Ph 136: Solution 4 for Chapter 4 and 5

Size: px
Start display at page:

Download "Ph 136: Solution 4 for Chapter 4 and 5"

Transcription

1

2

3 Ph 136: olution 4 for Chapter 4 and Grand Canonical Ensemble for Ideal Relativistic Gas [by Alexei Dvoretskii, edited by Geoffrey Lovelace (a) uppose there are N identical particles in the volume. ince the gas is in a classical regime, the average occupation number for each state is low ( η 1), so it is highly unlikely that a state will contain more than one quanta. A given configuration thus has N particles in N states, which can be done in N! different ways. Therefore M N! (b) Each particle can move in three dimensions; since the gas is monatomic, there are no rotational or vibrational degrees of freedom. Therefore, the total number of degrees of freedom is W 3N. We know that N 1, so, using Mh 3N the result from part (a), N 1. The particles travel freely for most of the N!h 3N time, so all of the energy is kinetic: E N N A1 p A + m (c) o far, we ve been treating N as a constant. However, in reality the system may have any number of particles, from to. For each system with N particles, we must sum over the possible states, weighting each term by the onential given in Eq. (3.4a). The sum over all states of a system with N particles confined to a volume each confined to a volume can be ressed as dnstates. Therefore, using Eq. (3.4a), we have Z n ( ) E + µr N n N dn states,n e E state +µ R N. Consider a single particle in the gas (say, particle A). It is confined to the volume that the gas occupies, so dn states,n,a d3 p A h 4πp 3 A dp A. The number of states available to the entire gas of N particles, then, is N A1 dn states,n 4πp A dp A N h 3N. N! Note that we have divided by N!, since the particles are identical; interchanging any two particles does not give a new state. We already found E E state in part (b).

4 Inserting these ression into the equation for Z, we have Z N A1 4πp A dp A N N N N e µ R N e µ R N N N!h 3N A1 e «PNA1 p A +m +µ R N h 3N N! N [ e p A +m 4πp Adp A N N!h 3N [ e N p +m 4πp dp In the last line, we note that dp A is just a dummy variable. (d) For the non-relativistic limit, write p + m m + p m, which is the non-relativistic energy. Then we have e p +m 4πp dp Let µ µ R m, so that Z N e m p m 4πp dp e m/ (πm ) 3/. N ( ) µn e N!h3N (πm ) 3N/ h 3 e µ (πm ) 3/. From Z, it is straightforward to get the grand potential Ω: Z e Ω/ log Z Ω e µ h 3 (πm )3/. This is Eq. 3.47a. For the ultrarelativistic limit, let m, so that the particles travel near the speed of light. Then e p +m 4πp dp e p/ 4πp dp 8π( ) 3. It is straightforward to evaluate this integral. The rest of the problem proceeds analogously to the nonrelativistic case, except you keep the relativistic chemical potential: log Z Ω 8π h 3 ( ) 4 e µ R/ (e) The quantities you are asked to calculate in part (e) are all partial derivatives of the potential you calculated in part (d). Eqs. (3.47c) tells you how to get N,, and P : Take minus the partial derivative of Ω with respect to

5 µ R, T. and, respectively. The results are then 8π ( )3 N P To calculate Ē, use Eq. (3.43): Then it immediately follows that h 3 e µ R/ 8π( )4 h 3 e µ R/ k N(4 µ R ). Ē Ω + T + µ R N 3 N. Ē/ N 3 and Ē/ 3P 5. Energy Representation for a Nonrelativistic Monatomic Gas [by Dan Grin (a) We begin with an ression for the fundamental potential E of a nonrelativistic gas in the energy representation, (see Eq. 4.9c in the text) ( ) ( ) 3h /3 ( ) E(,, N) N 4πm N N 5/3. (1) To derive the desired relations, we need only substitute Eqn. (1) into the following ressions for the intensive variables in terms of variables of the fundamental potential (Eqns. 4.1a in the text): T ( E ),N, µ ( E N ),, P ( ) E. (),N In the case of temperature, this derivative is trivial, as E only depends on through the onent, and yields ) /3 [ T ( h N πk B m N 5/3. In the case of pressure, the derivative is trivial, as E only depends on through the pre-factor in front, and so, P ( E ),N ( h N ) 5/3 [ πm N 5/3. The chemical potential is a little trickier, but we can simplify our lives a little by re-writing E in the following form ( ) 5/3 ( ) [ N 3h E 4πm N 5/3 (3)

6 Then, calling on the product (Leibniz) rule, we see that µ ( ) E N N µ 5, 3 ( ) 5/3 N ( ) /3 N 3h [ 4πm [ N 5/3 ( h N ) /3 ( ) 4πm 5 k B N [ N 5/3 N 5/3. (4) (b) We verify that the Maxwell relations are satisfied by taking the appropriate derivatives of the Eqns. derived in part a). ( ) P ( ) µ N, N, ( ( h h ) ( N πnm ) ( N 6πmN ) 5/3 [ ) 5/3 ( 5 ) k B N N 5/3 ( ) T,N [ N 5/3 ( ) P N (5) (6)., ( ) T N, { h ( ) 1/3 N 3πmk B [ N 5/3 h 3πmkB N ( ) µ ( ) } /3 N. (7) N, (c) To derive the ideal gas gas equation, we solve the temperature equation for the onential ression to obtain [ N 5/3 πk ( ) /3 BmT h. (8) N Plugging this into the pressure equation, oodles of factors cancel out to yield the desired ideal gas law: P Nk B T/. 4.1 Primordial Element Formation [by Alexei Dvoretskii, edited by Geoffrey Lovelace, Dan Grin, Nate Bode In the early universe, the protons and neutrons travelled at non-relativistic speeds, so they can be described as a monatomic, non-relativistic gas. The photons travel at the speed of light and make up an ultrarelativistic gas. We solve the problem by considering the gas in two different epochs and suppose that the transition is rapid. Initially we have a gas made up of solely neutrons

7 and protons. The entropy per protons and neutrons is (ignoring the small mass difference between the proton and neutron) ( [ ( ) ) 3/ 5 σ init 4 + ln m p πmp f ρ h [ ( ) 3/ m p πmp f ln ρ h In the final state the entropy will be given by the α-particle entropy per α- particle added to the photon entropy per photon. Note that the 7 Me is the binding energy per nucleon. Therefore, the total binding energy of an α-particle is 8 Me (so the problem incorrectly gives 7 Me). Therefore [ σ final 5 ( ) 3/ + ln 8m p 8πmp f ρ h + σ γ, where σ γ is the photon entropy per photon and can be roughly found from the thermodynamic equation σ γ γ /k U/T 8 Me/ ergs/. (9) Now we must calculate ρ at the transition point. As nucleosynthesis occurs after inflation the universe ands adiabatically except when particle species annihilate. At the Me temperatures under consideration, the last annihilation event (e + e γγ) has occurred, so we may treat the ansion of the universe as adiabatic. This means that the density of baryons is given by ρ baryon,init ρ baryon,now ( Tinit T now ) 3. (1) Currently the total matter density is ρ total,now g/cm 3, and the mass fraction of baryons is about %. Therefore to we need to equate σ init and σ final, plugging in Eqns. 1 and 9. olving using your favorite numerical solver gives T crit K. The time of nucleosynthesis can be found by plugging this temperature into T (t) T ( ) init Tinit t crit t init (11) t/tinit Therefore, t crit 1 s. T crit In Fig. 1, we can see that at early times (high temperatures), the higher entropy (preferred) state is p + n, while at late times (low temperatures T < T crit ), the higher entropy (preferred) state is α + γ, indicating that helium production does not occur until T T crit.

8 Σ particle 1 k Figure 1: Particle Entropy per Particle in units of k 1 as a function of temperature in Kelvin. Red curve shows entropy per particle for collection of protons and neutrons only (initial state), while the green curve shows entropy per particle for α-particles and photons in the final state.

( ) ( )( k B ( ) ( ) ( ) ( ) ( ) ( k T B ) 2 = ε F. ( ) π 2. ( ) 1+ π 2. ( k T B ) 2 = 2 3 Nε 1+ π 2. ( ) = ε /( ε 0 ).

( ) ( )( k B ( ) ( ) ( ) ( ) ( ) ( k T B ) 2 = ε F. ( ) π 2. ( ) 1+ π 2. ( k T B ) 2 = 2 3 Nε 1+ π 2. ( ) = ε /( ε 0 ). PHYS47-Statistical Mechanics and hermal Physics all 7 Assignment #5 Due on November, 7 Problem ) Problem 4 Chapter 9 points) his problem consider a system with density of state D / ) A) o find the ermi

More information

The energy of this state comes from the dispersion relation:

The energy of this state comes from the dispersion relation: Homework 6 Solutions Problem 1: Kittel 7-2 a The method is the same as for the nonrelativistic gas. A particle confined in a box of volume L 3 is described by a the set of wavefunctions ψ n sinn x πx/l

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Reading/Homework Assignment Read chapter 3 in Rose. Midterm Exam, April 5 (take home)

More information

14 Lecture 14: Early Universe

14 Lecture 14: Early Universe PHYS 652: Astrophysics 70 14 Lecture 14: Early Universe True science teaches us to doubt and, in ignorance, to refrain. Claude Bernard The Big Picture: Today we introduce the Boltzmann equation for annihilation

More information

Ph 136: Solution for Chapter 2 3.6 Observations of Cosmic Microwave Radiation from a Moving Earth [by Alexander Putilin] (a) let x = hν/kt, I ν = h4 ν 3 c 2 N N = g s h 3 η = 2 η (for photons) h3 = I ν

More information

Solutions for Assignment of Week 06 Introduction to Astroparticle Physics

Solutions for Assignment of Week 06 Introduction to Astroparticle Physics s for Assignment of Week 06 Introduction to Astroparticle Physics Georg G. Raffelt Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, 80805 München Email: raffelt(at)mppmu.mpg.de

More information

Ideal gases. Asaf Pe er Classical ideal gas

Ideal gases. Asaf Pe er Classical ideal gas Ideal gases Asaf Pe er 1 November 2, 213 1. Classical ideal gas A classical gas is generally referred to as a gas in which its molecules move freely in space; namely, the mean separation between the molecules

More information

AY127 Problem Set 3, Winter 2018

AY127 Problem Set 3, Winter 2018 California Institute of Technology AY27 Problem Set 3, Winter 28 Instructor: Sterl Phinney & Chuck Steidel TA: Guochao (Jason) Sun February 7, 28 Problem Detailed Solution : (a) We work in natural units

More information

7 Relic particles from the early universe

7 Relic particles from the early universe 7 Relic particles from the early universe 7.1 Neutrino density today (14 December 2009) We have now collected the ingredients required to calculate the density of relic particles surviving from the early

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

Astronomy 112: The Physics of Stars. Class 5 Notes: The Pressure of Stellar Material

Astronomy 112: The Physics of Stars. Class 5 Notes: The Pressure of Stellar Material Astronomy 2: The Physics of Stars Class 5 Notes: The Pressure of Stellar Material As we discussed at the end of last class, we ve written down the evolution equations, but we still need to specify how

More information

Quantum ideal gases: bosons

Quantum ideal gases: bosons Quantum ideal gases: bosons Any particle with integer spin is a boson. In this notes, we will discuss the main features of the statistics of N non-interacting bosons of spin S (S =,,...). We will only

More information

PHYS 352 Homework 2 Solutions

PHYS 352 Homework 2 Solutions PHYS 352 Homework 2 Solutions Aaron Mowitz (, 2, and 3) and Nachi Stern (4 and 5) Problem The purpose of doing a Legendre transform is to change a function of one or more variables into a function of variables

More information

i>clicker Quiz #14 Which of the following statements is TRUE?

i>clicker Quiz #14 Which of the following statements is TRUE? i>clicker Quiz #14 Which of the following statements is TRUE? A. Hubble s discovery that most distant galaxies are receding from us tells us that we are at the center of the Universe B. The Universe started

More information

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time: particle anti-particle soup --> quark soup --> neutron-proton soup p / n ratio at onset of 2 D formation Today: Form 2 D and 4 He

More information

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physics 607 Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all your

More information

Supplement: Statistical Physics

Supplement: Statistical Physics Supplement: Statistical Physics Fitting in a Box. Counting momentum states with momentum q and de Broglie wavelength λ = h q = 2π h q In a discrete volume L 3 there is a discrete set of states that satisfy

More information

Chapter 2: Equation of State

Chapter 2: Equation of State Introduction Chapter 2: Equation of State The Local Thermodynamic Equilibrium The Distribution Function Black Body Radiation Fermi-Dirac EoS The Complete Degenerate Gas Application to White Dwarfs Temperature

More information

Quantum Statistics (2)

Quantum Statistics (2) Quantum Statistics Our final application of quantum mechanics deals with statistical physics in the quantum domain. We ll start by considering the combined wavefunction of two identical particles, 1 and

More information

THERMAL HISTORY OF THE UNIVERSE

THERMAL HISTORY OF THE UNIVERSE M. Pettini: Introduction to Cosmology Lecture 7 THERMAL HISTORY OF THE UNIVERSE The Universe today is bathed in an all-pervasive radiation field, the Cosmic Microwave Background (CMB) which we introduced

More information

Chapter 7 Neutron Stars

Chapter 7 Neutron Stars Chapter 7 Neutron Stars 7.1 White dwarfs We consider an old star, below the mass necessary for a supernova, that exhausts its fuel and begins to cool and contract. At a sufficiently low temperature the

More information

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H Solutions exam 2 roblem 1 a Which of those quantities defines a thermodynamic potential Why? 2 points i T, p, N Gibbs free energy G ii T, p, µ no thermodynamic potential, since T, p, µ are not independent

More information

summary of statistical physics

summary of statistical physics summary of statistical physics Matthias Pospiech University of Hannover, Germany Contents 1 Probability moments definitions 3 2 bases of thermodynamics 4 2.1 I. law of thermodynamics..........................

More information

Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3)

Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3) Lecture 36: The First Three Minutes Readings: Sections 29-1, 29-2, and 29-4 (29-3) Key Ideas Physics of the Early Universe Informed by experimental & theoretical physics Later stages confirmed by observations

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Physics 4230 Final Examination 10 May 2007

Physics 4230 Final Examination 10 May 2007 Physics 43 Final Examination May 7 In each problem, be sure to give the reasoning for your answer and define any variables you create. If you use a general formula, state that formula clearly before manipulating

More information

2. Thermodynamics. Introduction. Understanding Molecular Simulation

2. Thermodynamics. Introduction. Understanding Molecular Simulation 2. Thermodynamics Introduction Molecular Simulations Molecular dynamics: solve equations of motion r 1 r 2 r n Monte Carlo: importance sampling r 1 r 2 r n How do we know our simulation is correct? Molecular

More information

Order of Magnitude Estimates in Quantum

Order of Magnitude Estimates in Quantum Order of Magnitude Estimates in Quantum As our second step in understanding the principles of quantum mechanics, we ll think about some order of magnitude estimates. These are important for the same reason

More information

9.1 System in contact with a heat reservoir

9.1 System in contact with a heat reservoir Chapter 9 Canonical ensemble 9. System in contact with a heat reservoir We consider a small system A characterized by E, V and N in thermal interaction with a heat reservoir A 2 characterized by E 2, V

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Primordial (Big Bang) Nucleosynthesis

Primordial (Big Bang) Nucleosynthesis Primordial (Big Bang) Nucleosynthesis H Li Be Which elements? He METALS - 1942: Gamow suggests a Big Bang origin of the elements. - 1948: Alpher, Bethe & Gamow: all elements are synthesized minutes after

More information

PHY 375. Homework 5 solutions. (Due by noon on Thursday, May 31, 2012) (a) Why is there a dipole anisotropy in the Cosmic Microwave Background (CMB)?

PHY 375. Homework 5 solutions. (Due by noon on Thursday, May 31, 2012) (a) Why is there a dipole anisotropy in the Cosmic Microwave Background (CMB)? PHY 375 (Due by noon on Thursday, May 31, 2012) 1. Answer the following questions. (a) Why is there a dipole anisotropy in the Cosmic Microwave Background (CMB)? Answer is in lecture notes, so won t be

More information

Many-Particle Systems

Many-Particle Systems Chapter 6 Many-Particle Systems c 21 by Harvey Gould and Jan Tobochnik 2 December 21 We apply the general formalism of statistical mechanics to systems of many particles and discuss the semiclassical limit

More information

Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Physics 404: Final Exam Name (print): I pledge on my honor that I have not given or received any unauthorized assistance on this examination. Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination." May 20, 2008 Sign Honor Pledge: Don't get bogged down on

More information

Lecture 2: The First Second origin of neutrons and protons

Lecture 2: The First Second origin of neutrons and protons Lecture 2: The First Second origin of neutrons and protons Hot Big Bang Expanding and cooling Soup of free particles + anti-particles Symmetry breaking Soup of free quarks Quarks confined into neutrons

More information

Noninteracting Particle Systems

Noninteracting Particle Systems Chapter 6 Noninteracting Particle Systems c 26 by Harvey Gould and Jan Tobochnik 8 December 26 We apply the general formalism of statistical mechanics to classical and quantum systems of noninteracting

More information

4 Thermal history of the Early Universe

4 Thermal history of the Early Universe 69 4 Thermal history of the Early Universe 4.1 Relativistic thermodynamics As we look out in spacewe can see thehistory of theuniverse unfoldingin front of our telescopes. However, at redshiftz = 1090

More information

8.044 Lecture Notes Chapter 8: Chemical Potential

8.044 Lecture Notes Chapter 8: Chemical Potential 8.044 Lecture Notes Chapter 8: Chemical Potential Lecturer: McGreevy Reading: Baierlein, Chapter 7. So far, the number of particles N has always been fixed. We suppose now that it can vary, and we want

More information

1 Particles in a room

1 Particles in a room Massachusetts Institute of Technology MITES 208 Physics III Lecture 07: Statistical Physics of the Ideal Gas In these notes we derive the partition function for a gas of non-interacting particles in a

More information

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit:

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: Chapter 13 Ideal Fermi gas The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: k B T µ, βµ 1, which defines the degenerate Fermi gas. In this

More information

Grand Canonical Formalism

Grand Canonical Formalism Grand Canonical Formalism Grand Canonical Ensebmle For the gases of ideal Bosons and Fermions each single-particle mode behaves almost like an independent subsystem, with the only reservation that the

More information

Thermodynamics and Statistical Physics. Preliminary Ph.D. Qualifying Exam. Summer 2009

Thermodynamics and Statistical Physics. Preliminary Ph.D. Qualifying Exam. Summer 2009 Thermodynamics and Statistical Physics Preliminary Ph.D. Qualifying Exam Summer 2009 (Choose 4 of the following 6 problems) -----------------------------------------------------------------------------------------------------------

More information

Chapter 3. Statistical Mechanics. 3.1 Overview

Chapter 3. Statistical Mechanics. 3.1 Overview Chapter 3 Statistical Mechanics Version 0303.3 by Kip, November 2003 Please send comments, suggestions, and errata via email to kip@tapir.caltech.edu and rdb@caltech.edu, or on paper to Kip Thorne, 130-33

More information

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH704 Solution

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH704 Solution INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH74 Solution. There are two possible point defects in the crystal structure, Schottky and

More information

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Cosmology Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation Energy density versus scale factor z=1/a-1 Early times,

More information

Chemical Potential (a Summary)

Chemical Potential (a Summary) Chemical Potential a Summary Definition and interpretations KK chap 5. Thermodynamics definition Concentration Normalization Potential Law of mass action KK chap 9 Saha Equation The density of baryons

More information

Chapter 3. Statistical Mechanics. 3.1 Overview

Chapter 3. Statistical Mechanics. 3.1 Overview Chapter 3 Statistical Mechanics Version 0403.2.K by Kip, February 2, 2005. This differs from 0402.1.K only by correction of some references to eq:qcdh and eq:qcdhnr. Please send comments, suggestions,

More information

Statistical Mechanics Notes. Ryan D. Reece

Statistical Mechanics Notes. Ryan D. Reece Statistical Mechanics Notes Ryan D. Reece August 11, 2006 Contents 1 Thermodynamics 3 1.1 State Variables.......................... 3 1.2 Inexact Differentials....................... 5 1.3 Work and Heat..........................

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis Grazia Luparello PhD Course Physics of the early Universe Grazia Luparello 1 / 24 Summary 1 Introduction 2 Neutron - proton ratio (at T1MeV) 3 Reactions for the

More information

Hadronic Showers. KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday

Hadronic Showers. KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday Hadronic Showers KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday Hadronic Showers em + strong interaction with absorber similarities to em-showers, but much more complex different

More information

Solution for Problem Set 19-20

Solution for Problem Set 19-20 Solution for Problem Set 19-0 compiled by Dan Grin and Nate Bode) April 16, 009 A 19.4 Ion Acoustic Waves [by Xinkai Wu 00] a) The derivation of these equations is trivial, so we omit it here. b) Write

More information

The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter. Laura Tolós

The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter. Laura Tolós The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter Laura Tolós Outline Outline Neutron Star (I) first observations by the Chinese in 1054 A.D. and prediction by Landau

More information

Stochastic Backgrounds

Stochastic Backgrounds Stochastic Backgrounds For our last lecture, we will focus on stochastic backgrounds, with an emphasis on primordial gravitational waves. To get a handle on these issues, we need to think in terms of broad

More information

Chapter 1 Some Properties of Stars

Chapter 1 Some Properties of Stars Chapter 1 Some Properties of Stars This chapter is assigned reading for review. 1 2 CHAPTER 1. SOME PROPERTIES OF STARS Chapter 2 The Hertzsprung Russell Diagram This chapter is assigned reading for review.

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

1. Thermodynamics 1.1. A macroscopic view of matter

1. Thermodynamics 1.1. A macroscopic view of matter 1. Thermodynamics 1.1. A macroscopic view of matter Intensive: independent of the amount of substance, e.g. temperature,pressure. Extensive: depends on the amount of substance, e.g. internal energy, enthalpy.

More information

Episode 535: Particle reactions

Episode 535: Particle reactions Episode 535: Particle reactions This episode considers both hadrons and leptons in particle reactions. Students must take account of both conservation of lepton number and conservation of baryon number.

More information

The answer (except for Z = 19) can be seen in Figure 1. All credit to McGraw- Hill for the image.

The answer (except for Z = 19) can be seen in Figure 1. All credit to McGraw- Hill for the image. Problem 9.3 Which configuration has a greater number of unpaired spins? Which one has a lower energy? [Kr]4d 9 5s or [Kr]4d. What is the element and how does Hund s rule apply?. Solution The element is

More information

We can check experimentally that physical constants such as α have been sensibly constant for the past ~12 billion years

We can check experimentally that physical constants such as α have been sensibly constant for the past ~12 billion years ² ² ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles ² Dark matter:

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12 Big Bang Nucleosynthesis introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12.1 The Early Universe According to the accepted cosmological theories: The Universe has cooled during its expansion

More information

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc. Chapter 22 Lecture The Cosmic Perspective Seventh Edition The Birth of the Universe The Birth of the Universe 22.1 The Big Bang Theory Our goals for learning: What were conditions like in the early universe?

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 16. Statistical thermodynamics 1: the concepts

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 16. Statistical thermodynamics 1: the concepts Atkins / Paula Physical Chemistry, 8th Edition Chapter 16. Statistical thermodynamics 1: the concepts The distribution of molecular states 16.1 Configurations and weights 16.2 The molecular partition function

More information

Open Book Exam. Problems

Open Book Exam. Problems Physics 6562: Statistical Mechanics Spring 2016, James P. Sethna Prelim Exam, due Friday, March 18 (in class, or in the homework box) Latest revision: March 17, 2016, 9:50 pm Open Book Exam Work on your

More information

Computational Applications in Nuclear Astrophysics using JAVA

Computational Applications in Nuclear Astrophysics using JAVA Computational Applications in Nuclear Astrophysics using JAVA Lecture: Friday 10:15-11:45 Room NB 7/67 Jim Ritman and Elisabetta Prencipe j.ritman@fz-juelich.de e.prencipe@fz-juelich.de Computer Lab: Friday

More information

Lecture notes 8: Nuclear reactions in solar/stellar interiors

Lecture notes 8: Nuclear reactions in solar/stellar interiors Lecture notes 8: Nuclear reactions in solar/stellar interiors Atomic Nuclei We will henceforth often write protons 1 1p as 1 1H to underline that hydrogen, deuterium and tritium are chemically similar.

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work, with partial credit where it is deserved. Please give clear, well-organized solutions. 1. Consider the coexistence curve separating two different

More information

Thermodynamics in Cosmology Nucleosynthesis

Thermodynamics in Cosmology Nucleosynthesis Thermodynamics in Cosmology Nucleosynthesis Thermodynamics Expansion Evolution of temperature Freeze out Nucleosynthesis Production of the light elements Potential barrier Primordial synthesis calculations

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

Lecture 3: Big Bang Nucleosynthesis

Lecture 3: Big Bang Nucleosynthesis Lecture 3: Big Bang Nucleosynthesis Last time: particle anti-particle soup --> quark soup --> neutron-proton soup. Today: Form 2 D and 4 He Form heavier nuclei? Discuss primordial abundances X p, Y p,

More information

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

More information

Quiz 3 for Physics 176: Answers. Professor Greenside

Quiz 3 for Physics 176: Answers. Professor Greenside Quiz 3 for Physics 176: Answers Professor Greenside True or False Questions ( points each) For each of the following statements, please circle T or F to indicate respectively whether a given statement

More information

arxiv:astro-ph/ v1 20 Sep 2006

arxiv:astro-ph/ v1 20 Sep 2006 Formation of Neutrino Stars from Cosmological Background Neutrinos M. H. Chan, M.-C. Chu Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China arxiv:astro-ph/0609564v1

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Astronomy, Astrophysics, and Cosmology

Astronomy, Astrophysics, and Cosmology Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson IX April 12, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY)

More information

Advanced Thermodynamics. Jussi Eloranta (Updated: January 22, 2018)

Advanced Thermodynamics. Jussi Eloranta (Updated: January 22, 2018) Advanced Thermodynamics Jussi Eloranta (jmeloranta@gmail.com) (Updated: January 22, 2018) Chapter 1: The machinery of statistical thermodynamics A statistical model that can be derived exactly from the

More information

Quantization of a Scalar Field

Quantization of a Scalar Field Quantization of a Scalar Field Required reading: Zwiebach 0.-4,.4 Suggested reading: Your favorite quantum text Any quantum field theory text Quantizing a harmonic oscillator: Let s start by reviewing

More information

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names:

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names: Problem 1 (2.5 points) 1 2 3 4 Match the above shown players of the best baseball team in the world with the following names: A. Derek Jeter B. Mariano Rivera C. Johnny Damon D. Jorge Posada 1234 = a.

More information

liquid He

liquid He 8.333: Statistical Mechanics I Problem Set # 6 Due: 12/6/13 @ mid-night According to MIT regulations, no problem set can have a due date later than 12/6/13, and I have extended the due date to the last

More information

14. Ideal Quantum Gases II: Fermions

14. Ideal Quantum Gases II: Fermions University of Rhode Island DigitalCommons@URI Equilibrium Statistical Physics Physics Course Materials 25 4. Ideal Quantum Gases II: Fermions Gerhard Müller University of Rhode Island, gmuller@uri.edu

More information

ASTR 5110 Atomic & Molecular Physics Fall Stat Mech Midterm.

ASTR 5110 Atomic & Molecular Physics Fall Stat Mech Midterm. ASTR 5110 Atomic & Molecular Physics Fall 2013. Stat Mech Midterm. This is an open book, take home, 24 hour exam. When you have finished, put your answers in the envelope provided, mark the envelope with

More information

6. Cosmology. (same at all points) probably true on a sufficiently large scale. The present. ~ c. ~ h Mpc (6.1)

6. Cosmology. (same at all points) probably true on a sufficiently large scale. The present. ~ c. ~ h Mpc (6.1) 6. 6. Cosmology 6. Cosmological Principle Assume Universe is isotropic (same in all directions) and homogeneous (same at all points) probably true on a sufficiently large scale. The present Universe has

More information

Physics 3700 Introduction to Quantum Statistical Thermodynamics Relevant sections in text: Quantum Statistics: Bosons and Fermions

Physics 3700 Introduction to Quantum Statistical Thermodynamics Relevant sections in text: Quantum Statistics: Bosons and Fermions Physics 3700 Introduction to Quantum Statistical Thermodynamics Relevant sections in text: 7.1 7.4 Quantum Statistics: Bosons and Fermions We now consider the important physical situation in which a physical

More information

Section 3 Entropy and Classical Thermodynamics

Section 3 Entropy and Classical Thermodynamics Section 3 Entropy and Classical Thermodynamics 3.1 Entropy in thermodynamics and statistical mechanics 3.1.1 The Second Law of Thermodynamics There are various statements of the second law of thermodynamics.

More information

The Complete APR Equation of State

The Complete APR Equation of State The Complete Equation of State C. Constantinou IKP, FZ Jülich 4 May 6, Athens JINA-CEE International Symposium on Neutron Stars in Multi-Messenger Era: Prospects and Challenges Collaborators: B. Muccioli,

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Useful Quantities and Relations

Useful Quantities and Relations 189 APPENDIX B. USEFUL QUANTITIES AND RELATIONS 190 Appendix B Useful Quantities and Relations B.1 FRW Parameters The expansion rate is given by the Hubble parameter ( ) 1 H 2 da 2 (ȧ ) a 2 0 = a dt a

More information

1 Cosmology: a brief refresher course

1 Cosmology: a brief refresher course 1 COSMOLOGY: A BRIEF REFRESHER COURSE 1 1 Cosmology: a brief refresher course 1.1 Fundamental assumptions Standard model of cosmology is based on two fundamental assumptions: On sufficiently large scales,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #10

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #10 MASSACHUSES INSIUE OF ECHNOLOGY Physics Department 8.044 Statistical Physics I Spring erm 203 Problem : wo Identical Particles Solutions to Problem Set #0 a) Fermions:,, 0 > ɛ 2 0 state, 0, > ɛ 3 0,, >

More information

Part I. Stellar Structure

Part I. Stellar Structure Part I Stellar Structure 1 Chapter 1 Some Properties of Stars There are no lecture notes for this chapter because I don t cover it in class. Instead I assign it (with some homework problems) for students

More information

Physics Oct The Sackur-Tetrode Entropy and Experiment

Physics Oct The Sackur-Tetrode Entropy and Experiment Physics 31 21-Oct-25 16-1 The Sackur-Tetrode Entropy and Experiment In this section we ll be quoting some numbers found in K&K which are quoted from the literature. You may recall that I ve several times

More information

Kinetic Theory of Gases

Kinetic Theory of Gases Kinetic Theory of Gases Modern Physics September 7 and 12, 2016 1 Intro In this section, we will relate macroscopic properties of gases (like Pressure, Temperature) to the behavior of the microscopic components

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 67 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

Exam #: Printed Name: Signature:

Exam #: Printed Name: Signature: Exam #: Printed Name: Signature: PHYSICS DEPARTMENT UNIVERSITY OF OREGON Master s Final Examination and Ph.D. Qualifying Examination, PART I Monday, April 1, 2002, 1:00 p.m. to 5:00 p.m. The examination

More information

Dark radiation from particle decays during big bang nucleosynthesis

Dark radiation from particle decays during big bang nucleosynthesis Dark radiation from particle decays during big bang nucleosynthesis by Justin L. Menestrina Advisor: Dr. Robert Scherrer Senior Honors Thesis Spring 2012 Menestrina 1 Table of Contents Abstract... 2 Introduction...

More information

Physics 112 The Classical Ideal Gas

Physics 112 The Classical Ideal Gas Physics 112 The Classical Ideal Gas Peter Young (Dated: February 6, 2012) We will obtain the equation of state and other properties, such as energy and entropy, of the classical ideal gas. We will start

More information

Chapter 4. Statistical Thermodynamics. 4.1 Overview

Chapter 4. Statistical Thermodynamics. 4.1 Overview Chapter 4 Statistical Thermodynamics Version 0203.2, 23 Oct 02 Please send comments, suggestions, and errata via email to kip@tapir.caltech.edu and rdb@caltech.edu, or on paper to Kip Thorne, 130-33 Caltech,

More information

isocurvature modes Since there are two degrees of freedom in

isocurvature modes Since there are two degrees of freedom in isocurvature modes Since there are two degrees of freedom in the matter-radiation perturbation, there must be a second independent perturbation mode to complement the adiabatic solution. This clearly must

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 607 Final Exam Please be well-organized, and show all significant steps clearly in all problems You are graded on your work, so please do not ust write down answers with no explanation! o state

More information