAYER O. ROUZAUD ONERA OAt1 29 avenue de la Division Leclerc - B.P. 72 92322 CHATILLON Cedex - France AND B. AUPOIX AND J.-PH.

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory 13.021 Marine Hydrodynamics Lecture 19 Copyright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 19 Water Waves Exact (nonlinear) governing equations

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

- Marine Hydrodynamics. Lecture 14. F, M = [linear function of m ij ] [function of instantaneous U, U, Ω] not of motion history.

- Marine Hydrodynamics. Lecture 14. F, M = [linear function of m ij ] [function of instantaneous U, U, Ω] not of motion history. 2.20 - Marine Hydrodynamics, Spring 2005 ecture 14 2.20 - Marine Hydrodynamics ecture 14 3.20 Some Properties of Added-Mass Coefficients 1. m ij = ρ [function of geometry only] F, M = [linear function

More information

Viscous flow along a wall

Viscous flow along a wall Chapter 8 Viscous flow along a wall 8. The no-slip condition All liquids and gases are viscous and, as a consequence, a fluid near a solid boundary sticks to the boundary. The tendency for a liquid or

More information

Number of pages in the question paper : 06 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

The Generalized Boundary Layer Equations

The Generalized Boundary Layer Equations The Generalized Boundary Layer Equations Gareth H. McKinley (MIT-HML) November 004 We have seen that in general high Reynolds number flow past a slender body such as an airfoil can be considered as an

More information

READ T H E DATE ON LABEL A blue m a r k a r o u n d this notice will call y o u r attention to y o u r LOWELL. MICHIGAN, THURSDAY, AUGUST 29.

READ T H E DATE ON LABEL A blue m a r k a r o u n d this notice will call y o u r attention to y o u r LOWELL. MICHIGAN, THURSDAY, AUGUST 29. B U D D B < / UDY UU 29 929 VU XXXV Y B 5 2 $25 25 25 U 6 B j 3 $8 D D D VD V D D V D B B % B 2 D - Q 22: 5 B 2 3 Z D 2 5 B V $ 2 52 2 $5 25 25 $ Y Y D - 8 q 2 2 6 Y U DD D D D Y!! B D V!! XU XX D x D

More information

CEE 3310 External Flows (Boundary Layers & Drag), /2 f = 0.664

CEE 3310 External Flows (Boundary Layers & Drag), /2 f = 0.664 CEE 3310 External Flows (Boundary Layers & Drag), 2010 161 7.12 Review Boundary layer equations u u x + v u y = u ν 2 y 2 Blasius Solution δ x = 5.0 and c Rex 1/2 f = 0.664 Re 1/2 x within 10% of Von Kármán

More information

Boundary Layer (Reorganization of the Lecture Notes from Professor Anthony Jacobi and Professor Nenad Miljkoic) Consider a steady flow of a Newtonian, Fourier-Biot fluid oer a flat surface with constant

More information

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16 Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

2.25 Advanced Fluid Mechanics Fall 2013

2.25 Advanced Fluid Mechanics Fall 2013 .5 Advanced Fluid Mechanics Fall 013 Solution to Problem 1-Final Exam- Fall 013 r j g u j ρ, µ,σ,u j u r 1 h(r) r = R Figure 1: Viscous Savart Sheet. Image courtesy: Villermaux et. al. [1]. This kind of

More information

MathCAD solutions for problem of laminar boundary-layer flow

MathCAD solutions for problem of laminar boundary-layer flow MathCAD solutions for problem of laminar boundary-layer flow DANIELA CÂRSTEA Industrial High-School Group of Railways Transport, Craiova, ROMANIA danacrst@yahoo.com Abstract: -The problem of laminar boundary-layer

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

2 Equations of Motion

2 Equations of Motion 2 Equations of Motion system. In this section, we will derive the six full equations of motion in a non-rotating, Cartesian coordinate 2.1 Six equations of motion (non-rotating, Cartesian coordinates)

More information

Marching on the BL equations

Marching on the BL equations Marching on the BL equations Harvey S. H. Lam February 10, 2004 Abstract The assumption is that you are competent in Matlab or Mathematica. White s 4-7 starting on page 275 shows us that all generic boundary

More information

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation /04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

More information

PROBLEM SET 6. SOLUTIONS April 1, 2004

PROBLEM SET 6. SOLUTIONS April 1, 2004 Harvard-MIT Division of Health Sciences and Technology HST.54J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

UNIT V BOUNDARY LAYER INTRODUCTION

UNIT V BOUNDARY LAYER INTRODUCTION UNIT V BOUNDARY LAYER INTRODUCTION The variation of velocity from zero to free-stream velocity in the direction normal to the bondary takes place in a narrow region in the vicinity of solid bondary. This

More information

Sediment continuity: how to model sedimentary processes?

Sediment continuity: how to model sedimentary processes? Sediment continuity: how to model sedimentary processes? N.M. Vriend 1 Sediment transport The total sediment transport rate per unit width is a combination of bed load q b, suspended load q s and wash-load

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

FLUID MECHANICS. Lecture 7 Exact solutions

FLUID MECHANICS. Lecture 7 Exact solutions FLID MECHANICS Lecture 7 Eact solutions 1 Scope o Lecture To present solutions or a ew representative laminar boundary layers where the boundary conditions enable eact analytical solutions to be obtained.

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows

Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows Published in Phys. Fluids 14, L73-L76 (22). Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows Koji Fukagata, Kaoru Iwamoto, and Nobuhide Kasagi Department of Mechanical

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2012-13 MODULE TITLE: Introduction to Fluids DURATION OF

More information

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow AA210A Fundamentals of Compressible Flow Chapter 1 - Introduction to fluid flow 1 1.2 Conservation of mass Mass flux in the x-direction [ ρu ] = M L 3 L T = M L 2 T Momentum per unit volume Mass per unit

More information

Energy transfer rates in turbulent channels with drag reduction at constant power input

Energy transfer rates in turbulent channels with drag reduction at constant power input Energ transfer rates in turbulent channels with drag reduction at constant power input Davide Gatti, M. Quadrio, Y. Hasegawa, B. Frohnapfel and A. Cimarelli EDRFCM 2017, Villa Mondragone, Monte Porio Catone

More information

Boundary layer for the Navier-Stokes-alpha model of fluid turbulence

Boundary layer for the Navier-Stokes-alpha model of fluid turbulence Boundary layer for the Navier-Stokes-alpha model of fluid turbulence A. CHESKIDOV Abstract We study boundary layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer SIMPLE Algorithm for Two-Dimensional Channel Flow Fluid Flow and Heat Transfer by Professor Jung-Yang San Mechanical Engineering Department National Chung Hsing University Two-dimensional, transient, incompressible

More information

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms,

On side wall labeled A: we can express the pressure in a Taylor s series expansion: x 2. + higher order terms, Chapter 1 Notes A Note About Coordinates We nearly always use a coordinate system in this class where the vertical, ˆk, is normal to the Earth s surface and the x-direction, î, points to the east and the

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

GT ANALYTIC ASSESSMENT OF AN EMBEDDED AIRCRAFT PROPULSION

GT ANALYTIC ASSESSMENT OF AN EMBEDDED AIRCRAFT PROPULSION Proceedings of ASME Turbo Expo 6: Turbomachinery Technical Conference and Exposition GT6 June 3-7, 6, Seoul, South Korea GT6-575 ANALYTIC ASSESSMENT OF AN EMBEDDED AIRCRAFT PROPULSION Peter F. Pelz Ferdinand-J.

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

Asymptotic solutions in forced convection turbulent boundary layers

Asymptotic solutions in forced convection turbulent boundary layers JOT J OURNAL OF TURBULENCE http://jot.iop.org/ Asymptotic solutions in forced convection turbulent boundary layers Xia Wang and Luciano Castillo Department of Mechanical, Aerospace and Nuclear Engineering,

More information