Research Statement. Edward Richmond. October 13, 2012

Size: px
Start display at page:

Download "Research Statement. Edward Richmond. October 13, 2012"

Transcription

1 Research Statement Edward Richmond October 13, 2012 Introduction My mathematical interests include algebraic combinatorics, algebraic geometry and Lie theory. In particular, I study Schubert calculus, flag varieties, Coxeter groups and their related applications. In this statement, I discuss four topics on different aspects of my research. The first topic involves two applications of Schubert calculus of the Grassmannian to problems on eigenvalues of hermitian matrices. The second topic is on the combinatorics of Coxeter groups and the detection of palindromic Poincaré polynomials. The third and fourth topics deal with the development of computational tools for computing Schubert structure constants using techniques in algebra and geometry respectively. In the last section, I discuss some research projects currently in progress. 1 Littlewood-Richardson coefficients This section is about two projects involving Schubert calculus of the Grassmannian Gr(r, n) of r-dimensional subspaces in C n. The cohomology ring H (Gr(r, n)) has an additive basis of Schubert classes {σ λ } λ Λ, where Λ is the set of partitions whose Young diagrams are contained in an r (n r) rectangle. For any three partitions λ, µ, ν Λ we can define the Littlewood- Richardson coefficients c ν λ,µ by the product structure constants σ λ σ µ = ν Λ c ν λ,µ σ ν. The Littlewood-Richardson coefficients arise in several fields of mathematics including the representation theory of the general linear group, the combinatorics of symmetric functions, and quiver representations. One remarkable application of Littlewood-Richardson coefficients is to the eigenvalue problem on sums of hermitian matrices. The following theorem is proved by the combined works of Klyachko [12] and Knutson and Tao[13]. Theorem 1. ([12, 13]) The coefficient c ν λ,µ > 0 if and only if there exist r r hermitian matrices A, B, C with eigenvalues given by the partitions λ, µ, ν and A + B = C. In joint work with D. Anderson and A. Yong [1], we are able to extend this result to the setting of torus-equivariant cohomology of the Grassmannian HT (Gr(r, n)). Define the structure constants 1

2 Cλ,µ ν by the product of equivariant Schubert classes Σ λ Σ µ = ν Λ C ν λ,µ Σ ν. We have the following theorem (omitting some technical constraints). Theorem 2. ([1]) The coefficient Cλ,µ ν > 0 if and only if there exist r r hermitian matrices A, B, C with eigenvalues given by the partitions λ, µ, ν and A + B C. Here a matrix A B if A B is positive semi-definite. Theorem 2 is proved by showing that Horn s inequalities, which determine when c ν λ,µ > 0, also determine when Cν λ,µ > 0 in the equivariant setting. As a corollary, we get an equivariant generalization of the celebrated saturation theorem. Theorem 3. ([1]) C ν λ,µ > 0 if and only if CNν Nλ,Nµ > 0 for any N > 0. Another application of Theorem 1 is to frame theory, an important topic in functional analysis. Let P 1,..., P k be a sequence of N N orthogonal projection matrices and let L := (L 1,..., L k ) denote the corresponding rank sequence (i.e. rk(p i ) = L i ). We say that P 1,..., P k is a tight fusion frame if there exists a real number α such that k P i = αi i=1 where I denotes the identity matrix. Applications of fusion frames include sensor networks [9], coding theory [5, 15], compressed sensing [6] and filter banks [10]. In [7], together with M. Bownik and K. Luoto, we address the problem of classifying all L that are rank sequences of some tight fusion frame. Since orthogonal projection matrices are hermitian, we use Theorem 1 to prove the following classification. Theorem 4. ([7]) L = (L 1,..., L k ) is a tight fusion frame sequence if and only if k σ (N L i) 0 i=1 in H (Gr(N, M + N)) where M := k i=1 L i and the partition (N L i ) := (N,..., N) }{{} L i. This connection between frame theory and Schubert calculus yields many interesting results in both fields of mathematics. For example, using Schubert combinatorics, we produce new bounding estimates on tight fusion frames previously unknown in frame theory. Conversely, inspired by dualities found in frame theory, we construct new combinatorial identities for Littlewood- Richardson coefficients. 2

3 2 Coxeter groups and Poincaré polynomials A Coxeter group W is a group generated by a finite set S subject to the relations s 2 = 1 and (st) mst = 1 for s, t S and m st {2, 3,..., }. Important examples of Coxeter groups include permutation groups, dihedral groups, triangle groups and Weyl groups. Coxeter groups come equipped with a length function l and Bruhat partial order. For any w W we can define the Poincaré polynomial P w (q) := u w q l(u). In [21], W. Slofstra and I study the problem of determining when P w (q) is a palindromic polynomial. A polynomial d i=0 a i q i is palindromic if a i = a d i i. The motivation to study this problem comes from the topology of Schubert varieties. If W is crystallographic, then W is the Weyl group of some Kac-Moody group G and each element w W indexes a Schubert variety X w G/B. Topologically we have P w (q) = i 0 dim H i 2 (Xw ) q i. In [8], Carrell proves that the variety X w is rationally smooth if and only if P w (q) is palindromic. If W is a simply laced Weyl group, then rationally smooth is equivalent to smooth. To address this problem we define a weaker notion of palindromic. A polynomial d i=0 a i q i is k-palindromic if a i = a d i i k. Theorem 5. ([21]) Suppose m st 2 s, t S. For any w W, if P w (q) is 4-palindromic, then P w (q) is palindromic. Furthermore, suppose m st 2, 3 s, t S. Then every 2-palindromic P w (q) is palindromic. The theorem above states that, for many Coxeter groups, the palindromic property can be detected by looking at only a few coefficients of P w (q). A stronger version of Theorem 5 is given in [21, Theorem 1.2] in terms of triangle group avoidance. Theorem 5 is a consequence of the factorization theorem [21, Theorem 3.1]. In particular, we factor the polynomial P w (q) under the assumption that it is 2-palindromic. This factorization theorem yields several interesting enumeration results. For example, we compute an explicit formula for the generating series of the number of palindromic elements graded by length in the uniform Coxeter group W (m, n) (i.e. S = n and m st = m s, t S). 3 Schubert calculus for Kac-Moody groups In joint work with A. Berenstein from [3], we study the Schubert calculus of the flag variety G/B corresponding to a Kac-Moody group G. The structure of G is encoded by a generalized Cartan matrix (GCM), defined to be a square matrix A = (a i,j ) where a i,i = 2 and a i,j Z <0 if i j. Thus for each GCM, we can associate and study the cohomology ring H (G/B). Like the cohomology of the Grassmannian, H (G/B) has an additive basis of Schubert classes indexed by W, the Weyl group of G. We define the structure constants c w u,v by the product σ u σ v = w W c w u,v σ w. 3

4 In [3, Theorem 2.3], we give a formula for computing c w u,v in terms of the GCM A. This formula is based on the work of Kostant and Kumar in [14] where they define and study nil-hecke rings corresponding to Kac-Moody groups. While other formulas for Schubert structure constants exist (see [11]), it has been a long-standing open problem to find a formula that is combinatorially positive. Although it is well known from the geometry of G/B that the Schubert structure constants are non-negative integers, there are no known combinatorial proofs of this positivity (except in a few very special cases). Our new formula satisfies the following property. Theorem 6. ([3]) If the GCM A = (a i,j ) of G satisfies a i,j a j,i 4 (1) for all i, j, then the formula for c w u,v given in [3, Theorem 2.3] is combinatorially positive. In other words, the formula we construct is completely algebraic and the proof of positivity does not rely on the geometry of G/B. The condition (1) is precisely the condition that the Weyl group W has no braid relations or commuting relations as a Coxeter group. Theorem 6 above and [3, Theorem 2.3] have both been extended to include Schubert structure constants for the torus-equivariant cohomology HT (G/B) in [3]. 4 Recursive formulas for structure constants Let P Q be a pair of parabolic subgroups of a complex Lie group G and consider the induced sequence of partial flag varieties Q/P G/P G/Q. When comparing the three flag varieties above, the variety G/P typically has the most complicated cohomology structure. In [18, 19], I develop a recursive formula to compute Schubert structure coefficients of H (G/P ) in terms of the simpler cohomology rings H (Q/P ) and H (G/Q) under certain constraints. This formula is given in [19, Theorem 1.1]. One important class of coefficients satisfying these constraints of [19, Theorem 1.1] are coefficients c w u,v corresponding to Levi-movable triples (u, v, w) defined by Belkale and Kumar [2]. In [16], Ressayre shows that the set of Levi-movable triples, with c w u,v = 1, indexes the interior faces of the eigencone corresponding to the group G. By applying the recursive formula [19, Theorem 1.1] to Ressayre s work, I am able to determine the inclusion relations of the faces of the eigencone. In [17], N. Ressayre and I generalize the notion of Levi-movability to the setting of branching Schubert calculus. Branching Schubert calculus refers to the problem of computing the comorphism on cohomology rings induced from an equivariant embedding of one flag variety into another. If we consider the diagonal embedding of a flag variety into two copies of itself, then the comorphism on cohomology is simply the cup product. Hence, branching Schubert calculus is a generalization of usual Schubert calculus. We use the generalized definition of Levi-movable to give a more elegant solution to the branching eigenvalue problem. The main idea behind the proof of the recursive formula [19, Theorem 1.1] and its various applications to Levi-movability is to use the fact that Schubert structure coefficients count the number of points in the intersection of corresponding sets of Schubert varieties in general position. Since this intersection is transverse, we can apply tangent space analysis. 4

5 5 Projects currently in progress The following are some of my research projects currently in progress. It is likely that the results from Section 3 can be used to study torus-equivariant K-theory of Kac-Moody flag varieties. A. Berenstein and I are exploring this possibility and other generalizations. In [4], Bessenrodt, Luoto and van Willigenburg give a Littlewood-Richardson rule for noncommutative Schur functions that is a refinement of the classical Littlewood-Richardson rule for Schur functions. V. Tewari, S. van Willigenburg and I are looking for a geometric explanation of this refinement, analogous to how Schur functions are linked to the cohomology ring of the Grassmannian. The factorization theorem [21, Theorem 3.1] mentioned in Section 2 is, at the moment, combinatorial in nature. W. Slofstra and I are exploring a geometric explanation for this factorization. As an application, we hope to generalize the results of Ryan in [20] who proves that smooth Schubert varieties in the complete flag variety in type A are all towers of Grassmannian fibrations. References [1] D. Anderson, E. Richmond, and A. Yong. Eigenvalues of hermitian matrices and equivariant cohomology of grassmannians. Preprint. [2] P. Belkale and S. Kumar. Eigenvalue problem and a new product in cohomology of flag varieties. Invent. Math., 166(1): , [3] A. Berenstein and E. Richmond. Littlewood-richardson coefficients for reflection groups. Submitted. arxiv: [4] C. Bessenrodt, K. Luoto, and S. van Willigenburg. Skew quasisymmetric Schur functions and noncommutative Schur functions. Adv. Math., 226(5): , [5] B. G. Bodmann. Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal., 22(3): , [6] P. Boufounos, G. Kutyniok, and H. Rauhut. Sparse recovery from combined fusion frame measurements. IEEE Trans. Inform. Theory, to appear. [7] M. Bownik, K. Luoto, and E. Richmond. A combinatorial characterization of tight fusion frames. Submitted. arxiv: [8] J. B. Carrell. The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties. In Algebraic groups and their generalizations: classical methods (Uni. Park, PA, 1991), volume 56 of Proc. Sympos. Pure Math., pages AMS, Providence, RI, [9] P. G. Casazza, G. Kutyniok, and S. Li. Fusion frames and distributed processing. Appl. Comput. Harmon. Anal., 25(1): , [10] A. Chebira, M. Fickus, and D. G. Mixon. Filter bank fusion frames. preprint,

6 [11] H. Duan. Multiplicative rule of Schubert classes. Invent. Math., 159(2): , [12] A. A. Klyachko. Stable bundles, representation theory and Hermitian operators. Selecta Math. (N.S.), 4(3): , [13] A. Knutson and T. Tao. The honeycomb model of GL n (C) tensor products. I. Proof of the saturation conjecture. J. Amer. Math. Soc., 12(4): , [14] B. Kostant and S. Kumar. The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. Adv. in Math., 62(3): , [15] G. Kutyniok, A. Pezeshki, R. Calderbank, and T. Liu. Robust dimension reduction, fusion frames, and Grassmannian packings. Appl. Comput. Harmon. Anal., 26(1):64 76, [16] N. Ressayre. Geometric invariant theory and the generalized eigenvalue problem. Invent. Math., 180(2): , [17] N. Ressayre and E. Richmond. Branching Schubert calculus and the Belkale-Kumar product on cohomology. Proc. Amer. Math. Soc., 139(3): , [18] E. Richmond. A partial Horn recursion in the cohomology of flag varieties. J. Algebraic Combin., 30(1):1 17, [19] E. Richmond. A multiplicative formula for structure constants in the cohomology of flag varieties. Michigan Math. J., 61(1):3 17, [20] K. M. Ryan. On Schubert varieties in the flag manifold of Sl(n, C). Math. Ann., 276(2): , [21] W. Slofstra and E. Richmond. Rationally smooth elements of coxeter groups and triangle group avoidance. Submitted. arxiv:

TECHNICAL RESEARCH STATEMENT 1. INTRODUCTION

TECHNICAL RESEARCH STATEMENT 1. INTRODUCTION TECHNICAL RESEARCH STATEMENT EDWARD RICHMOND 1. INTRODUCTION My research program explores relationships between the combinatorics and geometry of flag varieties, Schubert varieties and Coxeter groups.

More information

Littlewood Richardson coefficients for reflection groups

Littlewood Richardson coefficients for reflection groups Littlewood Richardson coefficients for reflection groups Arkady Berenstein and Edward Richmond* University of British Columbia Joint Mathematical Meetings Boston January 7, 2012 Arkady Berenstein and Edward

More information

The tangent space to an enumerative problem

The tangent space to an enumerative problem The tangent space to an enumerative problem Prakash Belkale Department of Mathematics University of North Carolina at Chapel Hill North Carolina, USA belkale@email.unc.edu ICM, Hyderabad 2010. Enumerative

More information

Eigenvalue problem for Hermitian matrices and its generalization to arbitrary reductive groups

Eigenvalue problem for Hermitian matrices and its generalization to arbitrary reductive groups Eigenvalue problem for Hermitian matrices and its generalization to arbitrary reductive groups Shrawan Kumar Talk given at AMS Sectional meeting held at Davidson College, March 2007 1 Hermitian eigenvalue

More information

Puzzles Littlewood-Richardson coefficients and Horn inequalities

Puzzles Littlewood-Richardson coefficients and Horn inequalities Puzzles Littlewood-Richardson coefficients and Horn inequalities Olga Azenhas CMUC, Centre for Mathematics, University of Coimbra Seminar of the Mathematics PhD Program UCoimbra-UPorto Porto, 6 October

More information

Geometric realization of PRV components and the Littlewood Richardson cone

Geometric realization of PRV components and the Littlewood Richardson cone Contemporary Mathematics Volume 490, 2009 Geometric realization of PRV components and the Littlewood Richardson cone Ivan Dimitrov and Mike Roth To Raja on the occasion of his 70 th birthday Abstract.

More information

Research Statement. Nicholas Teff:

Research Statement. Nicholas Teff: Research Statement Nicholas Teff: () The symmetric group S n is everywhere in mathematics. A fundamental example of this is the representation theory of S n. A representation is simply a vector space invariant

More information

Additive Eigenvalue Problem

Additive Eigenvalue Problem . Newsletter of the EMS Manuscript Page 1 Additive Eigenvalue Problem Shrawan Kumar (University of North Carolina, Chapel Hill, NC 27599-3250, USA) 1 Introduction The classical Hermitian eigenvalue problem

More information

THE p-smooth LOCUS OF SCHUBERT VARIETIES. Let k be a ring and X be an n-dimensional variety over C equipped with the classical topology.

THE p-smooth LOCUS OF SCHUBERT VARIETIES. Let k be a ring and X be an n-dimensional variety over C equipped with the classical topology. THE p-smooth LOCUS OF SCHUBERT VARIETIES GEORDIE WILLIAMSON ABSTRACT. These are notes from talks given at Jussieu (seminaire Chevalley), Newcastle and Aberdeen (ARTIN meeting). They are intended as a gentle

More information

Counting matrices over finite fields

Counting matrices over finite fields Counting matrices over finite fields Steven Sam Massachusetts Institute of Technology September 30, 2011 1/19 Invertible matrices F q is a finite field with q = p r elements. [n] = 1 qn 1 q = qn 1 +q n

More information

Recursive structures in the cohomology of flag varieties

Recursive structures in the cohomology of flag varieties Recursive structures in the cohomology of flag varieties by Edward Richmond A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements

More information

Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements

Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements FPSAC 2010, San Francisco, USA DMTCS proc. AN, 2010, 833 840 Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements Suho Oh 1 and Hwanchul Yoo Department of Mathematics, Massachusetts

More information

A note on quantum products of Schubert classes in a Grassmannian

A note on quantum products of Schubert classes in a Grassmannian J Algebr Comb (2007) 25:349 356 DOI 10.1007/s10801-006-0040-5 A note on quantum products of Schubert classes in a Grassmannian Dave Anderson Received: 22 August 2006 / Accepted: 14 September 2006 / Published

More information

Combinatorics for algebraic geometers

Combinatorics for algebraic geometers Combinatorics for algebraic geometers Calculations in enumerative geometry Maria Monks March 17, 214 Motivation Enumerative geometry In the late 18 s, Hermann Schubert investigated problems in what is

More information

EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE TEN: MORE ON FLAG VARIETIES

EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE TEN: MORE ON FLAG VARIETIES EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE TEN: MORE ON FLAG VARIETIES WILLIAM FULTON NOTES BY DAVE ANDERSON 1 A. Molev has just given a simple, efficient, and positive formula for the structure

More information

Littlewood Richardson polynomials

Littlewood Richardson polynomials Littlewood Richardson polynomials Alexander Molev University of Sydney A diagram (or partition) is a sequence λ = (λ 1,..., λ n ) of integers λ i such that λ 1 λ n 0, depicted as an array of unit boxes.

More information

Statistical Mechanics & Enumerative Geometry:

Statistical Mechanics & Enumerative Geometry: Statistical Mechanics & Enumerative Geometry: Christian Korff (ckorff@mathsglaacuk) University Research Fellow of the Royal Society Department of Mathematics, University of Glasgow joint work with C Stroppel

More information

PATTERN AVOIDANCE AND RATIONAL SMOOTHNESS OF SCHUBERT VARIETIES SARA C. BILLEY

PATTERN AVOIDANCE AND RATIONAL SMOOTHNESS OF SCHUBERT VARIETIES SARA C. BILLEY PATTERN AVOIDANCE AND RATIONAL SMOOTHNESS OF SCHUBERT VARIETIES SARA C. BILLEY Let w be an element of the Weyl group S n, and let X w be the Schubert variety associated to w in the ag manifold SL n (C

More information

Quantum cohomology of homogeneous varieties: a survey Harry Tamvakis

Quantum cohomology of homogeneous varieties: a survey Harry Tamvakis Quantum cohomology of homogeneous varieties: a survey Harry Tamvakis Let G be a semisimple complex algebraic group and P a parabolic subgroup of G The homogeneous space X = G/P is a projective complex

More information

Workshop on B-stable ideals and nilpotent orbits

Workshop on B-stable ideals and nilpotent orbits Workshop on B-stable ideals and nilpotent orbits October 8-12, Roma, Italia Opening October 8, 10:15 Schedule of Talks Mon: 10:30-11:30 11:30-12 12-13 15-16 16-17 Kumar Coffee Break Möseneder Panyushev

More information

Peter Magyar Research Summary

Peter Magyar Research Summary Peter Magyar Research Summary 1993 2005 Nutshell Version 1. Borel-Weil theorem for configuration varieties and Schur modules One of the most useful constructions of algebra is the Schur module S λ, an

More information

Chow rings of Complex Algebraic Groups

Chow rings of Complex Algebraic Groups Chow rings of Complex Algebraic Groups Shizuo Kaji joint with Masaki Nakagawa Workshop on Schubert calculus 2008 at Kansai Seminar House Mar. 20, 2008 Outline Introduction Our problem (algebraic geometory)

More information

COMBINATORIAL CURVE NEIGHBORHOODS FOR THE AFFINE FLAG MANIFOLD OF TYPE A 1 1

COMBINATORIAL CURVE NEIGHBORHOODS FOR THE AFFINE FLAG MANIFOLD OF TYPE A 1 1 COMBINATORIAL CURVE NEIGHBORHOODS FOR THE AFFINE FLAG MANIFOLD OF TYPE A 1 1 LEONARDO C. MIHALCEA AND TREVOR NORTON Abstract. Let X be the affine flag manifold of Lie type A 1 1. Its moment graph encodes

More information

arxiv:math/ v1 [math.ra] 3 Nov 2004

arxiv:math/ v1 [math.ra] 3 Nov 2004 arxiv:math/0411063v1 [math.ra] 3 Nov 2004 EIGENVALUES OF HERMITIAN MATRICES WITH POSITIVE SUM OF BOUNDED RANK ANDERS SKOVSTED BUCH Abstract. We give a minimal list of inequalities characterizing the possible

More information

EKT of Some Wonderful Compactifications

EKT of Some Wonderful Compactifications EKT of Some Wonderful Compactifications and recent results on Complete Quadrics. (Based on joint works with Soumya Banerjee and Michael Joyce) Mahir Bilen Can April 16, 2016 Mahir Bilen Can EKT of Some

More information

Modern developments in Schubert calculus

Modern developments in Schubert calculus These transparencies are available athttp://math.cornell.edu/ allenk/ Modern developments in Schubert calculus Allen Knutson (Cornell) Winston-Salem, North Carolina AMS conference, September Abstract Schubert

More information

EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE EIGHT: EQUIVARIANT COHOMOLOGY OF GRASSMANNIANS II. σ λ = [Ω λ (F )] T,

EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE EIGHT: EQUIVARIANT COHOMOLOGY OF GRASSMANNIANS II. σ λ = [Ω λ (F )] T, EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE EIGHT: EQUIVARIANT COHOMOLOGY OF GRASSMANNIANS II WILLIAM FULTON NOTES BY DAVE ANDERSON 1 As before, let X = Gr(k,n), let l = n k, and let 0 S C n X

More information

Littlewood-Richardson coefficients, the hive model and Horn inequalities

Littlewood-Richardson coefficients, the hive model and Horn inequalities Littlewood-Richardson coefficients, the hive model and Horn inequalities Ronald C King School of Mathematics, University of Southampton Southampton, SO7 BJ, England Presented at: SLC 6 Satellite Seminar,

More information

EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE ONE: PREVIEW

EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE ONE: PREVIEW EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE ONE: PREVIEW WILLIAM FULTON NOTES BY DAVE ANDERSON 1 Let G be a Lie group acting on the left on a space X. Around 1960, Borel defined the equivariant

More information

A SURVEY OF THE ADDITIVE EIGENVALUE PROBLEM

A SURVEY OF THE ADDITIVE EIGENVALUE PROBLEM Transformation Groups c Springer Science+Business Media New York (2014) RESEARCH-EXPOSITORY SURVEY A SURVEY OF THE ADDITIVE EIGENVALUE PROBLEM (WITH APPENDIX BY M. KAPOVICH) SHRAWAN KUMAR Department of

More information

Staircase diagrams and the enumeration of smooth Schubert varieties

Staircase diagrams and the enumeration of smooth Schubert varieties FPSAC 06 Vancouver, Canada DMTCS proc. BC, 06, 07 08 Staircase diagrams and the enumeration of smooth Schubert varieties Edward Richmond and William Slofstra Department of Mathematics, Oklahoma State University,

More information

CALTECH ALGEBRAIC GEOMETRY SEMINAR: A GEOMETRIC LITTLEWOOD-RICHARDSON RULE RAVI VAKIL

CALTECH ALGEBRAIC GEOMETRY SEMINAR: A GEOMETRIC LITTLEWOOD-RICHARDSON RULE RAVI VAKIL CALTECH ALGEBRAIC GEOMETRY SEMINAR: A GEOMETRIC LITTLEWOOD-RICHARDSON RULE RAVI VAKIL ABSTRACT. I will describe an explicit geometric Littlewood-Richardson rule, interpreted as deforming the intersection

More information

Multiplicity-Free Products of Schur Functions

Multiplicity-Free Products of Schur Functions Annals of Combinatorics 5 (2001) 113-121 0218-0006/01/020113-9$1.50+0.20/0 c Birkhäuser Verlag, Basel, 2001 Annals of Combinatorics Multiplicity-Free Products of Schur Functions John R. Stembridge Department

More information

The Eigencone and Saturation for Spin(8)

The Eigencone and Saturation for Spin(8) Pure and Applied Mathematics Quarterly Volume 5, Number 2 (Special Issue: In honor of Friedrich Hirzebruch, Part 1 of 2) 1 26, 2009 The Eigencone and Saturation for Spin(8) Michael Kapovich, Shrawan Kumar

More information

(Equivariant) Chern-Schwartz-MacPherson classes

(Equivariant) Chern-Schwartz-MacPherson classes (Equivariant) Chern-Schwartz-MacPherson classes Leonardo Mihalcea (joint with P. Aluffi) November 14, 2015 Leonardo Mihalcea (joint with P. Aluffi) () CSM classes November 14, 2015 1 / 16 Let X be a compact

More information

Enumeration of Parabolic Double Cosets for Coxeter Groups

Enumeration of Parabolic Double Cosets for Coxeter Groups Enumeration of Parabolic Double Cosets for Coxeter Groups Sara Billey University of Washington Based on joint work with: Matjaž Konvalinka, T. Kyle Petersen, William Slofstra and Bridget Tenner based on

More information

A DECOMPOSITION THEOREM FOR FRAMES AND THE FEICHTINGER CONJECTURE

A DECOMPOSITION THEOREM FOR FRAMES AND THE FEICHTINGER CONJECTURE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 A DECOMPOSITION THEOREM FOR FRAMES AND THE FEICHTINGER CONJECTURE PETER G. CASAZZA, GITTA KUTYNIOK,

More information

Smoothness of Schubert varieties via patterns in root subsystems

Smoothness of Schubert varieties via patterns in root subsystems Advances in Applied Mathematics 34 (2005) 447 466 www.elsevier.com/locate/yaama Smoothness of Schubert varieties via patterns in root subsystems Sara Billey a,1,, Alexander Postnikov b,2 a Department of

More information

Rigid Schubert classes in compact Hermitian symmetric spaces

Rigid Schubert classes in compact Hermitian symmetric spaces Rigid Schubert classes in compact Hermitian symmetric spaces Colleen Robles joint work with Dennis The Texas A&M University April 10, 2011 Part A: Question of Borel & Haefliger 1. Compact Hermitian symmetric

More information

Notes on D 4 May 7, 2009

Notes on D 4 May 7, 2009 Notes on D 4 May 7, 2009 Consider the simple Lie algebra g of type D 4 over an algebraically closed field K of characteristic p > h = 6 (the Coxeter number). In particular, p is a good prime. We have dim

More information

ALGEBRAIC GEOMETRY I - FINAL PROJECT

ALGEBRAIC GEOMETRY I - FINAL PROJECT ALGEBRAIC GEOMETRY I - FINAL PROJECT ADAM KAYE Abstract This paper begins with a description of the Schubert varieties of a Grassmannian variety Gr(k, n) over C Following the technique of Ryan [3] for

More information

Defining equations for some nilpotent varieties

Defining equations for some nilpotent varieties 1 Defining equations for some nilpotent varieties Eric Sommers (UMass Amherst) Ben Johnson (Oklahoma State) The Mathematical Legacy of Bertram Kostant MIT June 1, 2018 Kostant s interest in the Buckyball

More information

Geometry of Schubert Varieties RepNet Workshop

Geometry of Schubert Varieties RepNet Workshop Geometry of Schubert Varieties RepNet Workshop Chris Spencer Ulrich Thiel University of Edinburgh University of Kaiserslautern 24 May 2010 Flag Varieties Throughout, let k be a fixed algebraically closed

More information

The Waring rank of the Vandermonde determinant

The Waring rank of the Vandermonde determinant The Waring rank of the Vandermonde determinant Alexander Woo (U. Idaho) joint work with Zach Teitler(Boise State) SIAM Conference on Applied Algebraic Geometry, August 3, 2014 Waring rank Given a polynomial

More information

Characteristic Classes, Chern Classes and Applications to Intersection Theory

Characteristic Classes, Chern Classes and Applications to Intersection Theory Characteristic Classes, Chern Classes and Applications to Intersection Theory HUANG, Yifeng Aug. 19, 2014 Contents 1 Introduction 2 2 Cohomology 2 2.1 Preliminaries................................... 2

More information

Past Research Sarah Witherspoon

Past Research Sarah Witherspoon Past Research Sarah Witherspoon I work on the cohomology, structure, and representations of various types of rings, such as Hopf algebras and group-graded algebras. My research program has involved collaborations

More information

A CHEVALLEY FORMULA IN THE QUANTUM K THEORY RING FOR THE G 2 FLAG MANIFOLD

A CHEVALLEY FORMULA IN THE QUANTUM K THEORY RING FOR THE G 2 FLAG MANIFOLD A CHEVALLEY FORMULA IN THE QUANTUM K THEORY RING FOR THE G 2 FLAG MANIFOLD MARK E. LEWERS AND LEONARDO C. MIHALCEA Abstract. Let X be the (generalized) flag manifold for the Lie group of type G 2 and let

More information

External Littelmann Paths of Kashiwara Crystals of Type A ran

External Littelmann Paths of Kashiwara Crystals of Type A ran Bar-Ilan University Combinatorics and Representation Theory July 23-27, 2018 ran Table of Contents 1 2 3 4 5 6 ran Crystals B(Λ) Let G over C be an affine Lie algebra of type A rank e. Let Λ be a dominant

More information

Combinatorial models for the variety of complete quadrics

Combinatorial models for the variety of complete quadrics Combinatorial models for the variety of complete quadrics Soumya D. Banerjee, Mahir Bilen Can, Michael Joyce October 21, 2016 Abstract We develop several combinatorial models that are useful in the study

More information

Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions

Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions Jia-Ming (Frank) Liou, Albert Schwarz February 28, 2012 1. H = L 2 (S 1 ): the space of square integrable complex-valued

More information

arxiv:math/ v1 [math.rt] 9 Oct 2004

arxiv:math/ v1 [math.rt] 9 Oct 2004 On compression of Bruhat Tits buildings Yurii A. Neretin arxiv:math/0410242v1 [math.rt] 9 Oct 2004 Consider an affine Bruhat-Tits building Lat n of the type A n 1 and the complex distance in Lat n, i.e.,

More information

Geometry and combinatorics of spherical varieties.

Geometry and combinatorics of spherical varieties. Geometry and combinatorics of spherical varieties. Notes of a course taught by Guido Pezzini. Abstract This is the lecture notes from a mini course at the Winter School Geometry and Representation Theory

More information

Variations on a Theme of Schubert Calculus

Variations on a Theme of Schubert Calculus Variations on a Theme of Schubert Calculus Lecture Notes by Maria Gillespie Equivariant Combinatorics Workshop, CRM, June 12-16, 217 Schubert Calculus Quiz: How Schubert-y are you?.1. How many lines pass

More information

Cohomology theories on projective homogeneous varieties

Cohomology theories on projective homogeneous varieties Cohomology theories on projective homogeneous varieties Baptiste Calmès RAGE conference, Emory, May 2011 Goal: Schubert Calculus for all cohomology theories Schubert Calculus? Cohomology theory? (Very)

More information

THE LEIBNIZ FORMULA FOR DIVIDED DIFFERENCE OPERATORS ASSOCIATED TO KAC-MOODY ROOT SYSTEMS

THE LEIBNIZ FORMULA FOR DIVIDED DIFFERENCE OPERATORS ASSOCIATED TO KAC-MOODY ROOT SYSTEMS THE LEIBNIZ FORMULA FOR DIVIDED DIFFERENCE OPERATORS ASSOCIATED TO KAC-MOODY ROOT SYSTEMS BY MATTHEW JASON SAMUEL A dissertation submitted to the Graduate School New Brunswick Rutgers, The State University

More information

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS 1 SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS HUAJUN HUANG AND HONGYU HE Abstract. Let G be the group preserving a nondegenerate sesquilinear form B on a vector space V, and H a symmetric subgroup

More information

Reducibility of generic unipotent standard modules

Reducibility of generic unipotent standard modules Journal of Lie Theory Volume?? (??)???? c?? Heldermann Verlag 1 Version of March 10, 011 Reducibility of generic unipotent standard modules Dan Barbasch and Dan Ciubotaru Abstract. Using Lusztig s geometric

More information

Betti numbers of abelian covers

Betti numbers of abelian covers Betti numbers of abelian covers Alex Suciu Northeastern University Geometry and Topology Seminar University of Wisconsin May 6, 2011 Alex Suciu (Northeastern University) Betti numbers of abelian covers

More information

A Problem of Hsiang-Palais-Terng on Isoparametric Submanifolds

A Problem of Hsiang-Palais-Terng on Isoparametric Submanifolds arxiv:math/0312251v1 [math.dg] 12 Dec 2003 A Problem of Hsiang-Palais-Terng on Isoparametric Submanifolds Haibao Duan Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, dhb@math.ac.cn

More information

Computers work exceptionally on Lie groups

Computers work exceptionally on Lie groups Computers work exceptionally on Lie groups Shizuo Kaji Fukuoka University First Global COE seminar on Mathematical Research Using Computers at Kyoto University Oct. 24, 2008 S.Kaji (Fukuoka U.) Computers

More information

AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY. Contents

AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY. Contents AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY CRISTIAN LENART AND ALEXANDER POSTNIKOV arxiv:math/0309207v3 [math.rt] 28 Jun 2005 Abstract. We give an explicit combinatorial Chevalley-type formula

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

Monomial equivariant embeddings of quasitoric manifolds and the problem of existence of invariant almost complex structures.

Monomial equivariant embeddings of quasitoric manifolds and the problem of existence of invariant almost complex structures. Monomial equivariant embeddings of quasitoric manifolds and the problem of existence of invariant almost complex structures. Andrey Kustarev joint work with V. M. Buchstaber, Steklov Mathematical Institute

More information

Moduli spaces of sheaves and the boson-fermion correspondence

Moduli spaces of sheaves and the boson-fermion correspondence Moduli spaces of sheaves and the boson-fermion correspondence Alistair Savage (alistair.savage@uottawa.ca) Department of Mathematics and Statistics University of Ottawa Joint work with Anthony Licata (Stanford/MPI)

More information

arxiv: v1 [math.ag] 11 Nov 2009

arxiv: v1 [math.ag] 11 Nov 2009 REALITY AND TRANSVERSALITY FOR SCHUBERT CALCULUS IN OG(n, 2n+1) arxiv:0911.2039v1 [math.ag] 11 Nov 2009 KEVIN PURBHOO Abstract. We prove an analogue of the Mukhin-Tarasov-Varchenko theorem (formerly the

More information

Solving Schubert Problems with Littlewood-Richardson Homotopies

Solving Schubert Problems with Littlewood-Richardson Homotopies Solving Schubert Problems with Littlewood-Richardson Homotopies Jan Verschelde joint work with Frank Sottile and Ravi Vakil University of Illinois at Chicago Department of Mathematics, Statistics, and

More information

Another proof of the global F -regularity of Schubert varieties

Another proof of the global F -regularity of Schubert varieties Another proof of the global F -regularity of Schubert varieties Mitsuyasu Hashimoto Abstract Recently, Lauritzen, Raben-Pedersen and Thomsen proved that Schubert varieties are globally F -regular. We give

More information

Background on Chevalley Groups Constructed from a Root System

Background on Chevalley Groups Constructed from a Root System Background on Chevalley Groups Constructed from a Root System Paul Tokorcheck Department of Mathematics University of California, Santa Cruz 10 October 2011 Abstract In 1955, Claude Chevalley described

More information

Quaternionic Complexes

Quaternionic Complexes Quaternionic Complexes Andreas Čap University of Vienna Berlin, March 2007 Andreas Čap (University of Vienna) Quaternionic Complexes Berlin, March 2007 1 / 19 based on the joint article math.dg/0508534

More information

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N

16.2. Definition. Let N be the set of all nilpotent elements in g. Define N 74 16. Lecture 16: Springer Representations 16.1. The flag manifold. Let G = SL n (C). It acts transitively on the set F of complete flags 0 F 1 F n 1 C n and the stabilizer of the standard flag is the

More information

Lecture 1. Toric Varieties: Basics

Lecture 1. Toric Varieties: Basics Lecture 1. Toric Varieties: Basics Taras Panov Lomonosov Moscow State University Summer School Current Developments in Geometry Novosibirsk, 27 August1 September 2018 Taras Panov (Moscow University) Lecture

More information

KAZHDAN LUSZTIG CELLS IN INFINITE COXETER GROUPS. 1. Introduction

KAZHDAN LUSZTIG CELLS IN INFINITE COXETER GROUPS. 1. Introduction KAZHDAN LUSZTIG CELLS IN INFINITE COXETER GROUPS MIKHAIL V. BELOLIPETSKY AND PAUL E. GUNNELLS 1. Introduction Groups defined by presentations of the form s 1,..., s n s 2 i = 1, (s i s j ) m i,j = 1 (i,

More information

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM Proceedings of the Edinburgh Mathematical Society Submitted Paper Paper 14 June 2011 LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM MICHAEL C. CRABB AND PEDRO L. Q. PERGHER Institute of Mathematics,

More information

NOTES ON POINCARÉ SERIES OF FINITE AND AFFINE COXETER GROUPS

NOTES ON POINCARÉ SERIES OF FINITE AND AFFINE COXETER GROUPS NOTES ON POINCARÉ SERIES OF FINITE AND AFFINE COXETER GROUPS VICTOR REINER Abstract. There are two famous formulae relating the Poincaré series of a finite/affine Weyl group to the degrees of fundamental

More information

On the Hilbert polynomials and Hilbert series of homogeneous projective varieties Benedict H. Gross and Nolan R. Wallach 1

On the Hilbert polynomials and Hilbert series of homogeneous projective varieties Benedict H. Gross and Nolan R. Wallach 1 On the Hilbert polynomials and Hilbert series of homogeneous projective varieties Benedict H Gross and Nolan R Wallach 1 Among all complex projective varieties X P(V ), the equivariant embeddings of homogeneous

More information

A geometric solution of the Kervaire Invariant One problem

A geometric solution of the Kervaire Invariant One problem A geometric solution of the Kervaire Invariant One problem Petr M. Akhmet ev 19 May 2009 Let f : M n 1 R n, n = 4k + 2, n 2 be a smooth generic immersion of a closed manifold of codimension 1. Let g :

More information

AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY. Contents

AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY. Contents AFFINE WEYL GROUPS IN K-THEORY AND REPRESENTATION THEORY CRISTIAN LENART AND ALEXANDER POSTNIKOV Abstract. We give an explicit combinatorial Chevalley-type formula for the equivariant K-theory of generalized

More information

THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES

THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES Horiguchi, T. Osaka J. Math. 52 (2015), 1051 1062 THE S 1 -EQUIVARIANT COHOMOLOGY RINGS OF (n k, k) SPRINGER VARIETIES TATSUYA HORIGUCHI (Received January 6, 2014, revised July 14, 2014) Abstract The main

More information

A LITTLEWOOD-RICHARDSON RULE FOR TWO-STEP FLAG VARIETIES

A LITTLEWOOD-RICHARDSON RULE FOR TWO-STEP FLAG VARIETIES A LITTLEWOOD-RICHARDSON RULE FOR TWO-STEP FLAG VARIETIES IZZET COSKUN Abstract. We establish a positive geometric rule for computing the structure constants of the cohomology of two-step flag varieties

More information

arxiv:math/ v2 [math.ag] 21 Sep 2003

arxiv:math/ v2 [math.ag] 21 Sep 2003 EIGENVALUES, SINGULAR VALUES, AND LITTLEWOOD-RICHARDSON COEFFICIENTS arxiv:math/0301307v2 [math.ag] 21 Sep 2003 SERGEY FOMIN, WILLIAM FULTON, CHI-KWONG LI, AND YIU-TUNG POON Abstract. We characterize the

More information

RAQ2014 ) TEL Fax

RAQ2014 ) TEL Fax RAQ2014 http://hiroyukipersonal.web.fc2.com/pdf/raq2014.pdf 2014 6 1 6 4 4103-1 TEL.076-436-0191 Fax.076-436-0190 http://www.kureha-heights.jp/ hiroyuki@sci.u-toyama.ac.jp 5/12( ) RAQ2014 ) *. * (1, 2,

More information

Spherical varieties and arc spaces

Spherical varieties and arc spaces Spherical varieties and arc spaces Victor Batyrev, ESI, Vienna 19, 20 January 2017 1 Lecture 1 This is a joint work with Anne Moreau. Let us begin with a few notations. We consider G a reductive connected

More information

On the geometric Langlands duality

On the geometric Langlands duality On the geometric Langlands duality Peter Fiebig Emmy Noether Zentrum Universität Erlangen Nürnberg Schwerpunkttagung Bad Honnef April 2010 Outline This lecture will give an overview on the following topics:

More information

Reduction formulae from the factorization Theorem of Littlewood-Richardson polynomials by King, Tollu and Toumazet

Reduction formulae from the factorization Theorem of Littlewood-Richardson polynomials by King, Tollu and Toumazet FPSAC 2008, Valparaiso-Viña del Mar, Chile DMTCS proc. AJ, 2008, 483 494 Reduction formulae from the factorization Theorem of Littlewood-Richardson polynomials by King, Tollu and Toumazet Soojin Cho and

More information

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS DAN CIUBOTARU 1. Classical motivation: spherical functions 1.1. Spherical harmonics. Let S n 1 R n be the (n 1)-dimensional sphere, C (S n 1 ) the

More information

Definition 9.1. The scheme µ 1 (O)/G is called the Hamiltonian reduction of M with respect to G along O. We will denote by R(M, G, O).

Definition 9.1. The scheme µ 1 (O)/G is called the Hamiltonian reduction of M with respect to G along O. We will denote by R(M, G, O). 9. Calogero-Moser spaces 9.1. Hamiltonian reduction along an orbit. Let M be an affine algebraic variety and G a reductive algebraic group. Suppose M is Poisson and the action of G preserves the Poisson

More information

Weyl group representations on zero weight spaces

Weyl group representations on zero weight spaces Weyl group representations on zero weight spaces November 30, 2014 Here we survey briefly (trying to provide reasonably complete references) the scattered work over four decades most relevant to the indicated

More information

An algorithmic Littlewood-Richardson rule

An algorithmic Littlewood-Richardson rule J Algebr Comb (2010) 31: 253 266 DOI 10.1007/s10801-009-0184-1 An algorithmic Littlewood-Richardson rule Ricky Ini Liu Received: 3 March 2009 / Accepted: 20 May 2009 / Published online: 21 January 2010

More information

Lecture on Equivariant Cohomology

Lecture on Equivariant Cohomology Lecture on Equivariant Cohomology Sébastien Racanière February 20, 2004 I wrote these notes for a hours lecture at Imperial College during January and February. Of course, I tried to track down and remove

More information

Finer rook equivalence: Classifying Ding s Schubert varieties

Finer rook equivalence: Classifying Ding s Schubert varieties Finer rook equivalence: Classifying Ding s Schubert varieties Mike Develin Jeremy Martin Victor Reiner (AIM) (University of Minnesota) (University of Minnesota Preprint: arxiv:math.ag/4353 math.umn.edu/

More information

On the singular elements of a semisimple Lie algebra and the generalized Amitsur-Levitski Theorem

On the singular elements of a semisimple Lie algebra and the generalized Amitsur-Levitski Theorem On the singular elements of a semisimple Lie algebra and the generalized Amitsur-Levitski Theorem Bertram Kostant, MIT Conference on Representations of Reductive Groups Salt Lake City, Utah July 10, 2013

More information

On embedding all n-manifolds into a single (n + 1)-manifold

On embedding all n-manifolds into a single (n + 1)-manifold On embedding all n-manifolds into a single (n + 1)-manifold Jiangang Yao, UC Berkeley The Forth East Asian School of Knots and Related Topics Joint work with Fan Ding & Shicheng Wang 2008-01-23 Problem

More information

Variations on a Theme of Schubert Calculus

Variations on a Theme of Schubert Calculus Variations on a Theme of Schubert Calculus Lecture Notes by Maria Monks Gillespie Equivariant Combinatorics Workshop, CRM, June 12-16, 217 Schubert Calculus Quiz: How Schubert-y are you?.1. How many lines

More information

Highest-weight Theory: Verma Modules

Highest-weight Theory: Verma Modules Highest-weight Theory: Verma Modules Math G4344, Spring 2012 We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or,

More information

H(G(Q p )//G(Z p )) = C c (SL n (Z p )\ SL n (Q p )/ SL n (Z p )).

H(G(Q p )//G(Z p )) = C c (SL n (Z p )\ SL n (Q p )/ SL n (Z p )). 92 19. Perverse sheaves on the affine Grassmannian 19.1. Spherical Hecke algebra. The Hecke algebra H(G(Q p )//G(Z p )) resp. H(G(F q ((T ))//G(F q [[T ]])) etc. of locally constant compactly supported

More information

DUALITY OF ANTIDIAGONALS AND PIPE DREAMS

DUALITY OF ANTIDIAGONALS AND PIPE DREAMS Séminaire Lotharingien de Combinatoire 58 (2008) Article B58e DUALITY OF ANTIDIAGONALS AND PIPE DREAMS NING JIA AND EZRA MILLER The cohomology ring H (Fl n ) of the manifold of complete flags in a complex

More information

Equivariant K -theory and hook formula for skew shape on d-complete set

Equivariant K -theory and hook formula for skew shape on d-complete set Equivariant K -theory and hook formula for skew shape on d-complete set Hiroshi Naruse Graduate School of Education University of Yamanashi Algebraic and Enumerative Combinatorics in Okayama 2018/02/20

More information

LOCAL AND GLOBAL STABILITY OF FUSION FRAMES

LOCAL AND GLOBAL STABILITY OF FUSION FRAMES LOCAL AND GLOBAL STABILITY OF FUSION FRAMES Jerry Emidih Norbert Wiener Center Department of Mathematics University of Maryland, College Park November 22 2016 OUTLINE 1 INTRO 2 3 4 5 OUTLINE 1 INTRO 2

More information

Multiplicity free actions of simple algebraic groups

Multiplicity free actions of simple algebraic groups Multiplicity free actions of simple algebraic groups D. Testerman (with M. Liebeck and G. Seitz) EPF Lausanne Edinburgh, April 2016 D. Testerman (with M. Liebeck and G. Seitz) (EPF Lausanne) Multiplicity

More information

PATTERN AVOIDANCE CRITERIA FOR FIBER BUNDLES ON SCHUBERT VARIETIES. A thesis presented. Timothy R. Alland. The Department of Mathematics

PATTERN AVOIDANCE CRITERIA FOR FIBER BUNDLES ON SCHUBERT VARIETIES. A thesis presented. Timothy R. Alland. The Department of Mathematics PATTERN AVOIDANCE CRITERIA FOR FIBER BUNDLES ON SCHUBERT VARIETIES A thesis presented by Timothy R. Alland to The Department of Mathematics in partial fulfillment of the requirements for the degree of

More information