Lecture 2. - Power spectrum of gravitational anisotropy - Temperature anisotropy from sound waves

Size: px
Start display at page:

Download "Lecture 2. - Power spectrum of gravitational anisotropy - Temperature anisotropy from sound waves"

Transcription

1 Lecture 2 - Power spectrum of gravitational anisotropy - Temperature anisotropy from sound waves

2 Bennett et al. (1996) COBE 4-year Power Spectrum The SW formula allows us to determine the 3d power spectrum of φ at the last scattering surface from Cl. But how?

3 Sachs & Wolfe (1967) T (ˆn) T 0 = 1 3 (t L, ˆr L ) SW Power Spectrum gives But this is not exactly what we want. We want the statistical average of this quantity.

4 Power Spectrum of φ Statistical average of the right hand side contains two-point correlation function If does not depend on locations (x) but only on separations between two points (r), then consequence of statistical homogeneity where we defined φ and used

5 Power Spectrum of φ In addition, if depends only on the magnitude of the separation r and not on the directions, then Power spectrum! Generic definition of the power spectrum for statistically homogeneous and isotropic fluctuations

6 SW Power Spectrum Thus, the power spectrum of the CMB in the SW limit is In the flat-sky approximation, Perpendicular wavenumber, (qperp) 2

7 SW Power Spectrum Thus, the power spectrum of the CMB in the SW limit is In the flat-sky approximation, For a power-law form,, we get

8 SW Power Spectrum Thus, the power spectrum of the CMB in the SW limit is In the flat-sky approximation, For a power-law form,, we get full-sky correction n=1

9 Bennett et al. (1996) n=1.2 ± 0.3 (68%CL) n=1

10 Bennett et al. (1996) COBE 4-year Power Spectrum

11 Bennett et al. (2013) WMAP 9-year Power Spectrum

12 Planck Collaboration (2016) Planck 29-mo Power Spectrum

13 Planck Collaboration (2016) Planck 29-mo Power Spectrum Clearly, the SW prediction does not fit! Missing physics: Hydrodynamics (sound waves)

14

15 La Soupe Miso Cosmique When matter and radiation were hotter than 3000 K, matter was completely ionised. The Universe was filled with plasma, which behaves just like a soup Think about a Miso soup (if you know what it is). Imagine throwing Tofus into a Miso soup, while changing the density of Miso And imagine watching how ripples are created and propagate throughout the soup

16

17 viscous This is a fluid, in which the amplitude of damps sound waves at shorter wavelength

18

19 When do sound waves become important? In other words, when would the Sachs-Wolfe approximation (purely gravitational effects) become invalid? The key to the answer: Sound-crossing Time Sound waves cannot alter temperature anisotropy at a given angular scale if there was not enough time for sound waves to propagate to the corresponding distance at the last-scattering surface The distance traveled by sound waves within a given time = The Sound Horizon

20 Comoving Photon Horizon First, the comoving distance traveled by photons is given by setting the space-time distance to be null: ds 2 = c 2 dt 2 + a 2 (t)dr 2 =0 r photon = c Z t 0 dt 0 a(t 0 )

21 Comoving Sound Horizon Then, we replace the speed of light with a timedependent speed of sound: r s = Z t 0 dt 0 a(t 0 ) c s(t 0 ) We cannot ignore the effects of sound waves if qrs > 1

22 Sound Speed Sound speed of an adiabatic fluid is given by For a baryon-photon system: - δp: pressure perturbation - δρ: density perturbation We can ignore the baryon pressure because it is much smaller than the photon pressure

23 Sound Speed Using the adiabatic relationship between photons and baryons: [i.e., the ratio of the number densities of baryons and photons is equal everywhere] and pressure-density relation of a relativistic fluid, δpγ=δργ/3, We obtain Or equivalently sound speed is reduced! where

24 Value of R? The baryon mass density goes like a 3, whereas the photon energy density goes like a 4. Thus, the ratio of the two, R, goes like a. The proportionality constant is: where we used for

25 For the last-scattering redshift of zl=1090 Value of R? (or last-scattering temperature of TL=2974 K), The baryon mass density goes like a 3, whereas the photon energy density goes like a 4. Thus, the ratio of the two, R, goes like a. rs = Mpc We cannot ignore the effects of sound waves The proportionality constant is: if qrs>1. Since l~qrl, this means l > rl/rs = 96 where we used where we used rl=13.95 forgpc

26 Creation of Sound Waves: Basic Equations 1. Conservation equations (energy and momentum) 2. Equation of state, relating pressure to energy density P = P ( ) 3. General relativistic version of the Poisson equation, relating gravitational potential to energy density 4. Evolution of the anisotropic stress (viscosity)

27 Energy Conservation Total energy conservation: anisotropic stress: [or, viscosity] velocity potential v = 1 a r u ) C.f., Total energy conservation [unperturbed]

28 Energy Conservation Total energy conservation: Again, this is the effect of locally-defined inhomogeneous scale factor, i.e., The spatial metric is given by ds 2 = a 2 (t)exp( 2 )dx 2 Thus, locally we can define a new scale factor: ã(t, x) =a(t)exp( )

29 Energy Conservation Total energy conservation: Momentum flux going outward (inward) -> reduction (increase) in the energy density ( ) C.f., for a non-expanding medium: + r ( v) =0

30 Momentum Conservation Total momentum conservation v = 1 a r u Cosmological redshift of the momentum Gravitational force given by potential gradient Force given by pressure gradient Force given by gradient of anisotropic stress

31 Equation of State Pressure of non-relativistic species (i.e., baryons and cold dark matter) can be ignored relative to the energy density. Thus, we set them to zero: PB=0=PD and δpb=0=δpd Unperturbed pressure of relativistic species (i.e., photons and relativistic neutrinos) is given by the third of the energy density, i.e., Pγ=ργ/3 and Pν=ρν/3 Perturbed pressure involves contributions from the bulk viscosity: P = P =

32 The reason for this is that Equation of State trace of the stress-energy of relativistic species Pressure of non-relativistic species (i.e., baryons and cold dark vanishes: matter) can be ignored relative to the energy density. μ=0,1,2,3 Τμ μ = 0 Thus, we set them to zero: PB=0=PD and δpb=0=δpd 3X Unperturbed T pressure of relativistic species (i.e., photons and relativistic T neutrinos) i i = +3P + r 2 =0 is given by the third of the energy density, i=1i.e., Pγ=ργ/3 and Pν=ρν/3 Perturbed pressure involves contributions from the bulk viscosity: P = P =

33 Two Remarks In the standard scenario: Energy densities are conserved separately; thus we do not need to sum over all species Momentum densities of photons and baryons are NOT conserved separately but they are coupled via Thomson scattering. This must be taken into account when writing down separate conservation equations

34 Conservation Equations for Photons and Baryons Fourier transformation replaces r 2! q 2 momentum transfer via scattering

35 Conservation Equations for Photons and Baryons Fourier transformation replaces r 2! q 2 what about photon s viscosity?

36 Peebles & Yu (1970); Sunyaev & Zeldovich (1970) Formation of a Photon-baryon Fluid Photons are not a fluid. Photons free-stream at the speed of light The conservation equations are not enough because we need to specify the evolution of viscosity Solving for viscosity requires information of the phase-space distribution function of photons: Boltzmann equation However, frequent scattering of photons with baryons* can make photons behave as a fluid: Photon-baryon fluid *Photons scatter with electrons via Thomson scattering. Protons scatter with electrons via Coulomb scattering. Thus we can say, effectively, photons scatter with baryons

37 Let s solve them! Fourier transformation replaces r 2! q 2

38 Tight-coupling Approximation When Thomson scattering is efficient, the relative velocity between photons and baryons is small. We write [d is an arbitrary dimensionless variable] And take *. We obtain *In this limit, viscosity πγ is exponentially suppressed. This result comes from the Boltzmann equation but we do not derive it here. It makes sense physically.

39 Tight-coupling Approximation Eliminating d and using the fact that R is proportional to the scale factor, we obtain Using the energy conservation to replace δuγ with δργ/ργ, we obtain Wave Equation, with the speed of sound of cs 2 = 1/3(1+R)!

40 Peebles & Yu (1970); Sunyaev & Zeldovich (1970) Sound Wave! To simplify the equation, let s first look at the highfrequency solution Specifically, we take q >> ah (the wavelength of fluctuations is much shorter than the Hubble length). Then we can ignore time derivatives of R and Ψ because they evolve in the Hubble time scale: Solution: SOUND WAVE!

41 Recap Photons are not a fluid; but Thomson scattering couples photons to baryons, forming a photon-baryon fluid The reduced sound speed, cs 2 =1/3(1+R), emerges automatically δργ/4ργ is the temperature anisotropy at the bottom of the potential well. Adding gravitational redshift, the observed temperature anisotropy is δργ/4ργ + Φ, which is given by

42

43

44 Stone: Fluctuations entering the horizon This is a tricky concept, but it is important Suppose that there are fluctuations at all wavelengths, including the ones that exceed the Hubble length (which we loosely call our horizon ) Let s not ask the origin of these super-horizon fluctuations, but just assume their existence As the Universe expands, our horizon grows and we can see longer and longer wavelengths Fluctuations entering the horizon

45 Last scattering Radiation Era Matter Era 10 Gpc/h today 1 Gpc/h today 100 Mpc/h today 10 Mpc/h today 1 Mpc/h today enter the horizon

46 Three Regimes Super-horizon scales [q < ah] Only gravity is important Evolution differs from Newtonian Sub-horizon but super-sound-horizon [ah < q < ah/cs] Only gravity is important Evolution similar to Newtonian Sub-sound-horizon scales [q > ah/cs] Hydrodynamics important -> Sound waves

47 Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005) ζ: Conserved on large scales For the adiabatic initial condition, there exists a useful quantity, ζ, which remains constant on large scales (super-horizon scales, q << ah) regardless of the contents of the Universe ζ is conserved regardless of whether the Universe is radiation-dominated, matter-dominated, or whatever Energy conservation for q << ah:

48 Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005) ζ: Conserved on large scales If pressure is a function of the energy density only, i.e.,, then integration constant Integrate

49 Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005) ζ: Conserved on large scales If pressure is a function of the energy density only, i.e.,, then integration constant For the adiabatic initial condition, all species share the same value of ζα, i.e., ζα=ζ

50 qeq Which fluctuation entered the horizon before the matterradiation equality? qeq = aeqheq ~ 0.01 (ΩMh 2 /0.14) Mpc 1 At the last scattering surface, this subtends the multipole of leq = qeqrl ~ 140

51 Entered the horizon during the radiation era

52 What determines the locations and heights of the peaks? Does the sound-wave solution explain it?

53 Peak Locations? High-frequency solution, for q >> ah VERY roughly speaking, the angular power spectrum Cl is given by [ ] 2 with q -> l/rl Question: What are the integration constants, A and B? Answer: They depend on the initial conditions; namely, adiabatic or not? For adiabatic initial condition, A >> B when q is large [We will show it later.]

54 Peak Locations? High-frequency solution, for q >> ah VERY roughly speaking, the angular power spectrum Cl is given by [ ] 2 with q -> l/rl If A>>B, the locations of peaks are

55

56 The simple estimates do not match! This is simply because these angular scales do not satisfy q >> ah, i.e, the oscillations are not pure cosine even for the adiabatic initial condition. We need a better solution!

57 Better Solution in Radiation-dominated Era Going back to the original tight-coupling equation.. In the radiation-dominated era, R << 1 Change the independent variable from the time (t) to

58 Better Solution in Radiation-dominated Era Then the equation simplifies to where In the radiation-dominated era, R << 1 Change the independent variable from the time (t) to

59 <latexit sha1_base64="durnugb/bp0jcyqiyolgayvouhg=">aaacn3icbvdlsgmxfm34rpu16tlnyjf2fi0ziuhgklpxjrxsazpdyarpg5pjhirtkep/yo2/4u43lhrx6x+ytoomrrdcts45l5t7gogsqrznxvhzxvvf2mxt5bd3dvf2zypdhusxqliooowifucjkwg4roiiubujdmoa4mywvjnqzrewknd2omyr9kpyz6rhefsa6ph3niss5i2giaaknn5f+ypl2x7isvsrlbnpo2ss2h2z4fscwvnlwe1baarv65jpxpejomrmiqqlbltoppweckuqxzo8f0scqtsefdzwkmeqsz+z7t2xtjxttxpc6mounwozhqkmpryhgxagua3kojyl/9pasepd+glhuawwq/nbvzhailvtek0uergpotyaikh0xy00gaiipapo6xdcxzwxqeos4jov9/68ul1o48iby3acssaff6akbken1aecj+avvimp48l4mz6nr7l1xuh7jscfmr5/apurq/a=</latexit> <latexit sha1_base64="durnugb/bp0jcyqiyolgayvouhg=">aaacn3icbvdlsgmxfm34rpu16tlnyjf2fi0ziuhgklpxjrxsazpdyarpg5pjhirtkep/yo2/4u43lhrx6x+ytoomrrdcts45l5t7gogsqrznxvhzxvvf2mxt5bd3dvf2zypdhusxqliooowifucjkwg4roiiubujdmoa4mywvjnqzrewknd2omyr9kpyz6rhefsa6ph3niss5i2giaaknn5f+ypl2x7isvsrlbnpo2ss2h2z4fscwvnlwe1baarv65jpxpejomrmiqqlbltoppweckuqxzo8f0scqtsefdzwkmeqsz+z7t2xtjxttxpc6mounwozhqkmpryhgxagua3kojyl/9pasepd+glhuawwq/nbvzhailvtek0uergpotyaikh0xy00gaiipapo6xdcxzwxqeos4jov9/68ul1o48iby3acssaff6akbken1aecj+avvimp48l4mz6nr7l1xuh7jscfmr5/apurq/a=</latexit> <latexit sha1_base64="durnugb/bp0jcyqiyolgayvouhg=">aaacn3icbvdlsgmxfm34rpu16tlnyjf2fi0ziuhgklpxjrxsazpdyarpg5pjhirtkep/yo2/4u43lhrx6x+ytoomrrdcts45l5t7gogsqrznxvhzxvvf2mxt5bd3dvf2zypdhusxqliooowifucjkwg4roiiubujdmoa4mywvjnqzrewknd2omyr9kpyz6rhefsa6ph3niss5i2giaaknn5f+ypl2x7isvsrlbnpo2ss2h2z4fscwvnlwe1baarv65jpxpejomrmiqqlbltoppweckuqxzo8f0scqtsefdzwkmeqsz+z7t2xtjxttxpc6mounwozhqkmpryhgxagua3kojyl/9pasepd+glhuawwq/nbvzhailvtek0uergpotyaikh0xy00gaiipapo6xdcxzwxqeos4jov9/68ul1o48iby3acssaff6akbken1aecj+avvimp48l4mz6nr7l1xuh7jscfmr5/apurq/a=</latexit> <latexit sha1_base64="durnugb/bp0jcyqiyolgayvouhg=">aaacn3icbvdlsgmxfm34rpu16tlnyjf2fi0ziuhgklpxjrxsazpdyarpg5pjhirtkep/yo2/4u43lhrx6x+ytoomrrdcts45l5t7gogsqrznxvhzxvvf2mxt5bd3dvf2zypdhusxqliooowifucjkwg4roiiubujdmoa4mywvjnqzrewknd2omyr9kpyz6rhefsa6ph3niss5i2giaaknn5f+ypl2x7isvsrlbnpo2ss2h2z4fscwvnlwe1baarv65jpxpejomrmiqqlbltoppweckuqxzo8f0scqtsefdzwkmeqsz+z7t2xtjxttxpc6mounwozhqkmpryhgxagua3kojyl/9pasepd+glhuawwq/nbvzhailvtek0uergpotyaikh0xy00gaiipapo6xdcxzwxqeos4jov9/68ul1o48iby3acssaff6akbken1aecj+avvimp48l4mz6nr7l1xuh7jscfmr5/apurq/a=</latexit> Better Solution in Radiation-dominated Era Then the equation simplifies to where The solution is We rewrite this using the formula for trigonometry: sin(' ' 0 )=sin(') cos(' 0 ) cos(')sin(' 0 )

60 Better Solution in Radiation-dominated Era Then the equation simplifies to where The solution is where

61 Einstein s Equations Now we need to know Newton s gravitational potential, φ, and the scalar curvature perturbation, ψ. Einstein s equations - let s look up any text books:

62 Einstein s Equations Now we need to know Newton s gravitational potential, φ, and the scalar curvature perturbation, ψ. Einstein s equations - let s look up any text books:

63 Einstein s Equations Now we need to know Newton s gravitational potential, φ, and the scalar curvature perturbation, ψ. Einstein s equations - let s look up any text books: Will come back to this later. For now, let s ignore any viscosity.

64 Einstein s Equations Now we need to know Newton s gravitational potential, φ, and the scalar curvature perturbation, ψ. Einstein s equations - let s look up any text books: Will come back to this later. For now, let s ignore any viscosity.

65 Einstein s Equations in Radiation-dominated Era Now we need to know Newton s gravitational potential, φ, and the scalar curvature perturbation, ψ. Einstein s equations - let s look up any text books: non-adiabatic pressure

66 Einstein s Equations in Radiation-dominated Era Now we need to know Newton s gravitational potential, φ, and the scalar curvature perturbation, ψ. Einstein s equations - let s look up any text books: We shall ignore this non-adiabatic pressure

67 Kodama & Sasaki (1986, 1987) Solution (Adiabatic) in Radiation-dominated Era ADI where Low-frequency limit (super-sound-horizon scales, qrs << 1) ΦADI -> 2ζ/3 = constant High-frequency limit (sub-sound-horizon scales, qrs >> 1) ΦADI -> 2ζ damp

68 Solution (Adiabatic) in Radiation-dominated Era ADI where Poisson Equation Low-frequency limit (super-sound-horizon scales, qrs << 1) ΦADI -> 2ζ/3 = constant & oscillation solution for radiation High-frequency limit (sub-sound-horizon scales, qrs >> 1) ΦADI -> 2ζ damp

69 Solution (Adiabatic) in Radiation-dominated Era ADI where Low-frequency limit (super-sound-horizon scales, qrs << 1) ΦADI -> 2ζ/3 = constant High-frequency limit (sub-sound-horizon scales, qrs >> 1) ΦADI -> 2ζ damp

70 Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016) Sound Wave Solution in the Radiation-dominated Era The solution is where

71 Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016) Sound Wave Solution in the Radiation-dominated Era The solution is where

72 Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016) Sound Wave Solution in the Radiation-dominated Era The solution is where i.e., ADI ADI

73 Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016) Sound Wave Solution in the Radiation-dominated Era The adiabatic solution is with Therefore, the solution is a pure cosine only in the high-frequency limit!

74

75 Roles of viscosity Neutrino viscosity Modify potentials: Photon viscosity Viscous photon-baryon fluid: damping of sound waves Silk (1968) Silk damping

76 High-frequency solution without neutrino viscosity The solution is where ' 1 <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> ' 1 <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit>

77 Chluba & Grin (2013) High-frequency solution with neutrino viscosity The solution is where ' 1 <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> ' 1 <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> <latexit sha1_base64="bnhabzp0k7zxjmggnjoef5tgyl8=">aaab83icbvbns8naej3ur1q/qh69lbbbu0le0gpri8ck9goaudbbtbp0s1l2n4us+je8efdeq3/gm//gtzudtj4yelw3w8y8uhkmjet+o5wnza3tnepubw//4pcofnzs1wmmco2qlkeqh2jnoro0y5jhtc8vxunias+c3bd+b0qvzql4mjnjgwthgkwmygml359ijcfmj2pkdesnt+kugnajv5iglggp61/+kcvzqouhhgs98fxpghwrwwin85qfasoxmecydiwvoke6ybc3z9gfvuyosputydbc/t2r40trwrlazgsbsv71cve/b5cz6dbimzczoyisf0uzryzfrqboxbqlhs8swuqxeysiy6wwmtammg3bw315nxsvmp7b9b6vg627mo4qnme5xiihn9ccb2hdbwhieizxehmy58v5dz6wrrwnndmfp3a+fwceujft</latexit> non-zero value!

78 High-frequency solution with neutrino viscosity Using the formula for trigonometry, we write where Hu & Sugiyama (1996) Phase shift! Bashinsky & Seljak (2004)

79 High-frequency solution with neutrino viscosity The solution is Thus, the neutrino viscosity will: where (1) Reduce the amplitude of sound waves at large multipoles (2) Shift the peak positions of the temperature power Hu & Sugiyama spectrum (1996) Phase shift! Bashinsky & Seljak (2004)

80 Photon Viscosity In the tight-coupling approximation, the photon viscosity damps exponentially To take into account a non-zero photon viscosity, we go to a higher order in the tight-coupling approximation

81 Yesterday: Tight-coupling Approximation (1st-order) When Thomson scattering is efficient, the relative velocity between photons and baryons is small. We write [d is an arbitrary dimensionless variable] And take *. We obtain *In this limit, viscosity πγ is exponentially suppressed. This result comes from the Boltzmann equation but we do not derive it here. It makes sense physically.

82 Today: Tight-coupling Approximation (2nd-order) When Thomson scattering is efficient, the relative velocity between photons and baryons is small. We write where [d2 is an arbitrary dimensionless variables] And take.. We obtain

83 <latexit sha1_base64="x5zmo5o+00rukqrjqkkkvd9yinm=">aaacq3icbzdlsiqxfiztojnqo5dwl7mj0whubkruqtec6mala7bkdjrivppud8ykvsqposnq3dz4au58atcufhertkq7gbzmgccf/z8nly/jpbaudg+cmdkphz/nzs80fj9/+fqtubr8yrpccozwtgbmlaglumjsooeknuugqsust5pzgzo/vubjraap3sjhnokbfqng4lwvn3/vrrpuac83n6py62c12baeddpdlgyduaqqklkxubcxjiokx1wdux1jxxiwtocmxt/1h/vroqbf3gyf7xbc9l2ipqjfpnuun69zp+ofqu24bgu7uzi7xlmfyyvwdvzyzigfwwc7xmpqahvlmeffv73tp2lm/nkojt2xeyuoa0cq8z0k3nc+zwrzf1m3colorxq6lxxqprkolsr1ga2b0r4wyj0ceqhccp9wyofgktqpveehrg+//f6cblsjsb392mrt7u9xzjpv5adzixhzjnvkkbyrduhkktyse/iqxav3wwpwngmdcayzk+rvbc9/aucjsva=</latexit> <latexit sha1_base64="x5zmo5o+00rukqrjqkkkvd9yinm=">aaacq3icbzdlsiqxfiztojnqo5dwl7mj0whubkruqtec6mala7bkdjrivppud8ykvsqposnq3dz4au58atcufhertkq7gbzmgccf/z8nly/jpbaudg+cmdkphz/nzs80fj9/+fqtubr8yrpccozwtgbmlaglumjsooeknuugqsust5pzgzo/vubjraap3sjhnokbfqng4lwvn3/vrrpuac83n6py62c12baeddpdlgyduaqqklkxubcxjiokx1wdux1jxxiwtocmxt/1h/vroqbf3gyf7xbc9l2ipqjfpnuun69zp+ofqu24bgu7uzi7xlmfyyvwdvzyzigfwwc7xmpqahvlmeffv73tp2lm/nkojt2xeyuoa0cq8z0k3nc+zwrzf1m3colorxq6lxxqprkolsr1ga2b0r4wyj0ceqhccp9wyofgktqpveehrg+//f6cblsjsb392mrt7u9xzjpv5adzixhzjnvkkbyrduhkktyse/iqxav3wwpwngmdcayzk+rvbc9/aucjsva=</latexit> <latexit sha1_base64="x5zmo5o+00rukqrjqkkkvd9yinm=">aaacq3icbzdlsiqxfiztojnqo5dwl7mj0whubkruqtec6mala7bkdjrivppud8ykvsqposnq3dz4au58atcufhertkq7gbzmgccf/z8nly/jpbaudg+cmdkphz/nzs80fj9/+fqtubr8yrpccozwtgbmlaglumjsooeknuugqsust5pzgzo/vubjraap3sjhnokbfqng4lwvn3/vrrpuac83n6py62c12baeddpdlgyduaqqklkxubcxjiokx1wdux1jxxiwtocmxt/1h/vroqbf3gyf7xbc9l2ipqjfpnuun69zp+ofqu24bgu7uzi7xlmfyyvwdvzyzigfwwc7xmpqahvlmeffv73tp2lm/nkojt2xeyuoa0cq8z0k3nc+zwrzf1m3colorxq6lxxqprkolsr1ga2b0r4wyj0ceqhccp9wyofgktqpveehrg+//f6cblsjsb392mrt7u9xzjpv5adzixhzjnvkkbyrduhkktyse/iqxav3wwpwngmdcayzk+rvbc9/aucjsva=</latexit> <latexit sha1_base64="x5zmo5o+00rukqrjqkkkvd9yinm=">aaacq3icbzdlsiqxfiztojnqo5dwl7mj0whubkruqtec6mala7bkdjrivppud8ykvsqposnq3dz4au58atcufhertkq7gbzmgccf/z8nly/jpbaudg+cmdkphz/nzs80fj9/+fqtubr8yrpccozwtgbmlaglumjsooeknuugqsust5pzgzo/vubjraap3sjhnokbfqng4lwvn3/vrrpuac83n6py62c12baeddpdlgyduaqqklkxubcxjiokx1wdux1jxxiwtocmxt/1h/vroqbf3gyf7xbc9l2ipqjfpnuun69zp+ofqu24bgu7uzi7xlmfyyvwdvzyzigfwwc7xmpqahvlmeffv73tp2lm/nkojt2xeyuoa0cq8z0k3nc+zwrzf1m3colorxq6lxxqprkolsr1ga2b0r4wyj0ceqhccp9wyofgktqpveehrg+//f6cblsjsb392mrt7u9xzjpv5adzixhzjnvkkbyrduhkktyse/iqxav3wwpwngmdcayzk+rvbc9/aucjsva=</latexit> Tight-coupling Approximation (2nd-order) Eliminating d2 and using the fact that R is proportional to the scale factor, we obtain Getting πγ requires an approximate solution of the Boltzmann equation in the 2nd-order tight coupling. We do not derive it here. The answer is γ = T n j u γ Kaiser (1983)

84 <latexit sha1_base64="x5zmo5o+00rukqrjqkkkvd9yinm=">aaacq3icbzdlsiqxfiztojnqo5dwl7mj0whubkruqtec6mala7bkdjrivppud8ykvsqposnq3dz4au58atcufhertkq7gbzmgccf/z8nly/jpbaudg+cmdkphz/nzs80fj9/+fqtubr8yrpccozwtgbmlaglumjsooeknuugqsust5pzgzo/vubjraap3sjhnokbfqng4lwvn3/vrrpuac83n6py62c12baeddpdlgyduaqqklkxubcxjiokx1wdux1jxxiwtocmxt/1h/vroqbf3gyf7xbc9l2ipqjfpnuun69zp+ofqu24bgu7uzi7xlmfyyvwdvzyzigfwwc7xmpqahvlmeffv73tp2lm/nkojt2xeyuoa0cq8z0k3nc+zwrzf1m3colorxq6lxxqprkolsr1ga2b0r4wyj0ceqhccp9wyofgktqpveehrg+//f6cblsjsb392mrt7u9xzjpv5adzixhzjnvkkbyrduhkktyse/iqxav3wwpwngmdcayzk+rvbc9/aucjsva=</latexit> <latexit sha1_base64="x5zmo5o+00rukqrjqkkkvd9yinm=">aaacq3icbzdlsiqxfiztojnqo5dwl7mj0whubkruqtec6mala7bkdjrivppud8ykvsqposnq3dz4au58atcufhertkq7gbzmgccf/z8nly/jpbaudg+cmdkphz/nzs80fj9/+fqtubr8yrpccozwtgbmlaglumjsooeknuugqsust5pzgzo/vubjraap3sjhnokbfqng4lwvn3/vrrpuac83n6py62c12baeddpdlgyduaqqklkxubcxjiokx1wdux1jxxiwtocmxt/1h/vroqbf3gyf7xbc9l2ipqjfpnuun69zp+ofqu24bgu7uzi7xlmfyyvwdvzyzigfwwc7xmpqahvlmeffv73tp2lm/nkojt2xeyuoa0cq8z0k3nc+zwrzf1m3colorxq6lxxqprkolsr1ga2b0r4wyj0ceqhccp9wyofgktqpveehrg+//f6cblsjsb392mrt7u9xzjpv5adzixhzjnvkkbyrduhkktyse/iqxav3wwpwngmdcayzk+rvbc9/aucjsva=</latexit> <latexit sha1_base64="x5zmo5o+00rukqrjqkkkvd9yinm=">aaacq3icbzdlsiqxfiztojnqo5dwl7mj0whubkruqtec6mala7bkdjrivppud8ykvsqposnq3dz4au58atcufhertkq7gbzmgccf/z8nly/jpbaudg+cmdkphz/nzs80fj9/+fqtubr8yrpccozwtgbmlaglumjsooeknuugqsust5pzgzo/vubjraap3sjhnokbfqng4lwvn3/vrrpuac83n6py62c12baeddpdlgyduaqqklkxubcxjiokx1wdux1jxxiwtocmxt/1h/vroqbf3gyf7xbc9l2ipqjfpnuun69zp+ofqu24bgu7uzi7xlmfyyvwdvzyzigfwwc7xmpqahvlmeffv73tp2lm/nkojt2xeyuoa0cq8z0k3nc+zwrzf1m3colorxq6lxxqprkolsr1ga2b0r4wyj0ceqhccp9wyofgktqpveehrg+//f6cblsjsb392mrt7u9xzjpv5adzixhzjnvkkbyrduhkktyse/iqxav3wwpwngmdcayzk+rvbc9/aucjsva=</latexit> <latexit sha1_base64="x5zmo5o+00rukqrjqkkkvd9yinm=">aaacq3icbzdlsiqxfiztojnqo5dwl7mj0whubkruqtec6mala7bkdjrivppud8ykvsqposnq3dz4au58atcufhertkq7gbzmgccf/z8nly/jpbaudg+cmdkphz/nzs80fj9/+fqtubr8yrpccozwtgbmlaglumjsooeknuugqsust5pzgzo/vubjraap3sjhnokbfqng4lwvn3/vrrpuac83n6py62c12baeddpdlgyduaqqklkxubcxjiokx1wdux1jxxiwtocmxt/1h/vroqbf3gyf7xbc9l2ipqjfpnuun69zp+ofqu24bgu7uzi7xlmfyyvwdvzyzigfwwc7xmpqahvlmeffv73tp2lm/nkojt2xeyuoa0cq8z0k3nc+zwrzf1m3colorxq6lxxqprkolsr1ga2b0r4wyj0ceqhccp9wyofgktqpveehrg+//f6cblsjsb392mrt7u9xzjpv5adzixhzjnvkkbyrduhkktyse/iqxav3wwpwngmdcayzk+rvbc9/aucjsva=</latexit> Tight-coupling Approximation (2nd-order) Eliminating d2 and using the fact that R is proportional to the scale factor, we obtain Getting πγ requires an approximate solution of the Boltzmann equation in the 2nd-order tight coupling. We do not derive it here. The answer is Given by the spatial gradient of the velocity field - a well-known result in fluid dynamics γ = T n j u γ Kaiser (1983)

85 Damped Oscillator Using the energy conservation to replace δuγ with δργ/ργ, we obtain, for q >> ah, New term, giving damping! where

86 Damped Oscillator Using the energy conservation to replace δuγ with δργ/ργ, we obtain, for q >> ah, New term, giving damping! where Important for high frequencies (large multipoles)

87 <latexit sha1_base64="ruibapbz1adjb7lbqmlyrbmp6vk=">aaacihicbvbntxsxepvcy0dainajf4uoej007kjkcet0whekakhxwm06s4mf1+vas4holz/cpx+llx5avfrwfg1oyiectxrp6b0zzczlrfae4vhfndf/5u3c4tjy4937ldw15vrgms8rj7ejs126iww8amwwq4o0xlihugqaz7orrxp//bqdv6u5pzhfxgedo3ilgykunvcewovkgy7wxgqnow1//na5uyo8ghsq1kkc5qdjkyhjjkv+jjwadolt2mzf7xgk/pikm9jimxynzb+ix8qqqensg/fdjlbuq8grkhrhdvf5tccvyiddqa0u6hv19mex/xiups9lf8oqn6ppj2oovb8vwegsgib+utcrx/o6fex7vvozwxea+bgorzsnkk/s4n3lujiebqlsqxarl0nwiclk2gghjm9ffknodttj3e5ovrqodmdxllfntsw2wcl22ae7yseswys7zt/yl/y7+h79jp5ed4+tc9fs5gp7d9h9a/slos4=</latexit> <latexit sha1_base64="ruibapbz1adjb7lbqmlyrbmp6vk=">aaacihicbvbntxsxepvcy0dainajf4uoej007kjkcet0whekakhxwm06s4mf1+vas4holz/cpx+llx5avfrwfg1oyiectxrp6b0zzczlrfae4vhfndf/5u3c4tjy4937ldw15vrgms8rj7ejs126iww8amwwq4o0xlihugqaz7orrxp//bqdv6u5pzhfxgedo3ilgykunvcewovkgy7wxgqnow1//na5uyo8ghsq1kkc5qdjkyhjjkv+jjwadolt2mzf7xgk/pikm9jimxynzb+ix8qqqensg/fdjlbuq8grkhrhdvf5tccvyiddqa0u6hv19mex/xiups9lf8oqn6ppj2oovb8vwegsgib+utcrx/o6fex7vvozwxea+bgorzsnkk/s4n3lujiebqlsqxarl0nwiclk2gghjm9ffknodttj3e5ovrqodmdxllfntsw2wcl22ae7yseswys7zt/yl/y7+h79jp5ed4+tc9fs5gp7d9h9a/slos4=</latexit> <latexit sha1_base64="ruibapbz1adjb7lbqmlyrbmp6vk=">aaacihicbvbntxsxepvcy0dainajf4uoej007kjkcet0whekakhxwm06s4mf1+vas4holz/cpx+llx5avfrwfg1oyiectxrp6b0zzczlrfae4vhfndf/5u3c4tjy4937ldw15vrgms8rj7ejs126iww8amwwq4o0xlihugqaz7orrxp//bqdv6u5pzhfxgedo3ilgykunvcewovkgy7wxgqnow1//na5uyo8ghsq1kkc5qdjkyhjjkv+jjwadolt2mzf7xgk/pikm9jimxynzb+ix8qqqensg/fdjlbuq8grkhrhdvf5tccvyiddqa0u6hv19mex/xiups9lf8oqn6ppj2oovb8vwegsgib+utcrx/o6fex7vvozwxea+bgorzsnkk/s4n3lujiebqlsqxarl0nwiclk2gghjm9ffknodttj3e5ovrqodmdxllfntsw2wcl22ae7yseswys7zt/yl/y7+h79jp5ed4+tc9fs5gp7d9h9a/slos4=</latexit> <latexit sha1_base64="ruibapbz1adjb7lbqmlyrbmp6vk=">aaacihicbvbntxsxepvcy0dainajf4uoej007kjkcet0whekakhxwm06s4mf1+vas4holz/cpx+llx5avfrwfg1oyiectxrp6b0zzczlrfae4vhfndf/5u3c4tjy4937ldw15vrgms8rj7ejs126iww8amwwq4o0xlihugqaz7orrxp//bqdv6u5pzhfxgedo3ilgykunvcewovkgy7wxgqnow1//na5uyo8ghsq1kkc5qdjkyhjjkv+jjwadolt2mzf7xgk/pikm9jimxynzb+ix8qqqensg/fdjlbuq8grkhrhdvf5tccvyiddqa0u6hv19mex/xiups9lf8oqn6ppj2oovb8vwegsgib+utcrx/o6fex7vvozwxea+bgorzsnkk/s4n3lujiebqlsqxarl0nwiclk2gghjm9ffknodttj3e5ovrqodmdxllfntsw2wcl22ae7yseswys7zt/yl/y7+h79jp5ed4+tc9fs5gp7d9h9a/slos4=</latexit> Damped Oscillator Using the energy conservation to replace δuγ with δργ/ργ, we obtain, for q >> ah, New term, giving damping! SOLUTION: Exponential dampling! exp q 2 / T n e H

88 Damped Oscillator Using the energy conservation to replace δuγ with δργ/ργ, we obtain, for q >> ah, New term, giving damping! SOLUTION: Silk Exponential dampling! Silk diffusion length = length traveled by photon s random walks

89 Diffusion Length The mean free path of the photon between scatterings is (σtne) 1 Below this scale, you do not have a photon-baryon fluid The number of scatterings per Hubble time is Nscattering=σTne/H Then, the length traveled by photons by random walks within the Hubble time is (σtne) 1 times Nscatterings The diffusion length is thus (σtne) 1 times Nscatterings = (σtneh) 1/2

90 Diffusion Damping by Wayne Hu Diffusion mixes hot and cold photons -> Damping of anisotropies

91 Planck Collaboration (2016) Silk Damping? Sachs-Wolfe Sound Wave

92 Additional Damping The power spectrum is [ is thus exp( 2q 2 /qsilk 2 ) ] 2 with q -> l/rl. The damping factor qsilk(tl) = Mpc 1. This corresponds to a multipole of lsilk ~ qsilk rl/ 2 = Seems too large, compared to the exact calculation There is an additional damping due to a finite width of the last scattering surface, σ~250 K Fuzziness damping Bond (1996) Landau damping - Weinberg (2001) fuzziness ( )

93 Planck Collaboration (2016) Total damping: qd 2 = qsilk 2 + qfuzziness 2 qd ~ 0.11 Mpc 1, giving ld ~ qdrl/ 2 ~ 1125 Silk+Fuzziness Damping Sachs-Wolfe Sound Wave

94 Recap The basic structure of the temperature power spectrum is The Sachs-Wolfe plateau at low multipoles Sound waves at intermediate multipoles 1st-order tight-coupling Silk damping and Fuzziness damping at high multipoles 2nd-order tight-coupling

Lecture 3. - Cosmological parameter dependence of the temperature power spectrum. - Polarisation of the CMB

Lecture 3. - Cosmological parameter dependence of the temperature power spectrum. - Polarisation of the CMB Lecture 3 - Cosmological parameter dependence of the temperature power spectrum - Polarisation of the CMB Planck Collaboration (2016) Let s understand the peak heights Silk+Landau Damping Sachs-Wolfe Sound

More information

Lecture 4. - Cosmological parameter dependence of the temperature power spectrum (continued) - Polarisation

Lecture 4. - Cosmological parameter dependence of the temperature power spectrum (continued) - Polarisation Lecture 4 - Cosmological parameter dependence of the temperature power spectrum (continued) - Polarisation Planck Collaboration (2016) Let s understand the peak heights Silk+Landau Damping Sachs-Wolfe

More information

Astro 448 Lecture Notes Set 1 Wayne Hu

Astro 448 Lecture Notes Set 1 Wayne Hu Astro 448 Lecture Notes Set 1 Wayne Hu Recombination Equilibrium number density distribution of a non-relativistic species n i = g i ( mi T 2π ) 3/2 e m i/t Apply to the e + p H system: Saha Equation n

More information

CMB Anisotropies Episode II :

CMB Anisotropies Episode II : CMB Anisotropies Episode II : Attack of the C l ones Approximation Methods & Cosmological Parameter Dependencies By Andy Friedman Astronomy 200, Harvard University, Spring 2003 Outline Elucidating the

More information

CMB Anisotropies: The Acoustic Peaks. Boom98 CBI Maxima-1 DASI. l (multipole) Astro 280, Spring 2002 Wayne Hu

CMB Anisotropies: The Acoustic Peaks. Boom98 CBI Maxima-1 DASI. l (multipole) Astro 280, Spring 2002 Wayne Hu CMB Anisotropies: The Acoustic Peaks 80 T (µk) 60 40 20 Boom98 CBI Maxima-1 DASI 500 1000 1500 l (multipole) Astro 280, Spring 2002 Wayne Hu Physical Landscape 100 IAB Sask 80 Viper BAM TOCO Sound Waves

More information

Lecture 3+1: Cosmic Microwave Background

Lecture 3+1: Cosmic Microwave Background Lecture 3+1: Cosmic Microwave Background Structure Formation and the Dark Sector Wayne Hu Trieste, June 2002 Large Angle Anisotropies Actual Temperature Data Really Isotropic! Large Angle Anisotropies

More information

isocurvature modes Since there are two degrees of freedom in

isocurvature modes Since there are two degrees of freedom in isocurvature modes Since there are two degrees of freedom in the matter-radiation perturbation, there must be a second independent perturbation mode to complement the adiabatic solution. This clearly must

More information

Ringing in the New Cosmology

Ringing in the New Cosmology Ringing in the New Cosmology 80 T (µk) 60 40 20 Boom98 CBI Maxima-1 DASI 500 1000 1500 l (multipole) Acoustic Peaks in the CMB Wayne Hu Temperature Maps CMB Isotropy Actual Temperature Data COBE 1992 Dipole

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

Licia Verde. Introduction to cosmology. Lecture 4. Inflation

Licia Verde. Introduction to cosmology. Lecture 4. Inflation Licia Verde Introduction to cosmology Lecture 4 Inflation Dividing line We see them like temperature On scales larger than a degree, fluctuations were outside the Hubble horizon at decoupling Potential

More information

ASTR 610 Theory of Galaxy Formation Lecture 4: Newtonian Perturbation Theory I. Linearized Fluid Equations

ASTR 610 Theory of Galaxy Formation Lecture 4: Newtonian Perturbation Theory I. Linearized Fluid Equations ASTR 610 Theory of Galaxy Formation Lecture 4: Newtonian Perturbation Theory I. Linearized Fluid Equations Frank van den Bosch Yale University, spring 2017 Structure Formation: The Linear Regime Thus far

More information

The Once and Future CMB

The Once and Future CMB The Once and Future CMB DOE, Jan. 2002 Wayne Hu The On(c)e Ring Original Power Spectra of Maps 64º Band Filtered Ringing in the New Cosmology Gravitational Ringing Potential wells = inflationary seeds

More information

Physical Cosmology 18/5/2017

Physical Cosmology 18/5/2017 Physical Cosmology 18/5/2017 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2017 Summary If we consider perturbations in a pressureless

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Cosmological Structure Formation Dr. Asa Bluck

Cosmological Structure Formation Dr. Asa Bluck Cosmological Structure Formation Dr. Asa Bluck Week 6 Structure Formation in the Linear Regime II CMB as Rosetta Stone for Structure Formation Week 7 Observed Scale of the Universe in Space & Time Week

More information

An Acoustic Primer. Wayne Hu Astro 448. l (multipole) BOOMERanG MAXIMA Previous COBE. W. Hu Dec. 2000

An Acoustic Primer. Wayne Hu Astro 448. l (multipole) BOOMERanG MAXIMA Previous COBE. W. Hu Dec. 2000 An Acoustic Primer 100 BOOMERanG MAXIMA Previous 80 T (µk) 60 40 20 COBE W. Hu Dec. 2000 10 100 l (multipole) Wayne Hu Astro 448 CMB Anisotropies COBE Maxima Hanany, et al. (2000) BOOMERanG de Bernardis,

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

Physical Cosmology 12/5/2017

Physical Cosmology 12/5/2017 Physical Cosmology 12/5/2017 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2017 Structure Formation Until now we have assumed

More information

Inhomogeneous Universe: Linear Perturbation Theory

Inhomogeneous Universe: Linear Perturbation Theory Inhomogeneous Universe: Linear Perturbation Theory We have so far discussed the evolution of a homogeneous universe. The universe we see toy is, however, highly inhomogeneous. We see structures on a wide

More information

Astro 448 Lecture Notes Set 1 Wayne Hu

Astro 448 Lecture Notes Set 1 Wayne Hu Astro 448 Lecture Notes Set 1 Wayne Hu Recombination Equilibrium number density distribution of a non-relativistic species n i = g i ( mi T 2π ) 3/2 e m i/t Apply to the e + p H system: Saha Equation n

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

Modern Cosmology / Scott Dodelson Contents

Modern Cosmology / Scott Dodelson Contents Modern Cosmology / Scott Dodelson Contents The Standard Model and Beyond p. 1 The Expanding Universe p. 1 The Hubble Diagram p. 7 Big Bang Nucleosynthesis p. 9 The Cosmic Microwave Background p. 13 Beyond

More information

Cosmic Microwave Background Introduction

Cosmic Microwave Background Introduction Cosmic Microwave Background Introduction Matt Chasse chasse@hawaii.edu Department of Physics University of Hawaii at Manoa Honolulu, HI 96816 Matt Chasse, CMB Intro, May 3, 2005 p. 1/2 Outline CMB, what

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

Lecture II. Wayne Hu Tenerife, November Sound Waves. Baryon CAT. Loading. Initial. Conditions. Dissipation. Maxima Radiation BOOM WD COBE

Lecture II. Wayne Hu Tenerife, November Sound Waves. Baryon CAT. Loading. Initial. Conditions. Dissipation. Maxima Radiation BOOM WD COBE Lecture II 100 IAB Sask T (µk) 80 60 40 20 Initial FIRS Conditions COBE Ten Viper BAM QMAP SP BOOM ARGO IAC TOCO Sound Waves MAX MSAM Pyth RING Baryon CAT Loading BOOM WD Maxima Radiation OVRO Driving

More information

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002 The Silk Damping Tail of the CMB 100 T (µk) 10 10 100 1000 l Wayne Hu Oxford, December 2002 Outline Damping tail of temperature power spectrum and its use as a standard ruler Generation of polarization

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University) Concordance Cosmology and Particle Physics Richard Easther (Yale University) Concordance Cosmology The standard model for cosmology Simplest model that fits the data Smallest number of free parameters

More information

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum The Cosmic Microwave Background Part II Features of the Angular Power Spectrum Angular Power Spectrum Recall the angular power spectrum Peak at l=200 corresponds to 1o structure Exactly the horizon distance

More information

Investigation of CMB Power Spectra Phase Shifts

Investigation of CMB Power Spectra Phase Shifts Investigation of CMB Power Spectra Phase Shifts Brigid Mulroe Fordham University, Bronx, NY, 1458 Lloyd Knox, Zhen Pan University of California, Davis, CA, 95616 ABSTRACT Analytical descriptions of anisotropies

More information

Structure formation. Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München

Structure formation. Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München Structure formation Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München Structure formation... Random density fluctuations, grow via gravitational instability galaxies, clusters, etc. Initial perturbations

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

Inflationary Cosmology and Alternatives

Inflationary Cosmology and Alternatives Inflationary Cosmology and Alternatives V.A. Rubakov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Department of paricle Physics abd Cosmology Physics Faculty Moscow State

More information

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat Analyzing the CMB Brightness Fluctuations (predicted) 1 st rarefaction Power = Average ( / ) 2 of clouds of given size scale 1 st compression 2 nd compression (deg) Fourier analyze WMAP image: Measures

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

Cosmological Signatures of a Mirror Twin Higgs

Cosmological Signatures of a Mirror Twin Higgs Cosmological Signatures of a Mirror Twin Higgs Zackaria Chacko University of Maryland, College Park Curtin, Geller & Tsai Introduction The Twin Higgs framework is a promising approach to the naturalness

More information

n=0 l (cos θ) (3) C l a lm 2 (4)

n=0 l (cos θ) (3) C l a lm 2 (4) Cosmic Concordance What does the power spectrum of the CMB tell us about the universe? For that matter, what is a power spectrum? In this lecture we will examine the current data and show that we now have

More information

Astronomy 422. Lecture 20: Cosmic Microwave Background

Astronomy 422. Lecture 20: Cosmic Microwave Background Astronomy 422 Lecture 20: Cosmic Microwave Background Key concepts: The CMB Recombination Radiation and matter eras Next time: Astro 422 Peer Review - Make sure to read all 6 proposals and send in rankings

More information

Chapter 4. COSMOLOGICAL PERTURBATION THEORY

Chapter 4. COSMOLOGICAL PERTURBATION THEORY Chapter 4. COSMOLOGICAL PERTURBATION THEORY 4.1. NEWTONIAN PERTURBATION THEORY Newtonian gravity is an adequate description on small scales (< H 1 ) and for non-relativistic matter (CDM + baryons after

More information

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second Lecture 3 With Big Bang nucleosynthesis theory and observations we are confident of the theory of the early Universe at temperatures up to T 1 MeV, age t 1 second With the LHC, we hope to be able to go

More information

20 Lecture 20: Cosmic Microwave Background Radiation continued

20 Lecture 20: Cosmic Microwave Background Radiation continued PHYS 652: Astrophysics 103 20 Lecture 20: Cosmic Microwave Background Radiation continued Innocent light-minded men, who think that astronomy can be learnt by looking at the stars without knowledge of

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

What can we Learn from the Cosmic Microwave Background

What can we Learn from the Cosmic Microwave Background What can we Learn from the Cosmic Microwave Background Problem Set #3 will be due in part on April 8 and in full on April 11 Solutions to Problem Set #2 are online... graded versions soon Again I m asking

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Need for an exponential

More information

The cosmic background radiation II: The WMAP results. Alexander Schmah

The cosmic background radiation II: The WMAP results. Alexander Schmah The cosmic background radiation II: The WMAP results Alexander Schmah 27.01.05 General Aspects - WMAP measures temperatue fluctuations of the CMB around 2.726 K - Reason for the temperature fluctuations

More information

Lecture 3+1: Cosmic Microwave Background

Lecture 3+1: Cosmic Microwave Background Lecture 3+1: Cosmic Microwave Background Structure Formation and the Dark Sector Wayne Hu Trieste, June 2002 Tie-ins to Morning Talk Predicting the CMB: Nucleosynthesis Light element abundance depends

More information

The cosmic microwave background radiation

The cosmic microwave background radiation The cosmic microwave background radiation László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 May 18, 2018. Origin of the cosmic microwave radiation Photons in the plasma are

More information

The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments

The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments Intersection of physics (fundamental laws) and astronomy (contents of the universe)

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 9, sections 9.4 and 9.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

AST5220 lecture 2 An introduction to the CMB power spectrum. Hans Kristian Eriksen

AST5220 lecture 2 An introduction to the CMB power spectrum. Hans Kristian Eriksen AST5220 lecture 2 An introduction to the CMB power spectrum Hans Kristian Eriksen Cosmology in ~five slides The basic ideas of Big Bang: 1) The Big Bang model The universe expands today Therefore it must

More information

Week 6: Inflation and the Cosmic Microwave Background

Week 6: Inflation and the Cosmic Microwave Background Week 6: Inflation and the Cosmic Microwave Background January 9, 2012 1 Motivation The standard hot big-bang model with an (flat) FRW spacetime accounts correctly for the observed expansion, the CMB, BBN,

More information

The AfterMap Wayne Hu EFI, February 2003

The AfterMap Wayne Hu EFI, February 2003 The AfterMap Wayne Hu EFI, February 2003 Connections to the Past Outline What does MAP alone add to the cosmology? What role do other anisotropy experiments still have to play? How do you use the MAP analysis

More information

Phys/Astro 689: Lecture 3. The Growth of Structure

Phys/Astro 689: Lecture 3. The Growth of Structure Phys/Astro 689: Lecture 3 The Growth of Structure Last time Examined the milestones (zeq, zrecomb, zdec) in early Universe Learned about the WIMP miracle and searches for WIMPs Goal of Lecture Understand

More information

We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts:

We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts: Primary CMB anisotropies We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts: CMB power spectrum formalism. Radiative transfer:

More information

AST5220 lecture 2 An introduction to the CMB power spectrum. Hans Kristian Eriksen

AST5220 lecture 2 An introduction to the CMB power spectrum. Hans Kristian Eriksen AST5220 lecture 2 An introduction to the CMB power spectrum Hans Kristian Eriksen Cosmology in ~five slides The basic ideas of Big Bang: 1) The Big Bang model The universe expands today Therefore it must

More information

Large Scale Structure After these lectures, you should be able to: Describe the matter power spectrum Explain how and why the peak position depends on

Large Scale Structure After these lectures, you should be able to: Describe the matter power spectrum Explain how and why the peak position depends on Observational cosmology: Large scale structure Filipe B. Abdalla Kathleen Lonsdale Building G.22 http://zuserver2.star.ucl.ac.uk/~hiranya/phas3136/phas3136 Large Scale Structure After these lectures, you

More information

AST4320: LECTURE 10 M. DIJKSTRA

AST4320: LECTURE 10 M. DIJKSTRA AST4320: LECTURE 10 M. DIJKSTRA 1. The Mass Power Spectrum P (k) 1.1. Introduction: the Power Spectrum & Transfer Function. The power spectrum P (k) emerged in several of our previous lectures: It fully

More information

Priming the BICEP. Wayne Hu Chicago, March BB

Priming the BICEP. Wayne Hu Chicago, March BB Priming the BICEP 0.05 0.04 0.03 0.02 0.01 0 0.01 BB 0 50 100 150 200 250 300 Wayne Hu Chicago, March 2014 A BICEP Primer How do gravitational waves affect the CMB temperature and polarization spectrum?

More information

Week 10: Theoretical predictions for the CMB temperature power spectrum

Week 10: Theoretical predictions for the CMB temperature power spectrum Week 10: Theoretical predictions for the CMB temperature power spectrum April 5, 2012 1 Introduction Last week we defined various observable quantities to describe the statistics of CMB temperature fluctuations,

More information

COSMOLOGY The Origin and Evolution of Cosmic Structure

COSMOLOGY The Origin and Evolution of Cosmic Structure COSMOLOGY The Origin and Evolution of Cosmic Structure Peter COLES Astronomy Unit, Queen Mary & Westfield College, University of London, United Kingdom Francesco LUCCHIN Dipartimento di Astronomia, Universita

More information

Structure in the CMB

Structure in the CMB Cosmic Microwave Background Anisotropies = structure in the CMB Structure in the CMB Boomerang balloon flight. Mapped Cosmic Background Radiation with far higher angular resolution than previously available.

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

MATHEMATICAL TRIPOS PAPER 67 COSMOLOGY

MATHEMATICAL TRIPOS PAPER 67 COSMOLOGY MATHEMATICA TRIPOS Part III Wednesday 6 June 2001 9 to 11 PAPER 67 COSMOOGY Attempt THREE questions. The questions are of equal weight. Candidates may make free use of the information given on the accompanying

More information

Chapter 9. Perturbations in the Universe

Chapter 9. Perturbations in the Universe Chapter 9 Perturbations in the Universe In this chapter the theory of linear perturbations in the universe are studied. 9.1 Differential Equations of Linear Perturbation in the Universe A covariant, linear,

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

Connecting Quarks to the Cosmos

Connecting Quarks to the Cosmos Connecting Quarks to the Cosmos Institute for Nuclear Theory 29 June to 10 July 2009 Inflationary Cosmology II Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago Michael

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology João G. Rosa joao.rosa@ua.pt http://gravitation.web.ua.pt/cosmo LECTURE 2 - Newtonian cosmology I As a first approach to the Hot Big Bang model, in this lecture we will consider

More information

Week 3: Sub-horizon perturbations

Week 3: Sub-horizon perturbations Week 3: Sub-horizon perturbations February 12, 2017 1 Brief Overview Until now we have considered the evolution of a Universe that is homogeneous. Our Universe is observed to be quite homogeneous on large

More information

The Outtakes. Back to Talk. Foregrounds Doppler Peaks? SNIa Complementarity Polarization Primer Gamma Approximation ISW Effect

The Outtakes. Back to Talk. Foregrounds Doppler Peaks? SNIa Complementarity Polarization Primer Gamma Approximation ISW Effect The Outtakes CMB Transfer Function Testing Inflation Weighing Neutrinos Decaying Neutrinos Testing Λ Testing Quintessence Polarization Sensitivity SDSS Complementarity Secondary Anisotropies Doppler Effect

More information

CMB Episode II: Theory or Reality? Wayne Hu

CMB Episode II: Theory or Reality? Wayne Hu s p ac 10 1 CMB Episode II: θ (degrees) n n er p ac u ter 10 1 θ (degrees) 100 80 e 100 80 T (µk) 60 T (µk) 60 40 40 20 20 10 100 l (multipole) 10 100 l (multipole) Theory or Reality? Wayne Hu CMB Anisotropies

More information

Thermal History of the Universe and the Cosmic Microwave Background. II. Structures in the Microwave Background

Thermal History of the Universe and the Cosmic Microwave Background. II. Structures in the Microwave Background Thermal History of the Universe and the Cosmic Microwave Background. II. Structures in the Microwave Background Matthias Bartelmann Max Planck Institut für Astrophysik IMPRS Lecture, March 2003 Part 2:

More information

astro-ph/ Oct 93

astro-ph/ Oct 93 CfPA-TH-93-36 THE SMALL SCALE INTEGRATED SACHS-WOLFE EFFECT y Wayne Hu 1 and Naoshi Sugiyama 1;2 1 Departments of Astronomy and Physics University of California, Berkeley, California 94720 astro-ph/9310046

More information

Polarization from Rayleigh scattering

Polarization from Rayleigh scattering Polarization from Rayleigh scattering Blue sky thinking for future CMB observations Previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

Cosmology OXFORD. Steven Weinberg. University of Texas at Austin UNIVERSITY PRESS

Cosmology OXFORD. Steven Weinberg. University of Texas at Austin UNIVERSITY PRESS Cosmology Steven Weinberg University of Texas at Austin OXFORD UNIVERSITY PRESS 1 THE EXPANSION OF THE UNIVERSE 1 1.1 Spacetime geometry 2 Robertson Walker metric 0 Co-moving coordinates q Proper distances

More information

Physics 133: Extragalactic Astronomy and Cosmology

Physics 133: Extragalactic Astronomy and Cosmology Physics 133: Extragalactic Astronomy and Cosmology Week 2 Spring 2018 Previously: Empirical foundations of the Big Bang theory. II: Hubble s Law ==> Expanding Universe CMB Radiation ==> Universe was hot

More information

Second Order CMB Perturbations

Second Order CMB Perturbations Second Order CMB Perturbations Looking At Times Before Recombination September 2012 Evolution of the Universe Second Order CMB Perturbations 1/ 23 Observations before recombination Use weakly coupled particles

More information

The Cosmic Microwave Background and Dark Matter. Wednesday, 27 June 2012

The Cosmic Microwave Background and Dark Matter. Wednesday, 27 June 2012 The Cosmic Microwave Background and Dark Matter Constantinos Skordis (Nottingham) Itzykson meeting, Saclay, 19 June 2012 (Cold) Dark Matter as a model Dark Matter: Particle (microphysics) Dust fluid (macrophysics)

More information

Chapter 29. The Hubble Expansion

Chapter 29. The Hubble Expansion Chapter 29 The Hubble Expansion The observational characteristics of the Universe coupled with theoretical interpretation to be discussed further in subsequent chapters, allow us to formulate a standard

More information

Cosmological neutrinos

Cosmological neutrinos Cosmological neutrinos Yvonne Y. Y. Wong CERN & RWTH Aachen APCTP Focus Program, June 15-25, 2009 2. Neutrinos and structure formation: the linear regime Relic neutrino background: Temperature: 4 T,0 =

More information

Lecture I. Thermal History and Acoustic Kinematics. Wayne Hu Tenerife, November 2007 WMAP

Lecture I. Thermal History and Acoustic Kinematics. Wayne Hu Tenerife, November 2007 WMAP Lecture I WMAP Thermal History and Acoustic Kinematics Wayne Hu Tenerife, November 2007 WMAP 3yr Data WMAP 3yr: Spergel et al. 2006 5000 l(l+1)/2π C l (µk 2 ) 4000 3000 2000 1000 0 200 400 600 800 1000

More information

Joel Meyers Canadian Institute for Theoretical Astrophysics

Joel Meyers Canadian Institute for Theoretical Astrophysics Cosmological Probes of Fundamental Physics Joel Meyers Canadian Institute for Theoretical Astrophysics SMU Physics Colloquium February 5, 2018 Image Credits: Planck, ANL The Cosmic Microwave Background

More information

Physical Cosmology 6/6/2016

Physical Cosmology 6/6/2016 Physical Cosmology 6/6/2016 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2016 CMB anisotropies The temperature fluctuation in

More information

Problem Sets on Cosmology and Cosmic Microwave Background

Problem Sets on Cosmology and Cosmic Microwave Background Problem Sets on Cosmology and Cosmic Microwave Background Lecturer: Prof. Dr. Eiichiro Komatsu October 16, 2014 1 Expansion of the Universe In this section, we will use Einstein s General Relativity to

More information

Useful Quantities and Relations

Useful Quantities and Relations 189 APPENDIX B. USEFUL QUANTITIES AND RELATIONS 190 Appendix B Useful Quantities and Relations B.1 FRW Parameters The expansion rate is given by the Hubble parameter ( ) 1 H 2 da 2 (ȧ ) a 2 0 = a dt a

More information

Physics 133: Extragalactic Astronomy ad Cosmology

Physics 133: Extragalactic Astronomy ad Cosmology Physics 133: Extragalactic Astronomy ad Cosmology Lecture 4; January 15 2014 Previously The dominant force on the scale of the Universe is gravity Gravity is accurately described by the theory of general

More information

WMAP 9-Year Results and Cosmological Implications: The Final Results

WMAP 9-Year Results and Cosmological Implications: The Final Results WMAP 9-Year Results and Cosmological Implications: The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) 17th Paris Cosmology Colloquium 2013 Observatoire de Paris, July 24, 2013 1 used

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

General Relativity Lecture 20

General Relativity Lecture 20 General Relativity Lecture 20 1 General relativity General relativity is the classical (not quantum mechanical) theory of gravitation. As the gravitational interaction is a result of the structure of space-time,

More information

Theory of Cosmological Perturbations

Theory of Cosmological Perturbations Theory of Cosmological Perturbations Part III CMB anisotropy 1. Photon propagation equation Definitions Lorentz-invariant distribution function: fp µ, x µ ) Lorentz-invariant volume element on momentum

More information

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova The Effects of Inhomogeneities on the Universe Today Antonio Riotto INFN, Padova Frascati, November the 19th 2004 Plan of the talk Short introduction to Inflation Short introduction to cosmological perturbations

More information

BAO AS COSMOLOGICAL PROBE- I

BAO AS COSMOLOGICAL PROBE- I BAO AS COSMOLOGICAL PROBE- I Introduction Enrique Gaztañaga, ICE (IEEC/CSIC) Barcelona PhD Studenships (on simulations & galaxy surveys) Postdoctoral oportunities: www.ice.cat (or AAS Job: #26205/26206)

More information

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY

MATHEMATICAL TRIPOS Part III PAPER 53 COSMOLOGY MATHEMATICAL TRIPOS Part III Wednesday, 8 June, 2011 9:00 am to 12:00 pm PAPER 53 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information