Chapter 4 Multiple Random Variables

Size: px
Start display at page:

Download "Chapter 4 Multiple Random Variables"

Transcription

1 Review for the previous lecture Theorems and Examples: How to obtain the pmf (pdf) of U = g ( X Y 1 ) and V = g ( X Y) Chapter 4 Multiple Random Variables Chapter 43 Bivariate Transformations Continuous Case: Consider ( XY ) a continuous bivariate random vector with joint pdf f ( xy ) and define U = g ( x y 1 ) and V = g ( x y) Let A = {( x y ); f ( x y ) > 0} and B = {( uv ) : u= g1 ( xy ) and v= g( xy )} for some ( x y) A Assume that U and V are 1-1 transformation from A to B Define x = h1 ( u v) and y= h ( u v) be the inverse transformations The Jacobian J of the transformation is defined as the determinant of a matrix of partial derivatives: x x u v x y y x J = = y y u v u v u v Therefore the joint pdf of U and V is given by f ( uv ) = f ( h( uv ) h( uv )) J where J is the absolute value of the Jacobian UV XY 1 1

2 Example 433 (Distribution of the product of two independent beta variables): Let X ~ beta( α β ) and Y ~ beta(α + βγ ) then the joint pdf of ( XY ) is Γ ( α + β) Γ ( α + β + γ) f x y x x x x x y Γ( α) Γ( β) Γ ( α + β) Γ( γ) α 1 β 1 α+ β 1 γ 1 XY ( ) = (1 ) (1 ) 0< < 10< < 1 Consider U = XY and V = X then this an one to one transformation from {( x y) : 0 < x< 10 < y< 1} to {( uv ) :0 < u< v< 1} In addition X = V Y = U / V J = 1/ v therefore Γ( α + β) α 1 β 1 Γ ( α + β + γ) α+ β 1 γ 11 fuv ( u v) = fxy ( v u/ v) = v (1 v) ( u/ v) (1 u/ v) Γ( α) Γ( β) Γ ( α + β) Γ( γ) v and 1 f ( u) = f ( u v) dv U u U V Γ ( α + β + γ) u α + β v β γ (1 v) β ( v u) γ = dv Γ( α) Γ( β) Γ( γ) u = Γ ( α + β + γ) α 1 β+ γ 1 (1 ) 0 1 Γ( α) Γ ( β + γ) u u < u< Example 434 (Sum and difference of two independent normal random variables): Let X ~ n( α σ ) and Y ~ n( β σ ) and they are independent Consider U = X + Y and V = X Y then X = ( U + V) / Y = ( U V)/ and J = 1/ Therefore

3 1 fuv ( u v) = fxy (( u+ v)/( u v)/) 1 1 (( u+ v)/ α) + (( u v)/ β) = exp( ) πσ σ 1 1 u ( α + β) u+ v ( α β) v+ α + β = exp( ) πσ 4σ 1 ( u ( α + β)) 1 ( v ( α β)) = exp( ) exp( ) π σ 4σ π σ 4σ Theorem 435: Let X and Y be independent random variables Let g( x) be a function only of x and h( y) be a function only of y Then the random variables U = g( X) and V = h(y) are independent Proof: We only prove it for the continuous case For any u R and v R we define A = { x: g( x) u} and B = { y: h( y) v} then the joint cdf of ( UV ) is UV The joint pdf of ( UV ) is u F ( u v) = P( U u V v) = P( X A Y B ) = P( X A ) P( Y B ) v u v u ( uv ) = F ( uv ) = PX ( A) f UV UV u PY ( Bv) uv u v v Question: Why can t we use the transformation technique to prove this? 1 f ( uv ) = f ( g ( x) h 1 ( y)) J UV XY Notes: 3

4 1 If only one function is of interest say U = g ( x y) In this case choose a convenient 1 V = g ( X Y) so that ( UV ) is a 1-1 transformation from A onto B and obtain the joint pdf of U and V given by fuv ( uv ) Finally one can obtain the marginal of U by integrating over all values of V What is the transformation is not 1-1? We use a generalized version of Theorem 18 from univariate to many-to-one functions by finding partitions A0 A1 An of A where the transformation U = g ( x y) and 1 V = g ( X Y) is 1-1 from Ai ( i= 1 n) onto B and PA ( 0 ) = 0 Therefore the joint pdf of U and V is given by n f ( uv ) = f ( h( uv ) h ( uv )) J UV i= 1 XY 1i i i 3 Even the transformation is not 1-1 we can always use the method in the proof of Theorem of 435 to calculate the joint cdf and pdf of U and V Example 436: Show that the distribution of the ratio of two independent normal variables is a Cauchy random variable That is if X ~ n (01) Y ~ n (01) then U = X / Y ~ Cauchy(0) Solution 1 Let V = Y then A1 = {( x y) : y> 0} A = {( x y) : y< 0} A0 = {( x y) : y= 0} and 1 x + y fxy ( x y) = exp( ) Therefore π Solution For v ( u + 1) v fuv ( u v) = fxy ( uv v) v + fxy ( uv v) v = exp( )( < u< 0< v< ) π v ( u + 1) v 1 ( u + 1) v 1 fu ( u) = exp( ) dv= exp( ) 0 0 = < u< π π(1 + u ) π(1 + u ) u < 0 we have 4

5 F ( u) = P( U u) = P( X / Y u) U 0 x/ u 0 0 X y 0 x/ u X y = f ( x) f ( y) dydx+ f ( x) f ( y) dydx Take the derivative respect to u we have 0 1 x x 1 x 1 x x 1 x fu ( u) = exp( )( ) exp( ) dx+ exp( )( ) exp( ) dx 0 π u π u π u π u ux + x = xexp( ) dx 0 π u = u π u + 1 Similarly you can get f U ( u) for u 0 You also need to verify the conditions such that the integration and differentiation can be exchanged Chapter 44 Hierarchical Models and Mixture Distributions Examples: 1 Binomial-Poisson Hierarchy: X =number survived and Y =number of eggs laid Then we can use the models X Y ~ binomial( Y p ) and Y ~ Poisson( λ ) In this case X ~ Poisson( λ p) Poisson-Exponential Hierarchy: Let Y =number of eggs laid and Λ =variability across different mothers Y Λ ~Poisson( Λ ) and Λ ~exponential( β ) In this case Y ~ negative binomial( r = 1 p= 1/(1 + β )) 3 Binomial-Poisson-Exponential Hierarchy (Three-stage hierarchy): Let X =number survived Y =number of eggs laid and Λ = variability across different mothers X Y ~ binomial( Y p ) and Y Λ ~ Poisson( Λ ) and Λ ~exponential( β ) Equivalently we can look at this as a two-stage hierarchy where X Y ~binomial( Y p) and Y ~ negative binomial( r = 1 p= 1/(1 + β )) 5

6 4 Beta-Binomial Hierarchy: X P ~ binomial ( np ) and P ~ beta( α β ) Definition 444: A random variable X is said to have a mixture distribution if the distribution of X depends on a quantity that also has a distribution IMPORTANT RESULTS: These results are useful when one is interested only the expectation and variances of a random variable Theorem 443: If X and Y are any two random variables then E X = E( E( X Y) ) provided that the expectations exist Proof: We prove this theorem in the continuous situation Let f ( xy XY ) denote the joint pdf of X and Y Then we have EX = xfxy ( xydxd ) y= [ xf( x ydxf ) ] Y( ydy ) = EX ( y) fy( ydy ) = EEX ( ( Y)) Theorem 447: For any two random variables X and Y then VarX = E( Var( X Y )) + Var( E( X Y )) provided that the expectations exist Proof First we have 6

7 In addition and VarX = E( X EX) = E( X E( X Y) + E( X Y) EX) = E X E X Y + E E X Y EX + E X E X Y E X Y EX ( ( )) ( ( ) ) ([ ( )][ ( ) ]) E([ X E( X Y)][ E( X Y) EX]) = E( E{[( X E( X Y))( E( X Y) EX)] Y}) E{[ X E( X Y)][ E( X Y) EX] Y} = ( E( X Y) EX)( E{[ X E( X Y)] Y}) = ( E( X Y) EX)( E( X Y) E( X Y)) = 0 E X E X Y E E X E X Y Y ( ( )) = ( [ ( )] ) = EVar ( ( X Y)) Finally we have E EX Y EX VarEX Y ([ ( ) ] ) = ( ( ) VarX = E( Var ( X Y )) +Var( E ( X Y )) Illustrations: 1 Binomial-Poisson Hierarchy: models X Y ~ binomial(( Y p ) and Y ~ Poisson( λ ) (Recall that X ~ Poisson( λ p) ) Using Theorem 443 and 445 we get EX = E( E( X Y)) = E( py) = λ p and VarX = E( Var( X Y )) + Var( ( Y )) E( (1 p) ) + ( py) = (1 p) + p E X = Yp Var p λ λ Beta-Binomial Hierarchy: X P ~binomial ( np ) and P ~ beta( α β ) Find EX and VarX 7

8 3 Non-central chi-squared distribution with degrees of freedom k and noncentrality parameter λ p/+ k 1 x/ k λ x e λ e f( x λ p) = k= 0 p/+ k Note that X K ~ χ p + k and K ~Poisson( λ ) Therefore Γ ( p / + k) k! EX = E( E( X P)) = E( p+ K) = p+ λ 8

Lecture 16: Hierarchical models and miscellanea

Lecture 16: Hierarchical models and miscellanea Lecture 16: Hierarchical models and miscellanea It is often easier to model a practical situation by thinking of things in a hierarchy. Example 4.4.1 (binomial-poisson hierarchy) An insect lays many eggs,

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Review for the previous lecture Definition: n-dimensional random vector, joint pmf (pdf), marginal pmf (pdf) Theorem: How to calculate marginal pmf (pdf) given joint pmf (pdf) Example: How to calculate

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 10 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Monday, October 26, 2015 Recap

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Two hours. Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER. 14 January :45 11:45

Two hours. Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER. 14 January :45 11:45 Two hours Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER PROBABILITY 2 14 January 2015 09:45 11:45 Answer ALL four questions in Section A (40 marks in total) and TWO of the THREE questions

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

Review for the previous lecture

Review for the previous lecture Lecture 1 and 13 on BST 631: Statistical Theory I Kui Zhang, 09/8/006 Review for the previous lecture Definition: Several discrete distributions, including discrete uniform, hypergeometric, Bernoulli,

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Problem Y is an exponential random variable with parameter λ = 0.2. Given the event A = {Y < 2},

Problem Y is an exponential random variable with parameter λ = 0.2. Given the event A = {Y < 2}, ECE32 Spring 25 HW Solutions April 6, 25 Solutions to HW Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics where

More information

STAT 430/510: Lecture 15

STAT 430/510: Lecture 15 STAT 430/510: Lecture 15 James Piette June 23, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.4... Conditional Distribution: Discrete Def: The conditional

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

Chapter 3 Common Families of Distributions

Chapter 3 Common Families of Distributions Lecture 9 on BST 631: Statistical Theory I Kui Zhang, 9/3/8 and 9/5/8 Review for the previous lecture Definition: Several commonly used discrete distributions, including discrete uniform, hypergeometric,

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

STT 441 Final Exam Fall 2013

STT 441 Final Exam Fall 2013 STT 441 Final Exam Fall 2013 (12:45-2:45pm, Thursday, Dec. 12, 2013) NAME: ID: 1. No textbooks or class notes are allowed in this exam. 2. Be sure to show all of your work to receive credit. Credits are

More information

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown 9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown I. Objectives Lecture 5: Conditional Distributions and Functions of Jointly Distributed Random Variables

More information

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities PCMI 207 - Introduction to Random Matrix Theory Handout #2 06.27.207 REVIEW OF PROBABILITY THEORY Chapter - Events and Their Probabilities.. Events as Sets Definition (σ-field). A collection F of subsets

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

ENGG2430A-Homework 2

ENGG2430A-Homework 2 ENGG3A-Homework Due on Feb 9th,. Independence vs correlation a For each of the following cases, compute the marginal pmfs from the joint pmfs. Explain whether the random variables X and Y are independent,

More information

6.041/6.431 Fall 2010 Quiz 2 Solutions

6.041/6.431 Fall 2010 Quiz 2 Solutions 6.04/6.43: Probabilistic Systems Analysis (Fall 200) 6.04/6.43 Fall 200 Quiz 2 Solutions Problem. (80 points) In this problem: (i) X is a (continuous) uniform random variable on [0, 4]. (ii) Y is an exponential

More information

The Binomial distribution. Probability theory 2. Example. The Binomial distribution

The Binomial distribution. Probability theory 2. Example. The Binomial distribution Probability theory Tron Anders Moger September th 7 The Binomial distribution Bernoulli distribution: One experiment X i with two possible outcomes, probability of success P. If the experiment is repeated

More information

1 Joint and marginal distributions

1 Joint and marginal distributions DECEMBER 7, 204 LECTURE 2 JOINT (BIVARIATE) DISTRIBUTIONS, MARGINAL DISTRIBUTIONS, INDEPENDENCE So far we have considered one random variable at a time. However, in economics we are typically interested

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

Conditional distributions. Conditional expectation and conditional variance with respect to a variable.

Conditional distributions. Conditional expectation and conditional variance with respect to a variable. Conditional distributions Conditional expectation and conditional variance with respect to a variable Probability Theory and Stochastic Processes, summer semester 07/08 80408 Conditional distributions

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

Stat 5101 Lecture Slides: Deck 8 Dirichlet Distribution. Charles J. Geyer School of Statistics University of Minnesota

Stat 5101 Lecture Slides: Deck 8 Dirichlet Distribution. Charles J. Geyer School of Statistics University of Minnesota Stat 5101 Lecture Slides: Deck 8 Dirichlet Distribution Charles J. Geyer School of Statistics University of Minnesota 1 The Dirichlet Distribution The Dirichlet Distribution is to the beta distribution

More information

Lecture 4. Continuous Random Variables and Transformations of Random Variables

Lecture 4. Continuous Random Variables and Transformations of Random Variables Math 408 - Mathematical Statistics Lecture 4. Continuous Random Variables and Transformations of Random Variables January 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 1 / 13 Agenda

More information

4 Pairs of Random Variables

4 Pairs of Random Variables B.Sc./Cert./M.Sc. Qualif. - Statistical Theory 4 Pairs of Random Variables 4.1 Introduction In this section, we consider a pair of r.v. s X, Y on (Ω, F, P), i.e. X, Y : Ω R. More precisely, we define a

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/ STA263/25//24 Tutorial letter 25// /24 Distribution Theor ry II STA263 Semester Department of Statistics CONTENTS: Examination preparation tutorial letterr Solutions to Assignment 6 2 Dear Student, This

More information

Introduction to Statistical Inference Self-study

Introduction to Statistical Inference Self-study Introduction to Statistical Inference Self-study Contents Definition, sample space The fundamental object in probability is a nonempty sample space Ω. An event is a subset A Ω. Definition, σ-algebra A

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

3 Conditional Expectation

3 Conditional Expectation 3 Conditional Expectation 3.1 The Discrete case Recall that for any two events E and F, the conditional probability of E given F is defined, whenever P (F ) > 0, by P (E F ) P (E)P (F ). P (F ) Example.

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 16 June 24th, 2009 Review Sum of Independent Normal Random Variables Sum of Independent Poisson Random Variables Sum of Independent Binomial Random Variables Conditional

More information

Multivariate distributions

Multivariate distributions CHAPTER Multivariate distributions.. Introduction We want to discuss collections of random variables (X, X,..., X n ), which are known as random vectors. In the discrete case, we can define the density

More information

Statistics 1B. Statistics 1B 1 (1 1)

Statistics 1B. Statistics 1B 1 (1 1) 0. Statistics 1B Statistics 1B 1 (1 1) 0. Lecture 1. Introduction and probability review Lecture 1. Introduction and probability review 2 (1 1) 1. Introduction and probability review 1.1. What is Statistics?

More information

THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE STAT131 PROBABILITY AND STATISTICS I EXAMPLE CLASS 8 Review Conditional Distributions and Conditional Expectation For any two

More information

UNIT Define joint distribution and joint probability density function for the two random variables X and Y.

UNIT Define joint distribution and joint probability density function for the two random variables X and Y. UNIT 4 1. Define joint distribution and joint probability density function for the two random variables X and Y. Let and represent the probability distribution functions of two random variables X and Y

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

More on Distribution Function

More on Distribution Function More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function F X. Theorem: Let X be any random variable, with cumulative distribution

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Five Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Five Notes Spring 2011 1 / 37 Outline 1

More information

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be Chapter 6 Expectation and Conditional Expectation Lectures 24-30 In this chapter, we introduce expected value or the mean of a random variable. First we define expectation for discrete random variables

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40 Assignment 4 Fall 07. Exercise 3.. on Page 46: If the mgf of a rom variable X is ( 3 + 3 et) 5, find P(X or 3). Since the M(t) of X is ( 3 + 3 et) 5, X has a binomial distribution with n 5, p 3. The probability

More information

More than one variable

More than one variable Chapter More than one variable.1 Bivariate discrete distributions Suppose that the r.v. s X and Y are discrete and take on the values x j and y j, j 1, respectively. Then the joint p.d.f. of X and Y, to

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 17: Continuous random variables: conditional PDF Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

More information

STAT 516 Midterm Exam 3 Friday, April 18, 2008

STAT 516 Midterm Exam 3 Friday, April 18, 2008 STAT 56 Midterm Exam 3 Friday, April 8, 2008 Name Purdue student ID (0 digits). The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Probability Theory. Patrick Lam

Probability Theory. Patrick Lam Probability Theory Patrick Lam Outline Probability Random Variables Simulation Important Distributions Discrete Distributions Continuous Distributions Most Basic Definition of Probability: number of successes

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Bivariate Distributions

Bivariate Distributions Bivariate Distributions EGR 260 R. Van Til Industrial & Systems Engineering Dept. Copyright 2013. Robert P. Van Til. All rights reserved. 1 What s It All About? Many random processes produce Examples.»

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

STAT 430/510 Probability Lecture 16, 17: Compute by Conditioning

STAT 430/510 Probability Lecture 16, 17: Compute by Conditioning STAT 430/510 Probability Lecture 16, 17: Compute by Conditioning Pengyuan (Penelope) Wang Lecture 16-17 June 21, 2011 Computing Probability by Conditioning A is an arbitrary event If Y is a discrete random

More information

Lecture 11. Probability Theory: an Overveiw

Lecture 11. Probability Theory: an Overveiw Math 408 - Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 1 / 24 The starting point in developing the

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 17-27 Review Scott Sheffield MIT 1 Outline Continuous random variables Problems motivated by coin tossing Random variable properties 2 Outline Continuous random variables Problems

More information

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise.

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise. 54 We are given the marginal pdfs of Y and Y You should note that Y gamma(4, Y exponential( E(Y = 4, V (Y = 4, E(Y =, and V (Y = 4 (a With U = Y Y, we have E(U = E(Y Y = E(Y E(Y = 4 = (b Because Y and

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer September 5, 2012 Contents 1 Discrete Uniform Distribution 2 2 General Discrete Uniform Distribution 2 3 Uniform Distribution 3 4 General Uniform

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. There are situations where one might be interested

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

Final Exam # 3. Sta 230: Probability. December 16, 2012

Final Exam # 3. Sta 230: Probability. December 16, 2012 Final Exam # 3 Sta 230: Probability December 16, 2012 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use the extra sheets

More information

Introduction to Probability Theory

Introduction to Probability Theory Introduction to Probability Theory Ping Yu Department of Economics University of Hong Kong Ping Yu (HKU) Probability 1 / 39 Foundations 1 Foundations 2 Random Variables 3 Expectation 4 Multivariate Random

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

ECE353: Probability and Random Processes. Lecture 7 -Continuous Random Variable

ECE353: Probability and Random Processes. Lecture 7 -Continuous Random Variable ECE353: Probability and Random Processes Lecture 7 -Continuous Random Variable Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu Continuous

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 18-27 Review Scott Sheffield MIT Outline Outline It s the coins, stupid Much of what we have done in this course can be motivated by the i.i.d. sequence X i where each X i is

More information

STAT 430/510: Lecture 16

STAT 430/510: Lecture 16 STAT 430/510: Lecture 16 James Piette June 24, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.7 and will begin Ch. 7. Joint Distribution of Functions

More information

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Three hours To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer QUESTION 1, QUESTION

More information

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Random Vectors and Random Sampling. 1+ x2 +y 2 ) (n+2)/2

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Random Vectors and Random Sampling. 1+ x2 +y 2 ) (n+2)/2 MATH 3806/MATH4806/MATH6806: MULTIVARIATE STATISTICS Solutions to Problems on Rom Vectors Rom Sampling Let X Y have the joint pdf: fx,y) + x +y ) n+)/ π n for < x < < y < this is particular case of the

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

Introduction to Normal Distribution

Introduction to Normal Distribution Introduction to Normal Distribution Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 17-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Introduction

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Statistics for scientists and engineers

Statistics for scientists and engineers Statistics for scientists and engineers February 0, 006 Contents Introduction. Motivation - why study statistics?................................... Examples..................................................3

More information

Let X and Y denote two random variables. The joint distribution of these random

Let X and Y denote two random variables. The joint distribution of these random EE385 Class Notes 9/7/0 John Stensby Chapter 3: Multiple Random Variables Let X and Y denote two random variables. The joint distribution of these random variables is defined as F XY(x,y) = [X x,y y] P.

More information

Continuous r.v practice problems

Continuous r.v practice problems Continuous r.v practice problems SDS 321 Intro to Probability and Statistics 1. (2+2+1+1 6 pts) The annual rainfall (in inches) in a certain region is normally distributed with mean 4 and standard deviation

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

Expectation of Random Variables

Expectation of Random Variables 1 / 19 Expectation of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 13, 2015 2 / 19 Expectation of Discrete

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 2 Transformations and Expectations Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 14, 2015 Outline 1 Distributions of Functions

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 39 Stat 704 Data Analysis I Probability Review Dr. Yen-Yi Ho Department of Statistics, University of South Carolina A.3 Random Variables 2 / 39 def n: A random variable is defined as a function that

More information