MAT 530: Topology&Geometry, I Fall 2005

Size: px
Start display at page:

Download "MAT 530: Topology&Geometry, I Fall 2005"

Transcription

1 MAT 530: Topology&Geometry, I Fall 2005 Problem Set 11 Solution to Problem p433, #2 Suppose U,V X are open, X =U V, U, V, and U V are path-connected, x 0 U V, and i 1 π 1 U,x 0 j 1 π 1 U V,x 0 i 2 π 1 V,x 0 j 2 π 1 X,x 0 Figure 1: Van Kampen s Theorem Setting are the homomorphisms induced by inclusions. Suppose in addition that i 2 is surjective. Let M π 1 X,x 0 be the least normal subgroup containing i 1 ker i 2. a Show that j 1 induces a surjective homomorphism b Show that h is an isomorphism. h: π 1 U,x 0 / M π 1 X,x 0. a By the weak version of van Kampen s Theorem, the homomorphism is surjective. Since j 1 j 2 : π 1 U,x 0 π 1 V,x 0 π 1 X,x 0 j 1 i 1 = j 2 i 2 : π 1 U V,x 0 π 1 X,x 0, i.e. the diagram in Figure?? is commutative, and i 2 is surjective in this case, Imj 2 = Im j 2 i 2 = Imj 1 i 1 Imi 1 π 1 X,x 0. Thus, the homomorphism j 1 is surjective. In addition, since the diagram in Figure?? is commutative ker i 2 ker i 2 j 2 = ker i 1 j 1 = i 1 ker i 2 ker j 1. Since ker j 1 is a normal subgroup of π 1 U,x 0 and contains i 1 ker i 2, it must contain M as well. Thus, j 1 induces a homomorphism h: π 1 U,x 0 / M π 1 X,x 0. Since j 1 is surjective, so is h. b Define homomorphisms φ 1 : π 1 U,x 0 π 1 U,x 0 /M and φ 2 : π 1 V,x 0 π 1 U,x 0 /M by φ 1 α = αm and φ 2 i2 α = φ 1 i1 α. Since i 2 is surjective and i 1 ker i 2 M, φ 2 is well-defined. It is immediate that φ 1 i 1 = φ 2 i 2 : π 1 U V,x 0 π 1 U,x 0 /M,

2 i.e. the diagram i 1 π 1 U,x 0 φ 1 π 1 U V,x 0 i 2 j 1 j 2 π 1 X,x 0 ϕ π 1 U,x 0 /M π 1 V,x 0 φ 2 Figure 2: Amalgated Product Setting of solid lines is commutative. Since Figure?? is an amalgated product by van Kampen s Theorem, there exists a unique homomorphism In particular, ϕ: π 1 X,x 0 π 1 U,x 0 /M s.t. φ 1 = ϕ j 1 and φ 2 = ϕ j 2. ϕ hαm = ϕ j 1 α = φ 1 α = αm αm π 1 U,x 0 /M = ϕ h = id π1 U,x 0 /M. Thus, h is an injective homomorphism. On the other hand, it is surjective by part a. We conclude that h is an isomorphism and its inverse is ϕ. Solution to Problem p438, #5 Let S n R 2 be the circle with center at n,0 and of radius n. Let Y be the subspace of R 2 consisting of the circles S n, with n Z +. Denote the common point of the circles by p. S 1 S 2 S 3 Figure 3: Some Circles S n a Show that Y is not homeomorphic to either a countably infinite wedge X of circles or the infinite earring Z of Example 1 on p436. b Show that π 1 Y,p is a free abelian group with {[f n ]} as a system of free generators, where f n is a loop representing a generator of π 1 S n,p. a Since Y is an unbounded in the standard metric subset of R 2, Y is not compact and is second countable. Since Z is closed and bounded with respect to the standard metric on R 2, Z is compact. On the other hand, if q X is the point common to all of the circles in X, X {q} is homeomorphic to Z + S 1 {q}. Since X {q} is not second countable, neither is X. Thus, Y is homeomorphic to neither X not Z. Remark: In fact, X does not have a countable basis at p. So, X is not even first countable. b For each n Z +, let i n : π 1 S n,p π 1 Y,p

3 be the homomorphism induced by the inclusion S n,p Y,p. We will show that the homomorphism i n : π 1 S n,p π 1 Y,p n Z + n Z + is an isomorphism. First, let r N : Y Y N S n be the retraction obtained by collapsing the circles S n with n>n to the point p. By the existence of such a retraction, the homomorphism j N : π 1 Y N,p π 1 Y,p induced by the inclusion Y N,p Y,p is injective. If n N, let i N,n : π 1 S n,p π 1 Y N,p be the homomorphism induced by the inclusion S n,p Y N,p. By Theorem 71.1, the homomorphism i N,n : π 1 S n,p π 1 Y N,p is an isomorphism. Thus, the homomorphism i n = j N i N,n : π 1 S n,p π 1 Y,p is injective, and so is i n. It remains to show that every element [α] of π 1 Y,p lies in the image of the homomorphism j N for some N Z +. Let α: I, {0,1} Y,p be a loop in Y based at p. Since αi is compact, αi is bounded and thus for some N Z +. Let αi Y N Y +1 H : Y N I Y N {2n,0} be a deformation retraction of YN onto Y N, i.e. a homotopy from id Y N to r N Y N such that Hx,t=x for all x Y n. Such a homotopy is obtained by retracting the open upper and lower semicircles of S n, with n>n, to p. Then, H {α id I } is a path homotopy from the loop α in Y to the loop r N α in Y N. In particular, [α] = [ r N α ] [ π 1 Y,p and rn α ] Im j N, as needed.

4 Solution to Problem p441, #3 Suppose G is a group, h G, and N is the least normal subgroup of G containing h. Show that if π 1 X G for some compact path-connected normal topological space X, then π 1 Y G for some compact path-connected normal topological space Y. Let p: I S 1, ps=e 2πis, be the usual quotient map. Choose a representative α: I, {0,1} X,x 0 for h π 1 X,x 0. Since α0 = α1, α induces a continuous map f : S 1 X such that α = f p, i.e. the diagram commutes. Let I, {0,1} p S 1 f,1 X,x 0 α Figure 4: A Commutative Diagram X α = X B 2 /, x fx x S 1 B 2. Let q : X B 2 X α be the quotient map. If X is compact, then so are X B 2 and thus X α. Since X is path-connected and B 2 are path-connected, so are qx and qb 2. Since X α = qx qb 2 and qx qb 2, it follows that X α is path-connected. It is shown in the next paragraphs that X α is normal. Finally, by Figure??, f π 1 S 1,1 π 1 X,x 0 is generated by h=[α]. Since the map is a homeomorphism, Theorem 72.1 implies that q B 2 S 1 : B2 S 1 X α π 1 Xα,qx 0 π 1 X,α / N. We now show that X α is normal, i.e. X α is T1 one-point sets are closed and disjoint closed sets can be separated by continuous functions. We begin by showing that the map q is closed. If A X is closed, then q 1 qa = q 1 qa X q 1 qa B 2 = q 1 X qa q 1 B qa = A f 1 A, 2 since q A is injective and qx qb 2 S 1 =. Since f is continuous, f 1 A is closed in S 1. Since S 1 is closed in B 2, it follows that f 1 A is closed in B 2 and thus q 1 qa is closed in X B 2. Since q is a quotient map, qa is then closed in X α. On the other hand, if A B 2, then q 1 qa = q 1 qa X q 1 qa B 2 = q 1 X qa q 1 B qa = fa S 1 A. 2

5 Since A is closed in B 2 and S 1 is compact, A S 1 is closed in S 1 and thus compact. It follows that fa S 1 is a compact subset of X. Since X is Hausdorff, fa S 1 is a closed subset of X. Thus, q 1 qa is closed in X B 2 and qa is closed in X α. We conclude that the quotient map is closed and the space X α is Hausdorff. It remains to show that closed subsets of X α can be separated by continuous functions. First note that the map q X : X qx X α is continuous, bijective, and closed. Thus, it is a homeomorphism. Since X is normal, so is qx. Suppose that A,B X α are disjoint closed subsets. Then, A qx and B qx are disjoint closed subsets of qx. Since qx is normal, by Urysohn Lemma there exists a continuous function g X : qx [0,1] s.t. g X A qx = {0} and gx B qx = {1}. Then, is continuous function such that g X q: S 1 [0,1] g X q q 1 A S 1 = {0} and g X q q 1 B S 1 = {1}. Define g: S 1 q 1 A B 2 q 1 B B 2 [0,1] by g X qx, if x S 1 ; gx = 0, if x q A B 2 ; 1, if x q 1 B B 2. These definitions agree on the overlap and define a continuous function on each of the three closed sets. By the pasting lemma, g is continuous. Since B 2 is normal and S 1 q 1 A B 2 q 1 B B 2 B 2 is closed, by Tietze s Extension Theorem g extends to a continuous function g X qx, if x S 1 ; h B 2 : B 2 [0,1], i.e. h B 2x = gx = 0, if x q 1 A B 2 ; 1, if x q 1 B B 2. Let h X =g X q. Then, the function is continuous and h X h B 2 : X B 2 [0,1] h X fx = g X qfx = gx qx = h B2 x x S 1 B 2, h X h B 2 q 1 A = g X A qx gb 2 q 1 A B 2 = {0}, and h X h B 2 q 1 B = g X B qx gb 2 q 1 B B 2 = {1}. By the first property, h X h B 2 induces a map h: X α [0,1] such that h X h B 2 =h q, i.e. the diagram

6 X B 2 q h X h B 2 h X α [0,1] Figure 5: Construction of Separating Map commutes. The function h is continuous, because q is a quotient map. By the other two properties, ha = h X h B 2 q 1 A = {0} and hb = h X h B 2 q 1 B = {1}, as needed. Solution to Problem p445, #2 Show that for every finitely presentable group G, there exists a compact Hausdorff path-connected space X such that π 1 X G. Suppose G = α 1,...,α n r 1,...,r n, i.e. G = Z[α1 ]... Z[α n ] / Nr 1,...,r m, where Nr 1,...,r m is the smallest normal subgroup of Z[α 1 ]... Z[α n ] containing For each k=0,...,m, let {r 1,...,r m } Z[α 1 ]... Z[α n ]. H k = Nr 1,...,r k, G k = G/H k, h k = r k H k 1 G k 1 if k > 0. We note that the smallest normal subgroup N k of G k 1 containing h k is H k H k 1 h H k hh k 1 G k 1. Thus, G k G k 1 /N k. Let X 0 be the wedge of n circles. Let p be the point common to all of the circles. By Theorem 71.1, π 1 X,p Z[α 1 ]... Z[α n ] = G 0, where α i is the homotopy class of a loop going around the ith circle once. The space X 0 is compact Hausdorff and path-connected. Suppose k Z +, k n, and there exists a compact Hausdorff pathconnected space X n 1 such that π 1 X k 1 G k 1. Then, by Problem p441, #3, there exists a compact Hausdorff path-connected space X k such that π 1 X k G k 1 /N k G k. After applying this construction m times, we obtain a compact Hausdorff path-connected space X X m such that π 1 X = π 1 X m G m G. Remark: In brief, in order to obtain a compact Hausdorff path-connected space whose fundamental group is G we begin with the wedge of n circles and then make the elements r 1,...,r m null-homotopic by attaching m disks B 2. The jth disk is attached by wrapping its boundary, S 1, along a representative for r j, which can be taken to be a path going around some of the circles, possibly multiple times.

SOLUTIONS TO THE FINAL EXAM

SOLUTIONS TO THE FINAL EXAM SOLUTIONS TO THE FINAL EXAM Short questions 1 point each) Give a brief definition for each of the following six concepts: 1) normal for topological spaces) 2) path connected 3) homeomorphism 4) covering

More information

Homework 3 MTH 869 Algebraic Topology

Homework 3 MTH 869 Algebraic Topology Homework 3 MTH 869 Algebraic Topology Joshua Ruiter February 12, 2018 Proposition 0.1 (Exercise 1.1.10). Let (X, x 0 ) and (Y, y 0 ) be pointed, path-connected spaces. Let f : I X y 0 } and g : I x 0 }

More information

Math 637 Topology Paulo Lima-Filho. Problem List I. b. Show that a contractible space is path connected.

Math 637 Topology Paulo Lima-Filho. Problem List I. b. Show that a contractible space is path connected. Problem List I Problem 1. A space X is said to be contractible if the identiy map i X : X X is nullhomotopic. a. Show that any convex subset of R n is contractible. b. Show that a contractible space is

More information

3. Prove or disprove: If a space X is second countable, then every open covering of X contains a countable subcollection covering X.

3. Prove or disprove: If a space X is second countable, then every open covering of X contains a countable subcollection covering X. Department of Mathematics and Statistics University of South Florida TOPOLOGY QUALIFYING EXAM January 24, 2015 Examiners: Dr. M. Elhamdadi, Dr. M. Saito Instructions: For Ph.D. level, complete at least

More information

Applications of Homotopy

Applications of Homotopy Chapter 9 Applications of Homotopy In Section 8.2 we showed that the fundamental group can be used to show that two spaces are not homeomorphic. In this chapter we exhibit other uses of the fundamental

More information

Math 440 Problem Set 2

Math 440 Problem Set 2 Math 440 Problem Set 2 Problem 4, p. 52. Let X R 3 be the union of n lines through the origin. Compute π 1 (R 3 X). Solution: R 3 X deformation retracts to S 2 with 2n points removed. Choose one of them.

More information

MATH730 NOTES WEEK 8

MATH730 NOTES WEEK 8 MATH730 NOTES WEEK 8 1. Van Kampen s Theorem The main idea of this section is to compute fundamental groups by decomposing a space X into smaller pieces X = U V where the fundamental groups of U, V, and

More information

SMSTC Geometry & Topology 1 Assignment 1 Matt Booth

SMSTC Geometry & Topology 1 Assignment 1 Matt Booth SMSTC Geometry & Topology 1 Assignment 1 Matt Booth Question 1 i) Let be the space with one point. Suppose X is contractible. Then by definition we have maps f : X and g : X such that gf id X and fg id.

More information

FREUDENTHAL SUSPENSION THEOREM

FREUDENTHAL SUSPENSION THEOREM FREUDENTHAL SUSPENSION THEOREM TENGREN ZHANG Abstract. In this paper, I will prove the Freudenthal suspension theorem, and use that to explain what stable homotopy groups are. All the results stated in

More information

Exercises for Algebraic Topology

Exercises for Algebraic Topology Sheet 1, September 13, 2017 Definition. Let A be an abelian group and let M be a set. The A-linearization of M is the set A[M] = {f : M A f 1 (A \ {0}) is finite}. We view A[M] as an abelian group via

More information

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM. Contents

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM. Contents FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM SAMUEL BLOOM Abstract. In this paper, we define the fundamental group of a topological space and explore its structure, and we proceed to prove Van-Kampen

More information

Part II. Algebraic Topology. Year

Part II. Algebraic Topology. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section II 18I The n-torus is the product of n circles: 5 T n = } S 1. {{.. S } 1. n times For all n 1 and 0

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

MATH8808: ALGEBRAIC TOPOLOGY

MATH8808: ALGEBRAIC TOPOLOGY MATH8808: ALGEBRAIC TOPOLOGY DAWEI CHEN Contents 1. Underlying Geometric Notions 2 1.1. Homotopy 2 1.2. Cell Complexes 3 1.3. Operations on Cell Complexes 3 1.4. Criteria for Homotopy Equivalence 4 1.5.

More information

Quiz-1 Algebraic Topology. 1. Show that for odd n, the antipodal map and the identity map from S n to S n are homotopic.

Quiz-1 Algebraic Topology. 1. Show that for odd n, the antipodal map and the identity map from S n to S n are homotopic. Quiz-1 Algebraic Topology 1. Show that for odd n, the antipodal map and the identity map from S n to S n are homotopic. 2. Let X be an Euclidean Neighbourhood Retract space and A a closed subspace of X

More information

The Fundamental Group and Covering Spaces

The Fundamental Group and Covering Spaces Chapter 8 The Fundamental Group and Covering Spaces In the first seven chapters we have dealt with point-set topology. This chapter provides an introduction to algebraic topology. Algebraic topology may

More information

Algebraic Topology M3P solutions 2

Algebraic Topology M3P solutions 2 Algebraic Topology M3P1 015 solutions AC Imperial College London a.corti@imperial.ac.uk 3 rd February 015 A small disclaimer This document is a bit sketchy and it leaves some to be desired in several other

More information

Tree-adjoined spaces and the Hawaiian earring

Tree-adjoined spaces and the Hawaiian earring Tree-adjoined spaces and the Hawaiian earring W. Hojka (TU Wien) Workshop on Fractals and Tilings 2009 July 6-10, 2009, Strobl (Austria) W. Hojka (TU Wien) () Tree-adjoined spaces and the Hawaiian earring

More information

MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS

MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS Key Problems 1. Compute π 1 of the Mobius strip. Solution (Spencer Gerhardt): MATH540: Algebraic Topology PROBLEM SET 3 STUDENT SOLUTIONS In other words, M = I I/(s, 0) (1 s, 1). Let x 0 = ( 1 2, 0). Now

More information

FIRST ASSIGNMENT. (1) Let E X X be an equivalence relation on a set X. Construct the set of equivalence classes as colimit in the category Sets.

FIRST ASSIGNMENT. (1) Let E X X be an equivalence relation on a set X. Construct the set of equivalence classes as colimit in the category Sets. FIRST SSIGNMENT DUE MOND, SEPTEMER 19 (1) Let E be an equivalence relation on a set. onstruct the set of equivalence classes as colimit in the category Sets. Solution. Let = {[x] x } be the set of equivalence

More information

MTG 5316/4302 FALL 2018 REVIEW FINAL

MTG 5316/4302 FALL 2018 REVIEW FINAL MTG 5316/4302 FALL 2018 REVIEW FINAL JAMES KEESLING Problem 1. Define open set in a metric space X. Define what it means for a set A X to be connected in a metric space X. Problem 2. Show that if a set

More information

MATH 215B. SOLUTIONS TO HOMEWORK (6 marks) Construct a path connected space X such that π 1 (X, x 0 ) = D 4, the dihedral group with 8 elements.

MATH 215B. SOLUTIONS TO HOMEWORK (6 marks) Construct a path connected space X such that π 1 (X, x 0 ) = D 4, the dihedral group with 8 elements. MATH 215B. SOLUTIONS TO HOMEWORK 2 1. (6 marks) Construct a path connected space X such that π 1 (X, x 0 ) = D 4, the dihedral group with 8 elements. Solution A presentation of D 4 is a, b a 4 = b 2 =

More information

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM ANG LI Abstract. In this paper, we start with the definitions and properties of the fundamental group of a topological space, and then proceed to prove Van-

More information

Hungry, Hungry Homology

Hungry, Hungry Homology September 27, 2017 Motiving Problem: Algebra Problem (Preliminary Version) Given two groups A, C, does there exist a group E so that A E and E /A = C? If such an group exists, we call E an extension of

More information

Algebraic Topology. Oscar Randal-Williams. or257/teaching/notes/at.pdf

Algebraic Topology. Oscar Randal-Williams.   or257/teaching/notes/at.pdf Algebraic Topology Oscar Randal-Williams https://www.dpmms.cam.ac.uk/ or257/teaching/notes/at.pdf 1 Introduction 1 1.1 Some recollections and conventions...................... 2 1.2 Cell complexes.................................

More information

MATH 547 ALGEBRAIC TOPOLOGY HOMEWORK ASSIGNMENT 4

MATH 547 ALGEBRAIC TOPOLOGY HOMEWORK ASSIGNMENT 4 MATH 547 ALGEBRAIC TOPOLOGY HOMEWORK ASSIGNMENT 4 ROI DOCAMPO ÁLVAREZ Chapter 0 Exercise We think of the torus T as the quotient of X = I I by the equivalence relation generated by the conditions (, s)

More information

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1 ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP HONG GYUN KIM Abstract. I studied the construction of an algebraically trivial, but topologically non-trivial map by Hopf map p : S 3 S 2 and a

More information

Homotopy and homology groups of the n-dimensional Hawaiian earring

Homotopy and homology groups of the n-dimensional Hawaiian earring F U N D A M E N T A MATHEMATICAE 165 (2000) Homotopy and homology groups of the n-dimensional Hawaiian earring by Katsuya E d a (Tokyo) and Kazuhiro K a w a m u r a (Tsukuba) Abstract. For the n-dimensional

More information

7. Homotopy and the Fundamental Group

7. Homotopy and the Fundamental Group 7. Homotopy and the Fundamental Group The group G will be called the fundamental group of the manifold V. J. Henri Poincaré, 895 The properties of a topological space that we have developed so far have

More information

Algebraic Topology exam

Algebraic Topology exam Instituto Superior Técnico Departamento de Matemática Algebraic Topology exam June 12th 2017 1. Let X be a square with the edges cyclically identified: X = [0, 1] 2 / with (a) Compute π 1 (X). (x, 0) (1,

More information

MATRIX LIE GROUPS AND LIE GROUPS

MATRIX LIE GROUPS AND LIE GROUPS MATRIX LIE GROUPS AND LIE GROUPS Steven Sy December 7, 2005 I MATRIX LIE GROUPS Definition: A matrix Lie group is a closed subgroup of Thus if is any sequence of matrices in, and for some, then either

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 Solutions to Problem Set 1 18.904 Spring 2011 Problem 1 Statement. Let n 1 be an integer. Let CP n denote the set of all lines in C n+1 passing through the origin. There is a natural map π : C n+1 \ {0}

More information

10 Excision and applications

10 Excision and applications 22 CHAPTER 1. SINGULAR HOMOLOGY be a map of short exact sequences of chain complexes. If two of the three maps induced in homology by f, g, and h are isomorphisms, then so is the third. Here s an application.

More information

Math 6510 Homework 11

Math 6510 Homework 11 2.2 Problems 40 Problem. From the long exact sequence of homology groups associted to the short exact sequence of chain complexes n 0 C i (X) C i (X) C i (X; Z n ) 0, deduce immediately that there are

More information

MTH 428/528. Introduction to Topology II. Elements of Algebraic Topology. Bernard Badzioch

MTH 428/528. Introduction to Topology II. Elements of Algebraic Topology. Bernard Badzioch MTH 428/528 Introduction to Topology II Elements of Algebraic Topology Bernard Badzioch 2016.12.12 Contents 1. Some Motivation.......................................................... 3 2. Categories

More information

6 Axiomatic Homology Theory

6 Axiomatic Homology Theory MATH41071/MATH61071 Algebraic topology 6 Axiomatic Homology Theory Autumn Semester 2016 2017 The basic ideas of homology go back to Poincaré in 1895 when he defined the Betti numbers and torsion numbers

More information

Math 751 Week 6 Notes

Math 751 Week 6 Notes Math 751 Week 6 Notes Joe Timmerman October 26, 2014 1 October 7 Definition 1.1. A map p: E B is called a covering if 1. P is continuous and onto. 2. For all b B, there exists an open neighborhood U of

More information

Algebraic Topology Exam 2006: Solutions

Algebraic Topology Exam 2006: Solutions Algebraic Topology Exam 006: Solutions Comments: [B] means bookwork. [H] means similar to homework question. [U] means unseen..(a)[6 marks. B] (i) An open set in X Y is an arbitrary union of sets of the

More information

1. Classifying Spaces. Classifying Spaces

1. Classifying Spaces. Classifying Spaces Classifying Spaces 1. Classifying Spaces. To make our lives much easier, all topological spaces from now on will be homeomorphic to CW complexes. Fact: All smooth manifolds are homeomorphic to CW complexes.

More information

ALLEN HATCHER: ALGEBRAIC TOPOLOGY

ALLEN HATCHER: ALGEBRAIC TOPOLOGY ALLEN HATCHER: ALGEBRAIC TOPOLOGY MORTEN POULSEN All references are to the 2002 printed edition. Chapter 0 Ex. 0.2. Define H : (R n {0}) I R n {0} by H(x, t) = (1 t)x + t x x, x R n {0}, t I. It is easily

More information

1 Introduction Category Theory Topological Preliminaries Function Spaces Algebraic Preliminaries...

1 Introduction Category Theory Topological Preliminaries Function Spaces Algebraic Preliminaries... Contents 1 Introduction 1 1.1 Category Theory........................... 1 1.2 Topological Preliminaries...................... 5 1.3 Function Spaces............................ 9 1.4 Algebraic Preliminaries.......................

More information

Algebraic Topology I Homework Spring 2014

Algebraic Topology I Homework Spring 2014 Algebraic Topology I Homework Spring 2014 Homework solutions will be available http://faculty.tcu.edu/gfriedman/algtop/algtop-hw-solns.pdf Due 5/1 A Do Hatcher 2.2.4 B Do Hatcher 2.2.9b (Find a cell structure)

More information

SECTION 2: THE COMPACT-OPEN TOPOLOGY AND LOOP SPACES

SECTION 2: THE COMPACT-OPEN TOPOLOGY AND LOOP SPACES SECTION 2: THE COMPACT-OPEN TOPOLOGY AND LOOP SPACES In this section we will give the important constructions of loop spaces and reduced suspensions associated to pointed spaces. For this purpose there

More information

637 Course Notes. Texas A&M University. February 24, 2015

637 Course Notes. Texas A&M University. February 24, 2015 637 Course Notes Zoran Šunić Texas A&M University February 24, 2015 2 Contents 1 Preliminaries 5 1.1 Basic notions and properties of group actions........................... 5 1.1.1 Definition, examples,

More information

CALCULATION OF FUNDAMENTAL GROUPS OF SPACES

CALCULATION OF FUNDAMENTAL GROUPS OF SPACES CALCULATION OF FUNDAMENTAL GROUPS OF SPACES PETER ROBICHEAUX Abstract. We develop theory, particularly that of covering spaces and the van Kampen Theorem, in order to calculate the fundamental groups of

More information

Basic Notions in Algebraic Topology 1

Basic Notions in Algebraic Topology 1 Basic Notions in Algebraic Topology 1 Yonatan Harpaz Remark 1. In these notes when we say map we always mean continuous map. 1 The Spaces of Algebraic Topology One of the main difference in passing from

More information

Assignment #10 Morgan Schreffler 1 of 7

Assignment #10 Morgan Schreffler 1 of 7 Assignment #10 Morgan Schreffler 1 of 7 Lee, Chapter 4 Exercise 10 Let S be the square I I with the order topology generated by the dictionary topology. (a) Show that S has the least uppper bound property.

More information

Homework 5. Solutions

Homework 5. Solutions Homework 5. Solutions 1. Let (X,T) be a topological space and let A,B be subsets of X. Show that the closure of their union is given by A B = A B. Since A B is a closed set that contains A B and A B is

More information

Lecture 4: Stabilization

Lecture 4: Stabilization Lecture 4: Stabilization There are many stabilization processes in topology, and often matters simplify in a stable limit. As a first example, consider the sequence of inclusions (4.1) S 0 S 1 S 2 S 3

More information

Geometry and Topology, Lecture 4 The fundamental group and covering spaces

Geometry and Topology, Lecture 4 The fundamental group and covering spaces 1 Geometry and Topology, Lecture 4 The fundamental group and covering spaces Text: Andrew Ranicki (Edinburgh) Pictures: Julia Collins (Edinburgh) 8th November, 2007 The method of algebraic topology 2 Algebraic

More information

The Fundamental Group

The Fundamental Group The Fundamental Group Renzo s math 472 This worksheet is designed to accompany our lectures on the fundamental group, collecting relevant definitions and main ideas. 1 Homotopy Intuition: Homotopy formalizes

More information

The Fundamental Group and The Van Kampen Theorem

The Fundamental Group and The Van Kampen Theorem The Fundamental Group and The Van Kampen Theorem Ronald Alberto Zúñiga Rojas Universidade de Coimbra Departamento de Matemática Topologia Algébrica Contents 1 Some Basic Definitions 2 The Fundamental Group

More information

THE FUNDAMENTAL GROUP AND CW COMPLEXES

THE FUNDAMENTAL GROUP AND CW COMPLEXES THE FUNDAMENTAL GROUP AND CW COMPLEXES JAE HYUNG SIM Abstract. This paper is a quick introduction to some basic concepts in Algebraic Topology. We start by defining homotopy and delving into the Fundamental

More information

THE FUNDAMENTAL GROUP AND BROUWER S FIXED POINT THEOREM AMANDA BOWER

THE FUNDAMENTAL GROUP AND BROUWER S FIXED POINT THEOREM AMANDA BOWER THE FUNDAMENTAL GROUP AND BROUWER S FIXED POINT THEOREM AMANDA BOWER Abstract. The fundamental group is an invariant of topological spaces that measures the contractibility of loops. This project studies

More information

1 Spaces and operations Continuity and metric spaces Topological spaces Compactness... 3

1 Spaces and operations Continuity and metric spaces Topological spaces Compactness... 3 Compact course notes Topology I Fall 2011 Professor: A. Penskoi transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Spaces and operations 2 1.1 Continuity and metric

More information

1. Simplify the following. Solution: = {0} Hint: glossary: there is for all : such that & and

1. Simplify the following. Solution: = {0} Hint: glossary: there is for all : such that & and Topology MT434P Problems/Homework Recommended Reading: Munkres, J.R. Topology Hatcher, A. Algebraic Topology, http://www.math.cornell.edu/ hatcher/at/atpage.html For those who have a lot of outstanding

More information

SOME EXERCISES. This is not an assignment, though some exercises on this list might become part of an assignment. Class 2

SOME EXERCISES. This is not an assignment, though some exercises on this list might become part of an assignment. Class 2 SOME EXERCISES This is not an assignment, though some exercises on this list might become part of an assignment. Class 2 (1) Let C be a category and let X C. Prove that the assignment Y C(Y, X) is a functor

More information

THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN S THEOREM

THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN S THEOREM THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topological space since it provides us with information about

More information

CLASS NOTES MATH 527 (SPRING 2011) WEEK 5

CLASS NOTES MATH 527 (SPRING 2011) WEEK 5 CLASS NOTES MATH 527 (SPRING 2011) WEEK 5 BERTRAND GUILLOU 1. Mon, Feb. 14 The same method we used to prove the Whitehead theorem last time also gives the following result. Theorem 1.1. Let X be CW and

More information

Axioms of separation

Axioms of separation Axioms of separation These notes discuss the same topic as Sections 31, 32, 33, 34, 35, and also 7, 10 of Munkres book. Some notions (hereditarily normal, perfectly normal, collectionwise normal, monotonically

More information

Math 752 Week s 1 1

Math 752 Week s 1 1 Math 752 Week 13 1 Homotopy Groups Definition 1. For n 0 and X a topological space with x 0 X, define π n (X) = {f : (I n, I n ) (X, x 0 )}/ where is the usual homotopy of maps. Then we have the following

More information

We have the following immediate corollary. 1

We have the following immediate corollary. 1 1. Thom Spaces and Transversality Definition 1.1. Let π : E B be a real k vector bundle with a Euclidean metric and let E 1 be the set of elements of norm 1. The Thom space T (E) of E is the quotient E/E

More information

Fibers, Surjective Functions, and Quotient Groups

Fibers, Surjective Functions, and Quotient Groups Fibers, Surjective Functions, and Quotient Groups 11/01/06 Radford Let f : X Y be a function. For a subset Z of X the subset f(z) = {f(z) z Z} of Y is the image of Z under f. For a subset W of Y the subset

More information

Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015

Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015 Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015 Changes or additions made in the past twelve months are dated. Page 29, statement of Lemma 2.11: The

More information

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture:

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture: Samuel Lee Algebraic Topology Homework #6 May 11, 2016 Problem 1: ( 2.1: #1). What familiar space is the quotient -complex of a 2-simplex [v 0, v 1, v 2 ] obtained by identifying the edges [v 0, v 1 ]

More information

THE INFINITE SYMMETRIC PRODUCT AND HOMOLOGY THEORY

THE INFINITE SYMMETRIC PRODUCT AND HOMOLOGY THEORY THE INFINITE SYMMETRIC PRODUCT AND HOMOLOGY THEORY ANDREW VILLADSEN Abstract. Following the work of Aguilar, Gitler, and Prieto, I define the infinite symmetric product of a pointed topological space.

More information

SOLUTIONS TO HOMEWORK PROBLEMS

SOLUTIONS TO HOMEWORK PROBLEMS SOLUTIONS TO HOMEWORK PROBLEMS Contents 1. Homework Assignment # 1 1 2. Homework Assignment # 2 6 3. Homework Assignment # 3 8 4. Homework Assignment # 4 12 5. Homework Assignment # 5 16 6. Homework Assignment

More information

Profinite Groups. Hendrik Lenstra. 1. Introduction

Profinite Groups. Hendrik Lenstra. 1. Introduction Profinite Groups Hendrik Lenstra 1. Introduction We begin informally with a motivation, relating profinite groups to the p-adic numbers. Let p be a prime number, and let Z p denote the ring of p-adic integers,

More information

MATH 215B HOMEWORK 5 SOLUTIONS

MATH 215B HOMEWORK 5 SOLUTIONS MATH 25B HOMEWORK 5 SOLUTIONS. ( marks) Show that the quotient map S S S 2 collapsing the subspace S S to a point is not nullhomotopic by showing that it induces an isomorphism on H 2. On the other hand,

More information

AN INTRODUCTION TO THE FUNDAMENTAL GROUP

AN INTRODUCTION TO THE FUNDAMENTAL GROUP AN INTRODUCTION TO THE FUNDAMENTAL GROUP DAVID RAN Abstract. This paper seeks to introduce the reader to the fundamental group and then show some of its immediate applications by calculating the fundamental

More information

CW-complexes. Stephen A. Mitchell. November 1997

CW-complexes. Stephen A. Mitchell. November 1997 CW-complexes Stephen A. Mitchell November 1997 A CW-complex is first of all a Hausdorff space X equipped with a collection of characteristic maps φ n α : D n X. Here n ranges over the nonnegative integers,

More information

3 Hausdorff and Connected Spaces

3 Hausdorff and Connected Spaces 3 Hausdorff and Connected Spaces In this chapter we address the question of when two spaces are homeomorphic. This is done by examining two properties that are shared by any pair of homeomorphic spaces.

More information

Topology Hmwk 6 All problems are from Allen Hatcher Algebraic Topology (online) ch 2

Topology Hmwk 6 All problems are from Allen Hatcher Algebraic Topology (online) ch 2 Topology Hmwk 6 All problems are from Allen Hatcher Algebraic Topology (online) ch 2 Andrew Ma August 25, 214 2.1.4 Proof. Please refer to the attached picture. We have the following chain complex δ 3

More information

Algebraic Topology Final

Algebraic Topology Final Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Algebraic Topology Final Solutions 1. Let M be a simply connected manifold with the property that any map f : M M has a

More information

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n Lecture 2 1.10 Cell attachments Let X be a topological space and α : S n 1 X be a map. Consider the space X D n with the disjoint union topology. Consider further the set X B n and a function f : X D n

More information

GENERALIZED COVERING SPACE THEORIES

GENERALIZED COVERING SPACE THEORIES Theory and Applications of Categories, Vol. 30, No. 35, 2015, pp. 1132 1162. GENERALIZED COVERING SPACE THEORIES JEREMY BRAZAS Abstract. In this paper, we unify various approaches to generalized covering

More information

MATH 215B HOMEWORK 4 SOLUTIONS

MATH 215B HOMEWORK 4 SOLUTIONS MATH 215B HOMEWORK 4 SOLUTIONS 1. (8 marks) Compute the homology groups of the space X obtained from n by identifying all faces of the same dimension in the following way: [v 0,..., ˆv j,..., v n ] is

More information

Some K-theory examples

Some K-theory examples Some K-theory examples The purpose of these notes is to compute K-groups of various spaces and outline some useful methods for Ma448: K-theory and Solitons, given by Dr Sergey Cherkis in 2008-09. Throughout

More information

Hairy balls and ham sandwiches

Hairy balls and ham sandwiches Hairy balls and ham sandwiches Graduate Student Seminar, Carnegie Mellon University Thursday 14 th November 2013 Clive Newstead Abstract Point-set topology studies spaces up to homeomorphism. For many

More information

Fundamental group. Chapter The loop space Ω(X, x 0 ) and the fundamental group

Fundamental group. Chapter The loop space Ω(X, x 0 ) and the fundamental group Chapter 6 Fundamental group 6. The loop space Ω(X, x 0 ) and the fundamental group π (X, x 0 ) Let X be a topological space with a basepoint x 0 X. The space of paths in X emanating from x 0 is the space

More information

Lecture : Tietze Extension Theorem

Lecture : Tietze Extension Theorem Proof of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India November 26, 2014 Outline Introduction Proof of 1 Introduction 2 3 Proof of 4 Proof of The theorem is due to

More information

LECTURE 3: RELATIVE SINGULAR HOMOLOGY

LECTURE 3: RELATIVE SINGULAR HOMOLOGY LECTURE 3: RELATIVE SINGULAR HOMOLOGY In this lecture we want to cover some basic concepts from homological algebra. These prove to be very helpful in our discussion of singular homology. The following

More information

The fundamental group of a locally finite graph with ends

The fundamental group of a locally finite graph with ends 1 The fundamental group of a locally finite graph with ends Reinhard Diestel and Philipp Sprüssel Abstract We characterize the fundamental group of a locally finite graph G with ends combinatorially, as

More information

S n 1 i D n l S n 1 is the identity map. Associated to this sequence of maps is the sequence of group homomorphisms

S n 1 i D n l S n 1 is the identity map. Associated to this sequence of maps is the sequence of group homomorphisms ALGEBRAIC TOPOLOGY Contents 1. Informal introduction 1 1.1. What is algebraic topology? 1 1.2. Brower fixed point theorem 2 2. Review of background material 3 2.1. Algebra 3 2.2. Topological spaces 5 2.3.

More information

2.2 Annihilators, complemented subspaces

2.2 Annihilators, complemented subspaces 34CHAPTER 2. WEAK TOPOLOGIES, REFLEXIVITY, ADJOINT OPERATORS 2.2 Annihilators, complemented subspaces Definition 2.2.1. [Annihilators, Pre-Annihilators] Assume X is a Banach space. Let M X and N X. We

More information

This chapter contains a very bare summary of some basic facts from topology.

This chapter contains a very bare summary of some basic facts from topology. Chapter 2 Topological Spaces This chapter contains a very bare summary of some basic facts from topology. 2.1 Definition of Topology A topology O on a set X is a collection of subsets of X satisfying the

More information

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1.

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1. MATH 101: ALGEBRA I WORKSHEET, DAY #1 We review the prerequisites for the course in set theory and beginning a first pass on group theory. Fill in the blanks as we go along. 1. Sets A set is a collection

More information

QUALIFYING EXAM, Fall Algebraic Topology and Differential Geometry

QUALIFYING EXAM, Fall Algebraic Topology and Differential Geometry QUALIFYING EXAM, Fall 2017 Algebraic Topology and Differential Geometry 1. Algebraic Topology Problem 1.1. State the Theorem which determines the homology groups Hq (S n \ S k ), where 1 k n 1. Let X S

More information

Homework 3: Relative homology and excision

Homework 3: Relative homology and excision Homework 3: Relative homology and excision 0. Pre-requisites. The main theorem you ll have to assume is the excision theorem, but only for Problem 6. Recall what this says: Let A V X, where the interior

More information

TOPOLOGY HW 8 CLAY SHONKWILER

TOPOLOGY HW 8 CLAY SHONKWILER TOPOLOGY HW 8 CLAY SHONKWILER 55.1 Show that if A is a retract of B 2, then every continuous map f : A A has a fixed point. Proof. Suppose r : B 2 A is a retraction. Thenr A is the identity map on A. Let

More information

BASIC GROUP THEORY : G G G,

BASIC GROUP THEORY : G G G, BASIC GROUP THEORY 18.904 1. Definitions Definition 1.1. A group (G, ) is a set G with a binary operation : G G G, and a unit e G, possessing the following properties. (1) Unital: for g G, we have g e

More information

Algebraic Topology. Len Evens Rob Thompson

Algebraic Topology. Len Evens Rob Thompson Algebraic Topology Len Evens Rob Thompson Northwestern University City University of New York Contents Chapter 1. Introduction 5 1. Introduction 5 2. Point Set Topology, Brief Review 7 Chapter 2. Homotopy

More information

Algebraic Topology Homework 4 Solutions

Algebraic Topology Homework 4 Solutions Algebraic Topology Homework 4 Solutions Here are a few solutions to some of the trickier problems... Recall: Let X be a topological space, A X a subspace of X. Suppose f, g : X X are maps restricting to

More information

Introduction to Braid Groups Joshua Lieber VIGRE REU 2011 University of Chicago

Introduction to Braid Groups Joshua Lieber VIGRE REU 2011 University of Chicago Introduction to Braid Groups Joshua Lieber VIGRE REU 2011 University of Chicago ABSTRACT. This paper is an introduction to the braid groups intended to familiarize the reader with the basic definitions

More information

Solutions to homework problems

Solutions to homework problems Solutions to homework problems November 25, 2015 Contents 1 Homework Assignment # 1 1 2 Homework assignment #2 6 3 Homework Assignment # 3 9 4 Homework Assignment # 4 14 5 Homework Assignment # 5 20 6

More information

arxiv: v1 [math.gn] 28 Apr 2009

arxiv: v1 [math.gn] 28 Apr 2009 QUOTIENT MAPS WITH CONNECTED FIBERS AND THE FUNDAMENTAL GROUP arxiv:0904.4465v [math.gn] 8 Apr 009 JACK S. CALCUT, ROBERT E. GOMPF, AND JOHN D. MCCARTHY Abstract. In classical covering space theory, a

More information

1 Whitehead s theorem.

1 Whitehead s theorem. 1 Whitehead s theorem. Statement: If f : X Y is a map of CW complexes inducing isomorphisms on all homotopy groups, then f is a homotopy equivalence. Moreover, if f is the inclusion of a subcomplex X in

More information

MATH 101: ALGEBRA I WORKSHEET, DAY #3. Fill in the blanks as we finish our first pass on prerequisites of group theory.

MATH 101: ALGEBRA I WORKSHEET, DAY #3. Fill in the blanks as we finish our first pass on prerequisites of group theory. MATH 101: ALGEBRA I WORKSHEET, DAY #3 Fill in the blanks as we finish our first pass on prerequisites of group theory 1 Subgroups, cosets Let G be a group Recall that a subgroup H G is a subset that is

More information

EQUIVARIANT COHOMOLOGY. p : E B such that there exist a countable open covering {U i } i I of B and homeomorphisms

EQUIVARIANT COHOMOLOGY. p : E B such that there exist a countable open covering {U i } i I of B and homeomorphisms EQUIVARIANT COHOMOLOGY MARTINA LANINI AND TINA KANSTRUP 1. Quick intro Let G be a topological group (i.e. a group which is also a topological space and whose operations are continuous maps) and let X be

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information