A note on obtaining k dominating sets from a k-dominating function on a tree

Size: px
Start display at page:

Download "A note on obtaining k dominating sets from a k-dominating function on a tree"

Transcription

1 A note on obtaining k dominating sets from a k-dominating function on a tree Robert R. Rubalcaba a,, Peter J. Slater a,b a Department of Mathematical Sciences, University of Alabama in Huntsville, AL 35899, USA b Department of Computer Science, University of Alabama in Huntsville, AL 35899, USA r.rubalcaba@gmail.com Abstract It has been shown that every double dominating set of a tree T can be partitioned into two dominating sets. We show that for every k-dominating function f : V (T) {0,,..., j} there are k dominating sets for which each v V (T) is in at most f(v) of them. Introduction For a vertex v in V (G) in the graph G = (V, E), the open neighborhood N(v) of v consists of the set of vertices adjacent to v, and the closed neighborhood of v is N[v] = N(v) {v}. Vertex v is said to dominate each vertex in N[v], including itself, and S V (G) is a dominating set if N[S] = s S N[s] = V (G), that is, if every vertex in V (G) is dominated by at least one vertex in S. A dominating set S of a graph G with the smallest cardinality is called a minimum dominating set and its size, the domination number, is denoted by γ(g). In the following, let k be a positive integer. Harary and Haynes [9] defined a set S of vertices to be a k-tuple dominating set if every vertex is dominated at least k times. When k is, this is called double domination (as in [8, 9]). The k-tuple domination number γ k is the minimum cardinality of a k-tuple dominating set. For k =, the double domination number γ (G) is also denoted as dd(g). For a graph G = (V, E) and a function f : V (G) {0,,..., j}, if S V (G) then f(s) = v S f(v). A function f is a dominating function if for each closed neighborhood N[v] we have f(n[v]), and f is a k- dominating function if f(n[v]) k for each v V (G). The weight of a function f is wgt(f) = f(v (G)). Note that for j = the function f is

2 a dominating function if and only if it is the characteristic function of a dominating set. All of our terminology is consistent with that in Haynes, Hedetniemi and Slater [0, ]. Domke, Hedetniemi, Laskar and Fricke [4] define a {k}-dominating function as a function f : {,,...k} V which satisfies f(n[v]) k for all v V. The minimum weight of such a function is denoted by γ {k}. Note that {k}-dominating functions dominate each vertex at least k times, while taking on integer values from 0 to k, as opposed to k- dominating functions, which take only the values of 0 or. In this paper, generalizing the result in [] for k =, we show that for every k-dominating function f : V (T) {0,,..., j} there are k dominating sets for which each v V (T) is in at most f(v) of them. Disjoint dominating sets Papers concerned with disjoint dominating sets in graphs include [,, 3, 5, 3], whereas [6, 7] are concerned with finding minimum cardinality dominating sets whose intersection is as small as possible. Recently, Hedetniemi, Hedetniemi, Laskar, Markus and Slater [] introduced the disjoint domination number γγ(g) = min{ S + S : S, S are disjoint dominating sets of G} (S is a dominating set, S is a dominating set, and S S = ). For the graph H in Figure, note that the double domination number of H is dd(h) = 3, while γγ(h) = 3 + k. u k H u u w w v v w k v k Figure : Graph H with dd(h) = 3 and γγ(h) = 3 + k

3 It is observed in [] that for a tree T we have dd(t) = γγ(t) (Theorem below). For completeness, we include a proof of this result which is then generalized in Theorem 3. Theorem ([]). If S is a double dominating set of a tree T, then S can be partitioned as S = S S where each S i is a dominating set. Proof. Let x be an endpoint of T with neighbor y, and consider T to be rooted at x. Because N[x] S, we have {x, y} S. We can construct S and S, starting with S = S =, as follows. Let x S and y S. For each v V (T) the height of v is its distance from the root x, hgt(v) = dist(x, v). Let H i = {v V (T) : v S and hgt(v) = i}. We have H 0 = {x} and H = {y}. We will decide the membership of each v H i in S and S before considering the membership of the vertices in H i+. So, assume we have done so for H 0, H,...H t, let v H t with t, and let the parent of v be w. If w S i for i = or, we let v be in the other set, v S 3 i. If neither the parent w nor its parent z is in S, then N[w] S implies that at least two children of w are in S. If v is the first child of w considered from H t, let v S, otherwise let v S. If the parent w / S and w s parent z S i, put v in S 3 i. We claim that each S i is a dominating set for T. To see this, let u V (T). If u S and its parent is also in S, then u and its parent are in different S i s so each S i dominates u. If u S and its parent is not in S, then N[u] S implies that u has at least one child c S. Again, u and c are in different S i s, so each S i dominates u. Now suppose u / S. Assume the parent p of u is in S, and suppose p S i. N[u] S implies some child c of u is in S. Note that we have chosen c S 3 i because c s parent u / S and u s parent p S i. Hence, each S i dominates u. Assume the parent p of u is also not in S. Then at least two children of u are in S, one of which was first chosen to be in S, and all of the others are in S. Again, each S i dominates u. Theorem ([]). For any tree T on n vertices, dd(t) = γγ(t). Proof. Suppose γγ(t) = k = S S, where S and S are disjoint dominating sets. Clearly for each u V (T) we have N[u] S N[u] S, so N[u] (S S ), and dd(t) k. If dd(t) = k = S where S is a double-dominating set of T, then Theorem implies that γγ(t) k. 3 (j, k)-domination As defined in Rubalcaba and Slater [4], if j k a function f : V (G) {0,,...j} is a (j, k)-dominating function if f(n[v]) k for every v 3

4 V (G). The (j, k)-domination number γ j,k (G) is the minimum weight of a (j, k)-dominating function. Note that if j < k then every (j, k)-dominating function is also a (t, k)-dominating function for all j t k. Note that when j = k, γ k,k = γ {k}, and when j =, γ,k = γ k. Thus, we have γ k (G) = γ,k (G) γ,k (G) γ k,k (G) = γ {k} (G). Generalizing Theorem for which j = and k =, we have the following. Theorem 3. Let T be a tree. If f : V (T) {0,,..., j} is a (j, k)- dominating function with j k, then there are k dominating functions f i : V (T) {0, } for i k with k i= f i(v) f(v) for every v V (T), or equivalently, there are k dominating sets S, S,... S k with {S i : v S i } f(v) for every v V (T). Proof. Let f be a (j, k)-dominating function of T with j k. Let x be a vertex of degree one of T and y its neighbor, root tree T at x, and for each v V (T), as before, let its height be its distance from x, hgt(v) = dist(x, v). We construct dominating sets S, S,...S k starting with each S i =, where each v will be in f(v) of the S i s, and where hgt(v) < hgt(w) implies that the sets containing v will be determined before deciding which S i s will contain w. Let t = f(x), and if t let x be in S, S,...S t. Because f(n[x]) k we have f(y) k t. Let y be in sets S t+, S t+,... S k, and if f(x)+f(y) k = j > 0 then let y also be in any j disjoint sets from among S, S,... S t. Assuming we have decided which S i s will contain each vertex w with 0 hgt(w) t, we assign membership in the S i s for the vertices v with height hgt(v) = t as follows. As was done for adjacent vertices x and y, assignment of memberships in the S i s will be done so that, if u and v are any adjacent vertices, the number of S i s containing u or v will be min(f(u)+f(v), k). For each vertex w with hgt(w) = t that has at least one child, let p be the parent of w and let v, v,...v c be the children of w. Because f(n[w]) k we have c j= f(v j) k f(w) f(p) = r. Assume r. We can put v in min(r, f(v )) of the S i s that do not contain w or p. Let r = k f(w) f(p) f(v ). If r we can put v into min(r, f(v )) of the S i s that do not yet contain a vertex in N[w]. We can continue until every S i does contain a vertex in N[w]. That is, if r, then for each S i that does not contain w or p we can choose a v j to put in S i in such a way that no v j is placed into more than f(v j ) of the S i s. At this point for i k the set S i contains a vertex in N[w]. Continuing, for each v j which has yet to be placed into f(v j ) sets, when possible assign v j to another S i with w / S i, and if f(v j ) + f(w) = k + r with r then, after assigning v j to the k f(w) sets S i with w / S i, also assign v j to any r of the sets that contain w. Note that the above method of assigning memberships in the S i s provides the following. For any vertex u with parent z, if f(u) + f(z) k 4

5 then each S i with i k contains at least one of u and z, and if f(u)+f(z) < k then each S i with S i {u, z} = contains at least one child of u. It follows that each S i is a dominating set and that for each vertex v V (T) we have {S i : v S i } f(v). Corollary 4. For any tree T, γ j,k (T) k γ(t). 4 Beyond trees The graphs in Figure (a) and Figure (b) serve as counterexamples to possible extensions of Theorem 3. The 4 grid graph has γ(g,4 ) = 3, however the (, 5)-dominating function f depicted in Figure (a) has weight < 5 γ(g,4 ). So clearly we cannot get five dominating sets to satisfy Theorem 3. The (, 3)-dominating function depicted in Figure (b) for C 4 also shows that Theorem 3 cannot be extended to bipartite graphs. Figure : (a) The 4 grid graph G,4 has a unique (, 5)-dominating function and (b) C 4 has a unique (, 3)-dominating function A graph is chordal if there are no induced cycles of length greater than three. A graph is strongly chordal if it is chordal and contains no induced trampolines (in Figure, if we let k = the graph H is a trampoline on 6 vertices, also called a 3-sun). Note that all trees are strongly chordal. Theorem 3 cannot be extended to strongly chordal graphs either, since the strongly chordal graph below has γ(p) = and a (, 5)-dominating function with weight 6 < 5 γ(p). While the (, 5)-dominating function of G,4 cannot be decomposed into five dominating sets, it can be decomposed into four dominating sets (see Figure 4). While the (, 3)-dominating function of C 4 cannot be decomposed into three dominating sets, it can be decomposed into two dominating sets. The strongly chordal graph P in Figure 3 has a (, 5)-dominating function which can be decomposed into three dominating sets. 5

6 P Figure 3: The (, 5)-dominating function cannot be decomposed into five dominating sets Figure 4: Obtaining four dominating sets from the (, 5)-dominating function 6

7 References [] D. W. Bange, A. E. Barkauskas, and P. J. Slater, Disjoint dominating sets in trees, Sandia Laboratories Report SAND J (978). [] D. W. Bange, A. E. Barkauskas, and P. J. Slater, A constructive characterization of trees with two disjoint minimum dominating sets, Congressus Numerantium (978) 0. [3] E. J. Cockayne and S.T. Hedetniemi, Disjoint independent dominating sets in graphs, Discrete Mathematics 5 (976) 3. [4] G. S. Domke, S.T. Hedetniemi, R. C. Laskar, and G. Fricke, Relationships between integer and fractional parameters of graphs, in Y. Alavi, G. Chartrand, O. R. Oellermann and A. J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, vol., pages , (Kalamazoo, MI 988), Wiley Publications, 99. [5] J. E. Dunbar, S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, J. Knisley, R. C. Laskar, and D. F. Rall, Fall colorings of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 33 (000) [6] D. L. Grinstead and P.J. Slater, On minimum dominating sets with minimum intersection, Discrete Mathematics 86 (990) [7] D. L. Grinstead and P.J. Slater, On the minimum intersection of minimum dominating sets in series-parallel graphs, in Y. Alavi, G. Chartrand, O. R. Oellermann and A. J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, vol., pages , (Kalamazoo, MI 988), Wiley Publications, 99. [8] F. Harary and T. W. Haynes, Nordhaus Gaddum inequalities for domination in graphs, Discrete Mathematics 55 (996) [9] F. Harary and T. W. Haynes, Double domination in graphs, Ars Combinatoria 55 (000) 0 3. [0] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 998. [] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (Eds.), Domination in graphs: Advanced Topics, Marcel Dekker, Inc., New York,

8 [] S. M. Hedetniemi, S. T. Hedetniemi, R. C. Laskar, L. Markus and P. J. Slater, Disjoint dominating sets in graphs, submitted. [3] V. R. Kulli and S. C. Sigarkanti, Inverse domination in graphs, National Academy of Science Letters 4 (99) [4] R. R. Rubalcaba and P. J. Slater, Efficient (j, k)-domination, to appear in Discussiones Mathematicae Graph Theory. 8

University of Alabama in Huntsville Huntsville, AL 35899, USA

University of Alabama in Huntsville Huntsville, AL 35899, USA EFFICIENT (j, k)-domination Robert R. Rubalcaba and Peter J. Slater,2 Department of Mathematical Sciences University of Alabama in Huntsville Huntsville, AL 35899, USA e-mail: r.rubalcaba@gmail.com 2 Department

More information

Roman dominating influence parameters

Roman dominating influence parameters Roman dominating influence parameters Robert R. Rubalcaba a, Peter J. Slater b,a a Department of Mathematical Sciences, University of Alabama in Huntsville, AL 35899, USA b Department of Mathematical Sciences

More information

ON INTEGER DOMINATION IN GRAPHS AND VIZING-LIKE PROBLEMS. Boštjan Brešar, 1 Michael A. Henning 2 and Sandi Klavžar 3 1.

ON INTEGER DOMINATION IN GRAPHS AND VIZING-LIKE PROBLEMS. Boštjan Brešar, 1 Michael A. Henning 2 and Sandi Klavžar 3 1. TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 5, pp. 1317-1328, September 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/ ON INTEGER DOMINATION IN GRAPHS AND VIZING-LIKE PROBLEMS

More information

Complementary Signed Dominating Functions in Graphs

Complementary Signed Dominating Functions in Graphs Int. J. Contemp. Math. Sciences, Vol. 6, 011, no. 38, 1861-1870 Complementary Signed Dominating Functions in Graphs Y. S. Irine Sheela and R. Kala Department of Mathematics Manonmaniam Sundaranar University

More information

EXACT DOUBLE DOMINATION IN GRAPHS

EXACT DOUBLE DOMINATION IN GRAPHS Discussiones Mathematicae Graph Theory 25 (2005 ) 291 302 EXACT DOUBLE DOMINATION IN GRAPHS Mustapha Chellali Department of Mathematics, University of Blida B.P. 270, Blida, Algeria e-mail: mchellali@hotmail.com

More information

A survey on graphs which have equal domination and closed neighborhood packing numbers

A survey on graphs which have equal domination and closed neighborhood packing numbers A survey on graphs which have equal domination and closed neighborhood packing numbers Robert R. Rubalcaba a, Andrew Schneider a,b, Peter J. Slater a,c a Department of Mathematical Sciences b Undergraduate

More information

2-bondage in graphs. Marcin Krzywkowski*

2-bondage in graphs. Marcin Krzywkowski* International Journal of Computer Mathematics Vol. 00, No. 00, January 2012, 1 8 2-bondage in graphs Marcin Krzywkowski* e-mail: marcin.krzywkowski@gmail.com Department of Algorithms and System Modelling

More information

Minimum fractional dominating functions and maximum fractional packing functions

Minimum fractional dominating functions and maximum fractional packing functions Minimum fractional dominating functions and maximum fractional packing functions R. Rubalcaba Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville AL 5899 USA M. Walsh Department

More information

k-tuple Domatic In Graphs

k-tuple Domatic In Graphs CJMS. 2(2)(2013), 105-112 Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 1735-0611 k-tuple Domatic In Graphs Adel P. Kazemi 1 1 Department

More information

Inverse Closed Domination in Graphs

Inverse Closed Domination in Graphs Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 2 (2016), pp. 1845-1851 Research India Publications http://www.ripublication.com/gjpam.htm Inverse Closed Domination in

More information

Lower bounds on the minus domination and k-subdomination numbers

Lower bounds on the minus domination and k-subdomination numbers Theoretical Computer Science 96 (003) 89 98 www.elsevier.com/locate/tcs Lower bounds on the minus domination and k-subdomination numbers Liying Kang a;, Hong Qiao b, Erfang Shan a, Dingzhu Du c a Department

More information

Real and Integer Domination in Graphs

Real and Integer Domination in Graphs Real and Integer Domination in Graphs Wayne Goddard 1 Department of Computer Science, University of Natal, Durban 4041, South Africa Michael A. Henning 1 Department of Mathematics, University of Natal,

More information

GLOBAL MINUS DOMINATION IN GRAPHS. Communicated by Manouchehr Zaker. 1. Introduction

GLOBAL MINUS DOMINATION IN GRAPHS. Communicated by Manouchehr Zaker. 1. Introduction Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 3 No. 2 (2014), pp. 35-44. c 2014 University of Isfahan www.combinatorics.ir www.ui.ac.ir GLOBAL MINUS DOMINATION IN

More information

ON DOMINATING THE CARTESIAN PRODUCT OF A GRAPH AND K 2. Bert L. Hartnell

ON DOMINATING THE CARTESIAN PRODUCT OF A GRAPH AND K 2. Bert L. Hartnell Discussiones Mathematicae Graph Theory 24 (2004 ) 389 402 ON DOMINATING THE CARTESIAN PRODUCT OF A GRAPH AND K 2 Bert L. Hartnell Saint Mary s University Halifax, Nova Scotia, Canada B3H 3C3 e-mail: bert.hartnell@smu.ca

More information

A Note on Disjoint Dominating Sets in Graphs

A Note on Disjoint Dominating Sets in Graphs Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 43, 2099-2110 A Note on Disjoint Dominating Sets in Graphs V. Anusuya Department of Mathematics S.T. Hindu College Nagercoil 629 002 Tamil Nadu, India

More information

INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS

INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS Discussiones Mathematicae Graph Theory 32 (2012) 5 17 INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS Ismail Sahul Hamid Department of Mathematics The Madura College Madurai, India e-mail: sahulmat@yahoo.co.in

More information

STRUCTURE OF THE SET OF ALL MINIMAL TOTAL DOMINATING FUNCTIONS OF SOME CLASSES OF GRAPHS

STRUCTURE OF THE SET OF ALL MINIMAL TOTAL DOMINATING FUNCTIONS OF SOME CLASSES OF GRAPHS Discussiones Mathematicae Graph Theory 30 (2010 ) 407 423 STRUCTURE OF THE SET OF ALL MINIMAL TOTAL DOMINATING FUNCTIONS OF SOME CLASSES OF GRAPHS K. Reji Kumar Department of Mathematics N.S.S College,

More information

On Pairs of Disjoint Dominating Sets in a Graph

On Pairs of Disjoint Dominating Sets in a Graph International Journal of Mathematical Analysis Vol 10, 2016, no 13, 623-637 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ijma20166343 On Pairs of Disjoint Dominating Sets in a Graph Edward M Kiunisala

More information

SEMI-STRONG SPLIT DOMINATION IN GRAPHS. Communicated by Mehdi Alaeiyan. 1. Introduction

SEMI-STRONG SPLIT DOMINATION IN GRAPHS. Communicated by Mehdi Alaeiyan. 1. Introduction Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 3 No. 2 (2014), pp. 51-63. c 2014 University of Isfahan www.combinatorics.ir www.ui.ac.ir SEMI-STRONG SPLIT DOMINATION

More information

Nordhaus Gaddum Bounds for Independent Domination

Nordhaus Gaddum Bounds for Independent Domination Nordhaus Gaddum Bounds for Independent Domination Wayne Goddard 1 Department of Computer Science, University of Natal, Durban 4041, South Africa Michael A. Henning School of Mathematics, Statistics and

More information

New bounds on the signed domination numbers of graphs

New bounds on the signed domination numbers of graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 61(3) (015), Pages 73 80 New bounds on the signed domination numbers of graphs S.M. Hosseini Moghaddam Department of Mathematics Qom Branch, Islamic Azad University

More information

The domination game played on unions of graphs

The domination game played on unions of graphs The domination game played on unions of graphs Paul Dorbec 1,2 Gašper Košmrlj 3 Gabriel Renault 1,2 1 Univ. Bordeaux, LaBRI, UMR5800, F-33405 Talence 2 CNRS, LaBRI, UMR5800, F-33405 Talence Email: dorbec@labri.fr,

More information

Independent Transversal Equitable Domination in Graphs

Independent Transversal Equitable Domination in Graphs International Mathematical Forum, Vol. 8, 2013, no. 15, 743-751 HIKARI Ltd, www.m-hikari.com Independent Transversal Equitable Domination in Graphs Dhananjaya Murthy B. V 1, G. Deepak 1 and N. D. Soner

More information

Fundamental Dominations in Graphs

Fundamental Dominations in Graphs Fundamental Dominations in Graphs arxiv:0808.4022v1 [math.co] 29 Aug 2008 Arash Behzad University of California, LosAngeles abehzad@ee.ucla.edu Mehdi Behzad Shahid Beheshti University, Iran mbehzad@sharif.edu

More information

Locating-Total Dominating Sets in Twin-Free Graphs: a Conjecture

Locating-Total Dominating Sets in Twin-Free Graphs: a Conjecture Locating-Total Dominating Sets in Twin-Free Graphs: a Conjecture Florent Foucaud Michael A. Henning Department of Pure and Applied Mathematics University of Johannesburg Auckland Park, 2006, South Africa

More information

A note on the total domination number of a tree

A note on the total domination number of a tree A note on the total domination number of a tree 1 Mustapha Chellali and 2 Teresa W. Haynes 1 Department of Mathematics, University of Blida. B.P. 270, Blida, Algeria. E-mail: m_chellali@yahoo.com 2 Department

More information

Dominator Colorings and Safe Clique Partitions

Dominator Colorings and Safe Clique Partitions Dominator Colorings and Safe Clique Partitions Ralucca Gera, Craig Rasmussen Naval Postgraduate School Monterey, CA 994, USA {rgera,ras}@npsedu and Steve Horton United States Military Academy West Point,

More information

Dominating a family of graphs with small connected subgraphs

Dominating a family of graphs with small connected subgraphs Dominating a family of graphs with small connected subgraphs Yair Caro Raphael Yuster Abstract Let F = {G 1,..., G t } be a family of n-vertex graphs defined on the same vertex-set V, and let k be a positive

More information

NORDHAUS-GADDUM RESULTS FOR WEAKLY CONVEX DOMINATION NUMBER OF A GRAPH

NORDHAUS-GADDUM RESULTS FOR WEAKLY CONVEX DOMINATION NUMBER OF A GRAPH Discussiones Mathematicae Graph Theory 30 (2010 ) 257 263 NORDHAUS-GADDUM RESULTS FOR WEAKLY CONVEX DOMINATION NUMBER OF A GRAPH Magdalena Lemańska Department of Applied Physics and Mathematics Gdańsk

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 23 (2010) 1295 1300 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml The Roman domatic number of a graph S.M.

More information

Technische Universität Ilmenau Institut für Mathematik

Technische Universität Ilmenau Institut für Mathematik Technische Universität Ilmenau Institut für Mathematik Preprint No. M 09/25 Partitioning a graph into a dominating set, a total dominating set, and something else Henning, Michael A.; Löwenstein, Christian;

More information

Vertices contained in all or in no minimum k-dominating sets of a tree

Vertices contained in all or in no minimum k-dominating sets of a tree AKCE Int. J. Graphs Comb., 11, No. 1 (2014), pp. 105-113 Vertices contained in all or in no minimum k-dominating sets of a tree Nacéra Meddah and Mostafa Blidia Department of Mathematics University of

More information

A Note on Integer Domination of Cartesian Product Graphs

A Note on Integer Domination of Cartesian Product Graphs A Note on Integer Domination of Cartesian Product Graphs K. Choudhary Department of Mathematics and Statistics Indian Institute of Technology Kanpur Kanpur, India keerti.india@gmail.com I. V. Hicks S.

More information

On k-rainbow independent domination in graphs

On k-rainbow independent domination in graphs On k-rainbow independent domination in graphs Tadeja Kraner Šumenjak Douglas F. Rall Aleksandra Tepeh Abstract In this paper, we define a new domination invariant on a graph G, which coincides with the

More information

On graphs having a unique minimum independent dominating set

On graphs having a unique minimum independent dominating set AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 68(3) (2017), Pages 357 370 On graphs having a unique minimum independent dominating set Jason Hedetniemi Department of Mathematical Sciences Clemson University

More information

THE RAINBOW DOMINATION NUMBER OF A DIGRAPH

THE RAINBOW DOMINATION NUMBER OF A DIGRAPH Kragujevac Journal of Mathematics Volume 37() (013), Pages 57 68. THE RAINBOW DOMINATION NUMBER OF A DIGRAPH J. AMJADI 1, A. BAHREMANDPOUR 1, S. M. SHEIKHOLESLAMI 1, AND L. VOLKMANN Abstract. Let D = (V,

More information

Roman domination perfect graphs

Roman domination perfect graphs An. Şt. Univ. Ovidius Constanţa Vol. 19(3), 2011, 167 174 Roman domination perfect graphs Nader Jafari Rad, Lutz Volkmann Abstract A Roman dominating function on a graph G is a function f : V (G) {0, 1,

More information

On Dominator Colorings in Graphs

On Dominator Colorings in Graphs On Dominator Colorings in Graphs Ralucca Michelle Gera Department of Applied Mathematics Naval Postgraduate School Monterey, CA 994, USA ABSTRACT Given a graph G, the dominator coloring problem seeks a

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Bohdan Zelinka Signed total domination number of a graph Czechoslovak Mathematical Journal, Vol. 5 (200), No. 2, 225 229 Persistent URL: http://dml.cz/dmlcz/27643 Terms

More information

On Disjoint Restrained Domination in Graphs 1

On Disjoint Restrained Domination in Graphs 1 Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 3 (2016), pp. 2385-2394 Research India Publications http://www.ripublication.com/gjpam.htm On Disjoint Restrained Domination

More information

Minimizing the Laplacian eigenvalues for trees with given domination number

Minimizing the Laplacian eigenvalues for trees with given domination number Linear Algebra and its Applications 419 2006) 648 655 www.elsevier.com/locate/laa Minimizing the Laplacian eigenvalues for trees with given domination number Lihua Feng a,b,, Guihai Yu a, Qiao Li b a School

More information

AALBORG UNIVERSITY. Total domination in partitioned graphs. Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo

AALBORG UNIVERSITY. Total domination in partitioned graphs. Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo AALBORG UNIVERSITY Total domination in partitioned graphs by Allan Frendrup, Preben Dahl Vestergaard and Anders Yeo R-2007-08 February 2007 Department of Mathematical Sciences Aalborg University Fredrik

More information

Double domination in signed graphs

Double domination in signed graphs PURE MATHEMATICS RESEARCH ARTICLE Double domination in signed graphs P.K. Ashraf 1 * and K.A. Germina 2 Received: 06 March 2016 Accepted: 21 April 2016 Published: 25 July 2016 *Corresponding author: P.K.

More information

Generalized connected domination in graphs

Generalized connected domination in graphs Discrete Mathematics and Theoretical Computer Science DMTCS vol. 8, 006, 57 64 Generalized connected domination in graphs Mekkia Kouider 1 and Preben Dahl Vestergaard 1 Laboratoire de Recherche en Informatique,

More information

Irredundance saturation number of a graph

Irredundance saturation number of a graph AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 46 (2010), Pages 37 49 Irredundance saturation number of a graph S. Arumugam Core Group Research Facility (CGRF) National Center for Advanced Research in Discrete

More information

Relations between edge removing and edge subdivision concerning domination number of a graph

Relations between edge removing and edge subdivision concerning domination number of a graph arxiv:1409.7508v1 [math.co] 26 Sep 2014 Relations between edge removing and edge subdivision concerning domination number of a graph Magdalena Lemańska 1, Joaquín Tey 2, Rita Zuazua 3 1 Gdansk University

More information

Extremal Problems for Roman Domination

Extremal Problems for Roman Domination Extremal Problems for Roman Domination Erin W Chambers, Bill Kinnersley, Noah Prince, Douglas B West Abstract A Roman dominating function of a graph G is a labeling f : V (G) {0, 1, 2} such that every

More information

Maximum Alliance-Free and Minimum Alliance-Cover Sets

Maximum Alliance-Free and Minimum Alliance-Cover Sets Maximum Alliance-Free and Minimum Alliance-Cover Sets Khurram H. Shafique and Ronald D. Dutton School of Computer Science University of Central Florida Orlando, FL USA 3816 hurram@cs.ucf.edu, dutton@cs.ucf.edu

More information

Properties of independent Roman domination in graphs

Properties of independent Roman domination in graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 5 (01), Pages 11 18 Properties of independent Roman domination in graphs M. Adabi E. Ebrahimi Targhi N. Jafari Rad M. Saied Moradi Department of Mathematics

More information

GENERALIZED INDEPENDENCE IN GRAPHS HAVING CUT-VERTICES

GENERALIZED INDEPENDENCE IN GRAPHS HAVING CUT-VERTICES GENERALIZED INDEPENDENCE IN GRAPHS HAVING CUT-VERTICES Vladimir D. Samodivkin 7th January 2008 (Dedicated to Mihail Konstantinov on his 60th birthday) Abstract For a graphical property P and a graph G,

More information

An Explicit Construction of Optimal Dominating and [1, 2] Dominating Sets in Grid

An Explicit Construction of Optimal Dominating and [1, 2] Dominating Sets in Grid An Explicit Construction of Optimal Dominating and [ 2] Dominating Sets in Grid P. Sharifani 1, M.R. Hooshmandasl 2, M. Alambardar Meybodi 3 3 Department of Computer Science, Yazd University, Yazd, Iran.

More information

Secure Connected Domination in a Graph

Secure Connected Domination in a Graph International Journal of Mathematical Analysis Vol. 8, 2014, no. 42, 2065-2074 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.47221 Secure Connected Domination in a Graph Amerkhan G.

More information

A Note on Roman {2}-domination problem in graphs

A Note on Roman {2}-domination problem in graphs A Note on Roman {2}-domination problem in graphs arxiv:1804.09338v3 [math.co] 17 Feb 2019 Hangdi Chen and Changhong Lu School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal

More information

Computing the Domination Number of Grid Graphs

Computing the Domination Number of Grid Graphs Computing the Domination Number of Grid Graphs Samu Alanko Courant Institute of Mathematical Sciences, New York University 251 Mercer Street, New York, N.Y. 10012-1185, U.S.A. samu.alanko@nyu.edu Simon

More information

Transactions on Combinatorics ISSN (print): , ISSN (on-line): Vol. 4 No. 2 (2015), pp c 2015 University of Isfahan

Transactions on Combinatorics ISSN (print): , ISSN (on-line): Vol. 4 No. 2 (2015), pp c 2015 University of Isfahan Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 4 No. 2 (2015), pp. 1-11. c 2015 University of Isfahan www.combinatorics.ir www.ui.ac.ir UNICYCLIC GRAPHS WITH STRONG

More information

Modular Monochromatic Colorings, Spectra and Frames in Graphs

Modular Monochromatic Colorings, Spectra and Frames in Graphs Western Michigan University ScholarWorks at WMU Dissertations Graduate College 12-2014 Modular Monochromatic Colorings, Spectra and Frames in Graphs Chira Lumduanhom Western Michigan University, chira@swu.ac.th

More information

Introduction to Domination Polynomial of a Graph

Introduction to Domination Polynomial of a Graph Introduction to Domination Polynomial of a Graph arxiv:0905.2251v1 [math.co] 14 May 2009 Saeid Alikhani a,b,1 and Yee-hock Peng b,c a Department of Mathematics Yazd University 89195-741, Yazd, Iran b Institute

More information

Some New Approaches for Computation of Domination Polynomial of Specific Graphs

Some New Approaches for Computation of Domination Polynomial of Specific Graphs Journal of Mathematical Extension Vol. 8, No. 2, (2014), 1-9 Some New Approaches for Computation of Domination Polynomial of Specific Graphs S. Alikhani Yazd University E. Mahmoudi Yazd University M. R.

More information

Group connectivity of certain graphs

Group connectivity of certain graphs Group connectivity of certain graphs Jingjing Chen, Elaine Eschen, Hong-Jian Lai May 16, 2005 Abstract Let G be an undirected graph, A be an (additive) Abelian group and A = A {0}. A graph G is A-connected

More information

Inverse and Disjoint Restrained Domination in Graphs

Inverse and Disjoint Restrained Domination in Graphs Intern. J. Fuzzy Mathematical Archive Vol. 11, No.1, 2016, 9-15 ISSN: 2320 3242 (P), 2320 3250 (online) Published on 17 August 2016 www.researchmathsci.org International Journal of Inverse and Disjoint

More information

3-Chromatic Cubic Graphs with Complementary Connected Domination Number Three

3-Chromatic Cubic Graphs with Complementary Connected Domination Number Three Vol.3, Issue.1, Jan-Feb. 2013 pp-231-239 ISSN: 2249-6645 3-Chromatic Cubic Graphs with Complementary Connected Domination Number Three Selvam Avadayappan, 1 S. Kalaimathy, 2 G. Mahadevan 3 1, 2 Department

More information

ON THE INJECTIVE DOMINATION OF GRAPHS

ON THE INJECTIVE DOMINATION OF GRAPHS Palestine Journal of Mathematics Vol. 7(1)(018), 0 10 Palestine Polytechnic Uniersity-PPU 018 ON THE INJECTIVE DOMINATION OF GRAPHS Anwar Alwardi, R. Rangarajan and Akram Alqesmah Communicated by Ayman

More information

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1 arxiv:509.005v [math.co] 0 Sep 05 On uniquely -colorable plane graphs without prescribed adjacent faces Ze-peng LI School of Electronics Engineering and Computer Science Key Laboratory of High Confidence

More information

Double domination edge removal critical graphs

Double domination edge removal critical graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 48 (2010), Pages 285 299 Double domination edge removal critical graphs Soufiane Khelifi Laboratoire LMP2M, Bloc des laboratoires Université demédéa Quartier

More information

A characterization of diameter-2-critical graphs with no antihole of length four

A characterization of diameter-2-critical graphs with no antihole of length four Cent. Eur. J. Math. 10(3) 2012 1125-1132 DOI: 10.2478/s11533-012-0022-x Central European Journal of Mathematics A characterization of diameter-2-critical graphs with no antihole of length four Research

More information

DOMINATION IN DEGREE SPLITTING GRAPHS S , S t. is a set of vertices having at least two vertices and having the same degree and T = V S i

DOMINATION IN DEGREE SPLITTING GRAPHS S , S t. is a set of vertices having at least two vertices and having the same degree and T = V S i Journal of Analysis and Comutation, Vol 8, No 1, (January-June 2012) : 1-8 ISSN : 0973-2861 J A C Serials Publications DOMINATION IN DEGREE SPLITTING GRAPHS B BASAVANAGOUD 1*, PRASHANT V PATIL 2 AND SUNILKUMAR

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

Dominating Set Counting in Graph Classes

Dominating Set Counting in Graph Classes Dominating Set Counting in Graph Classes Shuji Kijima 1, Yoshio Okamoto 2, and Takeaki Uno 3 1 Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan kijima@inf.kyushu-u.ac.jp

More information

A Characterization of the Cactus Graphs with Equal Domination and Connected Domination Numbers

A Characterization of the Cactus Graphs with Equal Domination and Connected Domination Numbers International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 7, 275-281 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.7932 A Characterization of the Cactus Graphs with

More information

Bulletin of the Iranian Mathematical Society

Bulletin of the Iranian Mathematical Society ISSN: 117-6X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 4 (14), No. 6, pp. 1491 154. Title: The locating chromatic number of the join of graphs Author(s): A. Behtoei

More information

Total Dominator Colorings in Paths

Total Dominator Colorings in Paths International J.Math. Combin. Vol.2(2012), 89-95 Total Dominator Colorings in Paths A.Vijayalekshmi (S.T.Hindu College, Nagercoil, Tamil Nadu, India) E-mail: vijimath.a@gmail.com Abstract: Let G be a graph

More information

Dominating Broadcasts in Graphs. Sarada Rachelle Anne Herke

Dominating Broadcasts in Graphs. Sarada Rachelle Anne Herke Dominating Broadcasts in Graphs by Sarada Rachelle Anne Herke Bachelor of Science, University of Victoria, 2007 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF

More information

ALL GRAPHS WITH PAIRED-DOMINATION NUMBER TWO LESS THAN THEIR ORDER. Włodzimierz Ulatowski

ALL GRAPHS WITH PAIRED-DOMINATION NUMBER TWO LESS THAN THEIR ORDER. Włodzimierz Ulatowski Opuscula Math. 33, no. 4 (2013), 763 783 http://dx.doi.org/10.7494/opmath.2013.33.4.763 Opuscula Mathematica ALL GRAPHS WITH PAIRED-DOMINATION NUMBER TWO LESS THAN THEIR ORDER Włodzimierz Ulatowski Communicated

More information

On (δ, χ)-bounded families of graphs

On (δ, χ)-bounded families of graphs On (δ, χ)-bounded families of graphs András Gyárfás Computer and Automation Research Institute Hungarian Academy of Sciences Budapest, P.O. Box 63 Budapest, Hungary, H-1518 gyarfas@sztaki.hu Manouchehr

More information

Partial characterizations of clique-perfect graphs II: diamond-free and Helly circular-arc graphs

Partial characterizations of clique-perfect graphs II: diamond-free and Helly circular-arc graphs Partial characterizations of clique-perfect graphs II: diamond-free and Helly circular-arc graphs Flavia Bonomo a,1, Maria Chudnovsky b,2 and Guillermo Durán c,3 a Departamento de Matemática, Facultad

More information

On disconnected cuts and separators

On disconnected cuts and separators On disconnected cuts and separators Takehiro Ito 1, Marcin Kamiński 2, Daniël Paulusma 3 and Dimitrios M. Thilikos 4 1 Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai,

More information

Some Nordhaus-Gaddum-type Results

Some Nordhaus-Gaddum-type Results Some Nordhaus-Gaddum-type Results Wayne Goddard Department of Mathematics Massachusetts Institute of Technology Cambridge, USA Michael A. Henning Department of Mathematics University of Natal Pietermaritzburg,

More information

On the metric dimension of the total graph of a graph

On the metric dimension of the total graph of a graph Notes on Number Theory and Discrete Mathematics Print ISSN 1310 5132, Online ISSN 2367 8275 Vol. 22, 2016, No. 4, 82 95 On the metric dimension of the total graph of a graph B. Sooryanarayana 1, Shreedhar

More information

Hanna Furmańczyk EQUITABLE COLORING OF GRAPH PRODUCTS

Hanna Furmańczyk EQUITABLE COLORING OF GRAPH PRODUCTS Opuscula Mathematica Vol. 6 No. 006 Hanna Furmańczyk EQUITABLE COLORING OF GRAPH PRODUCTS Abstract. A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a

More information

The Algorithmic Complexity of Signed Domination in Graphs

The Algorithmic Complexity of Signed Domination in Graphs The Algorithmic Complexity of Signed Domination in Graphs Johannes H. Hattingh * Department of Mathematics Rand Afrikaans University, P.O. Box 524 Auckland Park, South Africa Michael A. Henning t Department

More information

A Bound on Weak Domination Number Using Strong (Weak) Degree Concepts in Graphs

A Bound on Weak Domination Number Using Strong (Weak) Degree Concepts in Graphs ISSN 974-9373 Vol. 5 No.3 (2) Journal of International Academy of Physical Sciences pp. 33-37 A Bound on Weak Domination Number Using Strong (Weak) Degree Concepts in Graphs R. S. Bhat Manipal Institute

More information

On the Local Colorings of Graphs

On the Local Colorings of Graphs On the Local Colorings of Graphs Behnaz Omoomi and Ali Pourmiri Department of Mathematical Sciences Isfahan University of Technology 84154, Isfahan, Iran Abstract A local coloring of a graph G is a function

More information

NOTES ON THE INDEPENDENCE NUMBER IN THE CARTESIAN PRODUCT OF GRAPHS

NOTES ON THE INDEPENDENCE NUMBER IN THE CARTESIAN PRODUCT OF GRAPHS Discussiones Mathematicae Graph Theory xx (xxxx ) xxx xxx NOTES ON THE INDEPENDENCE NUMBER IN THE CARTESIAN PRODUCT OF GRAPHS G. Abay-Asmerom, R. Hammack, C.E. Larson and D.T. Taylor Department of Mathematics

More information

A NOTE ON THE DOMINATION NUMBER OF THE CARTESIAN PRODUCTS OF PATHS AND CYCLES. 1. Introduction

A NOTE ON THE DOMINATION NUMBER OF THE CARTESIAN PRODUCTS OF PATHS AND CYCLES. 1. Introduction Kragujevac Journal of Mathematics Volume 37() (013), Pages 75 85. A NOTE ON THE DOMINATION NUMBER OF THE CARTESIAN PRODUCTS OF PATHS AND CYCLES POLONA PAVLIČ1, AND JANEZ ŽEROVNIK,3 Abstract. Using algebraic

More information

On Locating-Dominating Codes in Binary Hamming Spaces

On Locating-Dominating Codes in Binary Hamming Spaces Discrete Mathematics and Theoretical Computer Science 6, 2004, 265 282 On Locating-Dominating Codes in Binary Hamming Spaces Iiro Honkala and Tero Laihonen and Sanna Ranto Department of Mathematics and

More information

Lights Out!: A Survey of Parity Domination in Grid Graphs

Lights Out!: A Survey of Parity Domination in Grid Graphs Lights Out!: A Survey of Parity Domination in Grid Graphs William Klostermeyer University of North Florida Jacksonville, FL 32224 E-mail: klostermeyer@hotmail.com Abstract A non-empty set of vertices is

More information

Relating 2-rainbow domination to weak Roman domination

Relating 2-rainbow domination to weak Roman domination Relating 2-rainbow domination to weak Roman domination José D. Alvarado 1, Simone Dantas 1, and Dieter Rautenbach 2 arxiv:1507.04901v1 [math.co] 17 Jul 2015 1 Instituto de Matemática e Estatística, Universidade

More information

Rainbow domination in the lexicographic product of graphs

Rainbow domination in the lexicographic product of graphs Rainbow domination in the lexicographic product of graphs Tadeja Kraner Šumenjak Douglas F. Rall Aleksandra Tepeh Abstract A k-rainbow dominating function of a graph G is a map f from V(G) to the set of

More information

Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph

Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph M. Lemańska a, J. A. Rodríguez-Velázquez b, Rolando Trujillo-Rasua c, a Department of Technical

More information

Minimal dominating sets in maximum domatic partitions

Minimal dominating sets in maximum domatic partitions AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 52 (2012), Pages 281 292 Minimal dominating sets in maximum domatic partitions S. Arumugam K. Raja Chandrasekar National Centre for Advanced Research in Discrete

More information

Maximum graphs with a unique minimum dominatingset

Maximum graphs with a unique minimum dominatingset Discrete Mathematics 60 (003) 197 03 www.elsevier.com/locate/disc Note Maximum graphs with a unique minimum dominatingset Miranca Fischermann, Dieter Rautenbach ;1, Lutz Volkmann Lehrstuhl II fur Mathematik,

More information

A Quadratic Integer Programming with Application in Chaotic Mappings of Complete Multipartite Graphs. Technical Report

A Quadratic Integer Programming with Application in Chaotic Mappings of Complete Multipartite Graphs. Technical Report A Quadratic Integer Programming with Application in Chaotic Mappings of Complete Multipartite Graphs Technical Report Department of Computer Science and Engineering University of Minnesota 4-192 EECS Building

More information

Problems in Domination and Graph Products

Problems in Domination and Graph Products Clemson University TigerPrints All Dissertations Dissertations 5-2016 Problems in Domination and Graph Products Jason Todd Hedetniemi Clemson University, jason.hedetniemi@gmail.com Follow this and additional

More information

On Modular Colorings of Caterpillars

On Modular Colorings of Caterpillars On Modular Colorings of Caterpillars Futaba Okamoto Mathematics Department University of Wisconsin - La Crosse La Crosse, WI 546 Ebrahim Salehi Department of Mathematical Sciences University of Nevada

More information

1-movable Restrained Domination in Graphs

1-movable Restrained Domination in Graphs Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 6 (2016), pp. 5245-5225 Research India Publications http://www.ripublication.com/gjpam.htm 1-movable Restrained Domination

More information

Discrete Mathematics. Kernels by monochromatic paths in digraphs with covering number 2

Discrete Mathematics. Kernels by monochromatic paths in digraphs with covering number 2 Discrete Mathematics 311 (2011) 1111 1118 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Kernels by monochromatic paths in digraphs with covering

More information

arxiv: v1 [math.co] 6 Jan 2017

arxiv: v1 [math.co] 6 Jan 2017 Domination in intersecting hypergraphs arxiv:70.0564v [math.co] 6 Jan 207 Yanxia Dong, Erfang Shan,2, Shan Li, Liying Kang Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China 2

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Varaporn Saenpholphat; Ping Zhang Connected resolvability of graphs Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 4, 827 840 Persistent URL: http://dml.cz/dmlcz/127843

More information

A Note on an Induced Subgraph Characterization of Domination Perfect Graphs.

A Note on an Induced Subgraph Characterization of Domination Perfect Graphs. A Note on an Induced Subgraph Characterization of Domination Perfect Graphs. Eglantine Camby & Fränk Plein Université Libre de Bruxelles Département de Mathématique Boulevard du Triomphe, 1050 Brussels,

More information

Erdös-Ko-Rado theorems for chordal and bipartite graphs

Erdös-Ko-Rado theorems for chordal and bipartite graphs Erdös-Ko-Rado theorems for chordal and bipartite graphs arxiv:0903.4203v2 [math.co] 15 Jul 2009 Glenn Hurlbert and Vikram Kamat School of Mathematical and Statistical Sciences Arizona State University,

More information