Or les différents systèmes philosophiques, économiques et politiques qui régissent les hommes sont tous d accord sur un point: bernons-les Roger

Size: px
Start display at page:

Download "Or les différents systèmes philosophiques, économiques et politiques qui régissent les hommes sont tous d accord sur un point: bernons-les Roger"

Transcription

1 Or les différents systèmes philosophiques, économiques et politiques qui régissent les hommes sont tous d accord sur un point: bernons-les Roger Waters (Pink Floyd, 1974) 1

2 Brief summary of main results obtained during the last lecture: ρ = R / z T eff = (F/σ) 1/4 = (f / σ ρ 2 ) 1/4 E = A(z) exp[i2πνt] E = A(z, t) exp[i2πνt] τ =1/ Δν λ eff = λ 2 / Δλ I = A A* = A 2 = a 2. 2

3 If Δ λ / (2B), fringe disappearance! I = I + I + 2 I γ q 12(0) cos ( ) β 2Πντ 12 γ 12 V ( τ ) = ( t ) ( t τ ) / 1 2 V I Fringe visibility: I I max min υ = = max + I I min γ 12 (0) 3

4 2.2. The Huygens-Fresnel principle 1st experiment! 4

5 4 Interferometry with two independent telescopes b) Fizeau the father of stellar interferometry (1868) 2nd experiment! 5

6 5 Light coherence 5.3 Spatial light coherence?? S γ 12 S = ΣdS i for i = 1, N ds i V P 1 P V ( τ = 0) = ( t ) ( t) / 1 2 V 1 (t) V 2 (t) I N V ( t) = V ( t) 1 i1 i= 1 (5.3.1) N (5.3.2) V ( t) = V ( t) 2 i2 i= 1 I q? + q N N γ ( 0) = 12 V 1V + i2 V i1v j2 i= 1 / i i j I (5.3.3) 6

7 5 Light coherence 5.3 Spatial light coherence N N γ ( 0) = 12 V 1V + i2 V i1v j2 V V V ( a ( t r / c) / r ) exp{ i2π ( t r / i i1 i1 i )} ( a ( t r / c) / r ) exp{ i2π ( t r / i i2 i2 i )} ( t) = ν c 1 1 i i i= 1 ( t) = ν c 2 2 (5.3.4) ( 2 t) V ( t) = i ai t ri1 c /( ri r )exp 2 ( / 1 i2 1 i1 ) as long as: / i i j r i1 I (5.3.3) r c / Δν = 2 i2 λ / Δλ = { i2πν ( r r ) / c} i2 i (5.3.5) (5.3.6) 7

8 5 Light coherence 5.3 Spatial light coherence I ( s) ds = ( t r / c) ai 2 (5.3.7) γ I( s) ( 0) = exp λ 12 1 S r 1 r 2 { i2π( r r )/ } ds / I 2 (5.3.8)!!! Theorem of Zernicke-van Cittert!!! 8

9 5 Light coherence 5.3 Spatial light coherence P i z ds i (X, Y, Z ) y P 1 (X, Y, 0) + x + P 2 (0, 0, 0) r 2 - r 1 = P 2 P i - P 1 P i = -(X 2 + Y 2 ) / 2 Z + (X ζ + Y η) (5.3.9) where ζ = X / Z and η = Y / Z (5.3.10) 9

10 5 Light coherence 5.3 Spatial light coherence γ (0, X / λ, Y / λ) = exp( i φ ) { i2π( Xζ Yη )/ λ} I( ζ, η)exp + S I( ζ ', η') dζ ' 12 X, Y d η ' S I '( ζ, η) I'( ζ, η) = = I( ζ, η) / γ (0, u, v)exp( iφ )exp + 12 Setting: u = X/λ, v = Y/λ: S I( ζ ', η') dζ ' dη' γ (0, u, v) = exp( iφ ) 2 12 u, v u, v { i Π( uζ vη) } I'( ζ, η)exp + S dζdη { i2π( ζu ηv) } d( u) d( v) dζdη (5.3.11) (5.3.12) (5.3.13) (5.3.14) 10

11 5.4 Fourier transform (cf. Léna 1996) Definitions: TF _ f ( s) = f ( x) e 2 i π sx dx, (5.4.1) f ( x) = TF _ f ( s) e 2 i π sx ds, (5.4.2) 2 f ( x) dx. (5.4.3) 11

12 5.4 Fourier transform (cf. Léna 1996) Definitions: Generalisation: TF _ f ( w) = f ( r) e 2iπ r w dr. (5.4.4) Some properties: a) Linearity: TF_(af) = a TF_f, a R, a being a constant, (5.4.5) TF_(f+g) = TF_f + TF_g. (5.4.6) 12

13 5.4 Fourier transform (cf. Léna 1996) Some properties: b) Symmetry & parity: f(x) = P(x) + I(x), (5.4.7) TF _ f ( s) = 2 0 P( x)cos(2πxs) dx 2i 0 I( x)sin(2πxs) dx. (5.4.8) Illustration of TF_f(s): f(x) is a real fonction. The real and imaginary parts of TF_f(s) are shown. f(s) 13

14 5.4 Fourier transform (cf. Léna 1996) c) Similitude: TF_(f(x/a))(s) = a TF_(f(x))(sa), (5.4.9) where a R, is a constant. d) Translation: TF_(f(x - a))(s) = e -2iπas TF_(f(x))(s). (5.4.10) 14

15 5.4 Fourier transform (cf. Léna 1996) e) Derivation: TF_(df/dx)(s) = 2iπs TF_f(s), TF_(d n f/dx n )(s) = (2iπs) n TF_f(s). (5.4.11) Some important cases (one dimension): a) Door function: Π(x) = 1 if x ]-1/2, 1/2[, = 0 if x ]-, -1/2] or x [1/2, [. (5.4.12) 15

16 5.4 Fourier transform (cf. Léna 1996) The door function and its Fourier transform (cardinal sine) TF_ (Π(x))(s) = sinc(s) = sin(πs) / πs. (5.4.13) TF_ (Π(x/a))(s) = a sinc(as) = a sin(πas) / πas. (5.4.14) 16

17 5.4 Fourier transform (cf. Léna 1996) b) Dirac distribution: 2 i π δ ( x) = e sx ds. (5.4.15) its Fourier transform is thus unity (= 1) in the interval ]-, [. 17

18 5.4 Fourier transform (cf. Léna 1996) c) Dirac comb: (x) = δ(x-n), for n in the interval ]-, [. (5.4.16) TF_ (s) = (s). (5.4.17) (x) f(x) = f(x) δ(x-n), for n in the interval ]-, [, (5.4.18) 18

19 5.4 Fourier transform (cf. Léna 1996) c) Dirac comb: (x) * f(x) = f(x-n), for n in the interval ]-, [, (5.4.19) (a) Sampling of the function f(x) by means of the Dirac comb; (b) Replication of the function f(x) after convolution by the Dirac comb. 19

20 5 Light coherence 5.5 Aperture synthesis ( ΠBb / λz' ) sin υ γ (0, B / λ) = 12 ΠBb / λz' = (5.5.2) Π Bb / λ z' = Π (5.5.3) Δ ~ λ / B, for a rectangular source. (5.5.4) Δ ~ 1.22 λ / B, for a circular source! (5.5.5) 20

21 5 Light coherence 5.5 Aperture synthesis Exercises ( ): point-like source?, double pointlike source with a flux ratio = 1?, gaussian-like source?, uniform disk source?, 21

La vraie faute est celle qu on ne corrige pas Confucius

La vraie faute est celle qu on ne corrige pas Confucius La vraie faute est celle qu on ne corrige pas Confucius An introduction to optical/ir interferometry Brief summary of main results obtained during the last lecture: V = γ (0,u, v) = 12 S I '(ζ,η)exp{ i2π(

More information

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline Lecture 9: Indirect Imaging 2 Outline 1 Two-Element Interferometer 2 Van Cittert-Zernike Theorem 3 Aperture Synthesis Imaging Cygnus A at 6 cm Image courtesy of NRAO/AUI Very Large Array (VLA), New Mexico,

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

Chapter 9 Spatial Coherence

Chapter 9 Spatial Coherence Chapter 9 Spatial Coherence [Continue reading: Goodman, Statistical Optics, Chapter 5 Again we use the interference experiment as a vehicle for discussing spatial coherence Young s double slit experiment

More information

Chapter 10 Spatial Coherence Part 2

Chapter 10 Spatial Coherence Part 2 EE90F Chapte0 Spatial Coherence Part Geometry of the fringe pattern: η ( ξ, η ) ξ y Qxy (, ) x ρ ρ r ( ξ, η ) P z pinhole plane viewing plane Define: z + ( x) +( η y) ξ r z + ( x) +( η y) ξ (0.) (0.) ρ

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Lecture notes: On web site NB outline notes! Textbooks: Hecht, Optics Lipson, Lipson and Lipson, Optical Physics Further reading: Brooker, Modern Classical Optics Problems:

More information

Optics for Engineers Chapter 11

Optics for Engineers Chapter 11 Optics for Engineers Chapter 11 Charles A. DiMarzio Northeastern University Nov. 212 Fourier Optics Terminology Field Plane Fourier Plane C Field Amplitude, E(x, y) Ẽ(f x, f y ) Amplitude Point Spread

More information

A Crash Course in Radio Astronomy and Interferometry: 2. Aperture Synthesis

A Crash Course in Radio Astronomy and Interferometry: 2. Aperture Synthesis A Crash Course in Radio Astronomy and Interferometry: 2. Aperture Synthesis James Di Francesco National Research Council of Canada North American ALMA Regional Center Victoria (thanks to S. Dougherty,

More information

Optics for Engineers Chapter 11

Optics for Engineers Chapter 11 Optics for Engineers Chapter 11 Charles A. DiMarzio Northeastern University Apr. 214 Fourier Optics Terminology Apr. 214 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides11r1 1 Fourier Optics

More information

Fourier Optics - Exam #1 Review

Fourier Optics - Exam #1 Review Fourier Optics - Exam #1 Review Ch. 2 2-D Linear Systems A. Fourier Transforms, theorems. - handout --> your note sheet B. Linear Systems C. Applications of above - sampled data and the DFT (supplement

More information

Spectroscopy Determination of Fundamental Parameters. I. Gravity II. Radii III. Temperature IV. Stellar Rotation

Spectroscopy Determination of Fundamental Parameters. I. Gravity II. Radii III. Temperature IV. Stellar Rotation Spectroscopy Determination of Fundamental Parameters I. Gravity II. Radii III. Temperature IV. Stellar Rotation Measuring the Gravity in Stars As we have seen a change in surface gravity or effective temperature

More information

Introduction to Linear Time-Invariant Systems

Introduction to Linear Time-Invariant Systems Introduction to Linear Time-Invariant Systems Marco Cagnazzo Multimedia Networking 1 Signal spaces Discrete-time signals (sequences) u: n Z u n C If n N, u n R, then u is referred to as a real sequence

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.13 INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) by A.J.Hobson 13.13.1 Introduction 13.13. The second moment of a volume of revolution about the y-axis 13.13.3

More information

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy Interference, Diffraction and Fourier Theory ATI 2014 Lecture 02! Keller and Kenworthy The three major branches of optics Geometrical Optics Light travels as straight rays Physical Optics Light can be

More information

GBS765 Electron microscopy

GBS765 Electron microscopy GBS765 Electron microscopy Lecture 1 Waves and Fourier transforms 10/14/14 9:05 AM Some fundamental concepts: Periodicity! If there is some a, for a function f(x), such that f(x) = f(x + na) then function

More information

27 Fraunhofer Diffraction

27 Fraunhofer Diffraction 27 Fraunhofer Diffraction Contents 27. Fraunhofer approximation 27.2 Rectangular aperture Keywords: Fraunhofer diffraction, Obliquity factor. Ref: M. Born and E. Wolf: Principles of Optics; R.S. Longhurst:

More information

Recent progress in SR interferometer

Recent progress in SR interferometer Recent progress in SR interferometer -for small beam size measurement- T. Mitsuhashi, KEK Agenda 1. Brief introduction of beam size measurement through SR interferometry. 2. Theoretical resolution of interferometry

More information

Fourier Matching. CS 510 Lecture #7 February 8 th, 2013

Fourier Matching. CS 510 Lecture #7 February 8 th, 2013 Fourier Matching CS 510 Lecture #7 February 8 th, 2013 Details are on the assignments page you have un4l Monday Programming Assignment #1 Source (Target) Images Templates Le4 Eye Right Eye Le4 Ear Nose

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Today s lecture The Fourier transform What is it? What is it useful for? What are its properties? Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Jean Baptiste Joseph Fourier

More information

Measurement of spatial coherence of light beams with shadows and digital micromirror device

Measurement of spatial coherence of light beams with shadows and digital micromirror device Measurement of spatial coherence of light beams with shadows and digital micromirror device AMAR NATH GHOSH Master of Science Thesis May 6 Department of Physics and Mathematics University of Eastern Finland

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is.

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is. The Energy Balance Consider a volume Ω enclosing a mass M and bounded by a surface δω. δω At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Coherence. This is based on. Chapter 10. Statistical Optics, Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich. and

Coherence. This is based on. Chapter 10. Statistical Optics, Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich. and Coherence This is based on Chapter 10. Statistical Optics, Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich and Lecture Note on Laser Technology and Optics Prof. Matti Kaivola Optics and

More information

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) Week 1: 8/26, 8/28 Week 2: 9/2, 9/4

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857)  Week 1: 8/26, 8/28 Week 2: 9/2, 9/4 IMGS 616-20141 p.1 Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) 3 July 2014 (TENTATIVE and subject to change) Note that I expect to be in Europe twice during the term: in Paris the week

More information

2 Two Random Variables

2 Two Random Variables Two Random Variables 19 2 Two Random Variables A number of features of the two-variable problem follow by direct analogy with the one-variable case: the joint probability density, the joint probability

More information

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 While these notes are under construction, I expect there will be many typos. The main reference for this is volume 1 of Hörmander, The analysis of liner

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes Jim Lambers ENERGY 8 Spring Quarter 7-8 Lecture 3 Notes These notes are based on Rosalind Archer s PE8 lecture notes, with some revisions by Jim Lambers. Introduction The Fourier transform is an integral

More information

G52IVG, School of Computer Science, University of Nottingham

G52IVG, School of Computer Science, University of Nottingham Image Transforms Fourier Transform Basic idea 1 Image Transforms Fourier transform theory Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x) is F ( u) f ( x)exp[ j2πux]

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Lecture notes: On web site NB outline notes! Textbooks: Hecht, Klein and Furtak, Lipson, Lipson and Lipson, Optical Physics Brooker, Modern Classical Problems: Material for

More information

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014 Math 3 - Spring 4 Solutions to Assignment # Completion Date: Thursday June, 4 Question. [p 67, #] Use residues to evaluate the improper integral x + ). Ans: π/4. Solution: Let fz) = below. + z ), and for

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Basis Decomposition Write a function as a weighted sum of basis functions f ( x) wibi(

More information

Fourier Series : Dr. Mohammed Saheb Khesbak Page 34

Fourier Series : Dr. Mohammed Saheb Khesbak Page 34 Fourier Series : Dr. Mohammed Saheb Khesbak Page 34 Dr. Mohammed Saheb Khesbak Page 35 Example 1: Dr. Mohammed Saheb Khesbak Page 36 Dr. Mohammed Saheb Khesbak Page 37 Dr. Mohammed Saheb Khesbak Page 38

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

17 Finite crystal lattice and its Fourier transform. Lattice amplitude and shape amplitude

17 Finite crystal lattice and its Fourier transform. Lattice amplitude and shape amplitude 17 FINITE CRYSTAL LATTICE. LATTICE AMPLITUDE AND SHAPE AMPLITUDE 1 17 Finite crystal lattice and its Fourier transform. Lattice amplitude and shape amplitude A finite lattice f x) a regularly distributed

More information

Chapter 5. Diffraction Part 2

Chapter 5. Diffraction Part 2 EE 430.43.00 06. nd Semester Chapter 5. Diffraction Part 06. 0. 0. Changhee Lee School of Electrical and Computer Engineering Seoul National niv. chlee7@snu.ac.kr /7 Changhee Lee, SN, Korea 5.5 Fresnel

More information

Interferometry Theory. Gerd Weigelt Max-Planck Institute for Radio Astronomy

Interferometry Theory. Gerd Weigelt Max-Planck Institute for Radio Astronomy Interferometry Theory Gerd Weigelt Max-Planck Institute for Radio Astronomy Plan Introduction: Diffraction-limited point spread function (psf) Atmospheric wave front degradation and atmosperic point spread

More information

Computer Vision & Digital Image Processing. Periodicity of the Fourier transform

Computer Vision & Digital Image Processing. Periodicity of the Fourier transform Computer Vision & Digital Image Processing Fourier Transform Properties, the Laplacian, Convolution and Correlation Dr. D. J. Jackson Lecture 9- Periodicity of the Fourier transform The discrete Fourier

More information

Fourier Transform Chapter 10 Sampling and Series

Fourier Transform Chapter 10 Sampling and Series Fourier Transform Chapter 0 Sampling and Series Sampling Theorem Sampling Theorem states that, under a certain condition, it is in fact possible to recover with full accuracy the values intervening between

More information

Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg

Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg Methoden moderner Röntgenphysik I Coherence based techniques II Christian Gutt DESY Hamburg christian.gutt@desy.de 8. January 009 Outline 18.1. 008 Introduction to Coherence 8.01. 009 Structure determination

More information

3Coherence.nb Optics 505- James C. Wyant (2000 Modified) 1 L E

3Coherence.nb Optics 505- James C. Wyant (2000 Modified) 1 L E 3Coherence.nb Optics 505- James C. Wyant (000 Modified) Coherence C - a) What is the maximum order of interference that can be observed before the fringe visibility becomes zero if the light source has

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Fourier Syntheses, Analyses, and Transforms

Fourier Syntheses, Analyses, and Transforms Fourier Syntheses, Analyses, and Transforms http://homepages.utoledo.edu/clind/ The electron density The electron density in a crystal can be described as a periodic function - same contents in each unit

More information

Lecture Kollbruner Section 5.2 Characteristics of Thin Walled Sections and.. Kollbruner Section 5.3 Bending without Twist

Lecture Kollbruner Section 5.2 Characteristics of Thin Walled Sections and.. Kollbruner Section 5.3 Bending without Twist Lecture 3-003 Kollbruner Section 5. Characteristics of Thin Walled Sections and.. Kollbruner Section 5.3 Bending without Twist thin walled => (cross section shape arbitrary and thickness can vary) axial

More information

Chapter 13 Partially Coherent Imaging, continued

Chapter 13 Partially Coherent Imaging, continued Chapter 3 Partially Coherent Imaging, continued As an example, a common illuminator design is one in which the source is imaged onto the object. This is known as critical illumination source - source has

More information

Lecture 16 February 25, 2016

Lecture 16 February 25, 2016 MTH 262/CME 372: pplied Fourier nalysis and Winter 2016 Elements of Modern Signal Processing Lecture 16 February 25, 2016 Prof. Emmanuel Candes Scribe: Carlos. Sing-Long, Edited by E. Bates 1 Outline genda:

More information

Imaging applications of Statistical Optics

Imaging applications of Statistical Optics Imaging applications of Statistical Optics Monday Radio Astronomy Michelson Stellar Interferometry Coherence Imaging Rotational Shear Interferometer (RSI) Wednesday Optical Coherence Tomography (OCT) 03/14/05

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma Chapter 4 Imaging Lecture 21 d (110) Imaging Imaging in the TEM Diraction Contrast in TEM Image HRTEM (High Resolution Transmission Electron Microscopy) Imaging or phase contrast imaging STEM imaging a

More information

Self-Characteristic Distributions

Self-Characteristic Distributions Self-Characteristic Distributions Aria Nosratinia Department of Electrical Engineering University of Texas at Dallas, Richardson, TX 7583 aria@utdallas.edu Ph: (97) 883-894 Abstract This paper investigates

More information

Optical Sciences Center, Rm 704 University of Arizona Tucson, AZ Office Hours: Call for appointment or see after class

Optical Sciences Center, Rm 704 University of Arizona Tucson, AZ Office Hours: Call for appointment or see after class Term: Spring 2000 Course #: OPTI 505 Course Title: Diffraction and Interferometry Instructor: James C. Wyant Optical Sciences Center, Rm 704 University of Arizona Tucson, AZ 85721 Phone: 520-621-2448 E-Mail:

More information

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched Introduction p. xvii Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched String p. 16 Velocities of Mechanical

More information

are harmonic functions so by superposition

are harmonic functions so by superposition J. Rauch Applied Complex Analysis The Dirichlet Problem Abstract. We solve, by simple formula, the Dirichlet Problem in a half space with step function boundary data. Uniqueness is proved by complex variable

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-33 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Introduction to two-dimensional digital signal processing Fabio Mammano University

More information

be the set of complex valued 2π-periodic functions f on R such that

be the set of complex valued 2π-periodic functions f on R such that . Fourier series. Definition.. Given a real number P, we say a complex valued function f on R is P -periodic if f(x + P ) f(x) for all x R. We let be the set of complex valued -periodic functions f on

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

2.710 Optics Spring 09 Solutions to Problem Set #7 Due Wednesday, Apr. 22, 2009

2.710 Optics Spring 09 Solutions to Problem Set #7 Due Wednesday, Apr. 22, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.710 Optics Spring 09 Solutions to Problem Set #7 Due Wednesday, Apr. 22, 2009 Problem 1: Zernicke phase mask For problem 1, general formulations for the 4 f system

More information

Folland: Real Analysis, Chapter 8 Sébastien Picard

Folland: Real Analysis, Chapter 8 Sébastien Picard Folland: Real Analysis, Chapter 8 Sébastien Picard Problem 8.3 Let η(t) = e /t for t >, η(t) = for t. a. For k N and t >, η (k) (t) = P k (/t)e /t where P k is a polynomial of degree 2k. b. η (k) () exists

More information

LABORATORY MODULE. EKT 241/4 ELECTROMAGNETIC THEORY Semester 2 (2009/2010) EXPERIMENT # 2

LABORATORY MODULE. EKT 241/4 ELECTROMAGNETIC THEORY Semester 2 (2009/2010) EXPERIMENT # 2 LABORATORY MODULE EKT 241/4 ELECTROMAGNETIC THEORY Semester 2 (2009/2010) EXPERIMENT # 2 Vector Analysis: Gradient And Divergence Of A Scalar And Vector Field NAME MATRIK # signature DATE PROGRAMME GROUP

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

ESS Dirac Comb and Flavors of Fourier Transforms

ESS Dirac Comb and Flavors of Fourier Transforms 6. Dirac Comb and Flavors of Fourier ransforms Consider a periodic function that comprises pulses of amplitude A and duration τ spaced a time apart. We can define it over one period as y(t) = A, τ / 2

More information

THEORY OF INTERFEROMETRY AND APERTURE SYNTHESIS

THEORY OF INTERFEROMETRY AND APERTURE SYNTHESIS THEORY OF INTERFEROMETRY AND APERTURE SYNTHESIS ABSTRACT. The basics of interferometry are covered in these lectures. We first discuss a simple interferometer and show that the output is proportional to

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information

NEUTRINO OSCILLATIONS IN EXTERNAL FIELDS IN CURVED SPACE-TIME. Maxim Dvornikov University of São Paulo, Brazil IZMIRAN, Russia

NEUTRINO OSCILLATIONS IN EXTERNAL FIELDS IN CURVED SPACE-TIME. Maxim Dvornikov University of São Paulo, Brazil IZMIRAN, Russia NEUTRINO OSCILLATIONS IN EXTERNAL FIELDS IN CURVED SPACE-TIME Maxim Dvornikov University of São Paulo, Brazil IZMIRAN, Russia Outline Brief review of the neutrino properties Neutrino interaction with matter

More information

General Warped Solution in 6d Supergravity. Christoph Lüdeling

General Warped Solution in 6d Supergravity. Christoph Lüdeling General Warped Solution in 6d Supergravity Christoph Lüdeling DESY Hamburg DPG-Frühjahrstagung Teilchenphysik H. M. Lee, CL, JHEP 01(2006) 062 [arxiv:hep-th/0510026] C. Lüdeling (DESY Hamburg) Warped 6d

More information

Introduction to. Crystallography

Introduction to. Crystallography M. MORALES Introuction to Crystallography magali.morales@ensicaen.fr Classification of the matter in 3 states : Crystallise soli liqui or amorphous gaz soli Crystallise soli : unique arrangement of atoms

More information

Atmospheric turbulence: Seeing

Atmospheric turbulence: Seeing Chapter 4 Atmospheric turbulence: Seeing The Earth s atmosphere can be regarded as a dielectric medium which affects the radiation that passes through it. Not only does it absorb and emit radiation, it

More information

2.710 Optics Spring 09 Solutions to Problem Set #6 Due Wednesday, Apr. 15, 2009

2.710 Optics Spring 09 Solutions to Problem Set #6 Due Wednesday, Apr. 15, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.710 Optics Spring 09 Solutions to Problem Set #6 Due Wednesday, Apr. 15, 009 Problem 1: Grating with tilted plane wave illumination 1. a) In this problem, one dimensional

More information

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on.

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on. hapter 3 The Residue Theorem Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on. - Winston hurchill 3. The Residue Theorem We will find that many

More information

The Dirac δ-function

The Dirac δ-function The Dirac δ-function Elias Kiritsis Contents 1 Definition 2 2 δ as a limit of functions 3 3 Relation to plane waves 5 4 Fourier integrals 8 5 Fourier series on the half-line 9 6 Gaussian integrals 11 Bibliography

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

Chapter 6 SCALAR DIFFRACTION THEORY

Chapter 6 SCALAR DIFFRACTION THEORY Chapter 6 SCALAR DIFFRACTION THEORY [Reading assignment: Hect 0..4-0..6,0..8,.3.3] Scalar Electromagnetic theory: monochromatic wave P : position t : time : optical frequency u(p, t) represents the E or

More information

Wide-Field Imaging: I

Wide-Field Imaging: I Wide-Field Imaging: I S. Bhatnagar NRAO, Socorro Twelfth Synthesis Imaging Workshop 010 June 8-15 Wide-field imaging What do we mean by wide-field imaging W-Term: D Fourier transform approximation breaks

More information

Applications of Statistical Optics

Applications of Statistical Optics Applications of Statistical Optics Radio Astronomy Michelson Stellar Interferometry Rotational Shear Interferometer (RSI) Optical Coherence Tomography (OCT) Apps of Stat Optics p-1 Radio Telescope (Very

More information

Principles of Interferometry. Hans-Rainer Klöckner IMPRS Black Board Lectures 2014

Principles of Interferometry. Hans-Rainer Klöckner IMPRS Black Board Lectures 2014 Principles of Interferometry Hans-Rainer Klöckner IMPRS Black Board Lectures 2014 acknowledgement Mike Garrett lectures James Di Francesco crash course lectures NAASC Lecture 5 calibration image reconstruction

More information

Solution Set #1

Solution Set #1 05-738-0083 Solution Set # i. Evaluate δ [SINC []] = δ sin[π] π Recall relation for Dirac delta function wit functional argument (Fourier Metods, δ [g []] = δ [ 0] (6.38) dg =0 Te SINC function as zeros

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

2.6 Oseen s improvement for slow flow past a cylinder

2.6 Oseen s improvement for slow flow past a cylinder Lecture Notes on Fluid Dynamics.63J/.J) by Chiang C. Mei, MIT -6oseen.tex [ef] Lamb : Hydrodynamics.6 Oseen s improvement for slow flow past a cylinder.6. Oseen s criticism of Stokes approximation Is Stokes

More information

Math 341: Probability Eighteenth Lecture (11/12/09)

Math 341: Probability Eighteenth Lecture (11/12/09) Math 341: Probability Eighteenth Lecture (11/12/09) Steven J Miller Williams College Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public html/341/ Bronfman Science Center Williams

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

Fourier analysis, measures, and distributions. Alan Haynes

Fourier analysis, measures, and distributions. Alan Haynes Fourier analysis, measures, and distributions Alan Haynes 1 Mathematics of diffraction Physical diffraction As a physical phenomenon, diffraction refers to interference of waves passing through some medium

More information

Governing Equations of Fluid Dynamics

Governing Equations of Fluid Dynamics Chapter 3 Governing Equations of Fluid Dynamics The starting point of any numerical simulation are the governing equations of the physics of the problem to be solved. In this chapter, we first present

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

The Helmholtz theorem at last!

The Helmholtz theorem at last! Problem. The Helmholtz theorem at last! Recall in class the Helmholtz theorem that says that if if E =0 then E can be written as E = φ () if B =0 then B can be written as B = A (2) (a) Let n be a unit

More information

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM DD2423 Image Processing and Computer Vision DISCRETE FOURIER TRANSFORM Mårten Björkman Computer Vision and Active Perception School of Computer Science and Communication November 1, 2012 1 Terminology:

More information

Solutions of differential equations using transforms

Solutions of differential equations using transforms Solutions of differential equations using transforms Process: Take transform of equation and boundary/initial conditions in one variable. Derivatives are turned into multiplication operators. Solve (hopefully

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

A SOLUTION TO SHEIL-SMALL S HARMONIC MAPPING PROBLEM FOR POLYGONS. 1. Introduction

A SOLUTION TO SHEIL-SMALL S HARMONIC MAPPING PROBLEM FOR POLYGONS. 1. Introduction A SOLUTION TO SHEIL-SMALL S HARMONIC MAPPING PROLEM FOR POLYGONS DAOUD SHOUTY, ERIK LUNDERG, AND ALLEN WEITSMAN Abstract. The problem of mapping the interior of a Jordan polygon univalently by the Poisson

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions FOURIER TRANSFORMS. Fourier series.. The trigonometric system. The sequence of functions, cos x, sin x,..., cos nx, sin nx,... is called the trigonometric system. These functions have period π. The trigonometric

More information

Fourier transform = F. Introduction to Fourier Optics, J. Goodman Fundamentals of Photonics, B. Saleh &M. Teich. x y x y x y

Fourier transform = F. Introduction to Fourier Optics, J. Goodman Fundamentals of Photonics, B. Saleh &M. Teich. x y x y x y Fourier transform Introduction to Fourier Optics, J. Goodman Fundamentals of Photonics, B. Saleh &M. Teich f( x, y) FT g( f, f ) f( x, y) IFT g( f, f ) x x y y + 1 { g( f, ) } x fy { π } f( x, y) = g(

More information

Adaptive Optics Lectures

Adaptive Optics Lectures Adaptive Optics Lectures 1. Atmospheric turbulence Andrei Tokovinin 1 Resources CTIO: www.ctio.noao.edu/~atokovin/tutorial/index.html CFHT AO tutorial: http://www.cfht.hawaii.edu/instruments/imaging/aob/other-aosystems.html

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

On the FPA infrared camera transfer function calculation

On the FPA infrared camera transfer function calculation On the FPA infrared camera transfer function calculation (1) CERTES, Université Paris XII Val de Marne, Créteil, France (2) LTM, Université de Bourgogne, Le Creusot, France by S. Datcu 1, L. Ibos 1,Y.

More information

Sta$s$cal Op$cs Speckle phenomena in Op$cs. Groupe d op$que atomique Bureau R2.21

Sta$s$cal Op$cs Speckle phenomena in Op$cs. Groupe d op$que atomique Bureau R2.21 Sta$s$cal Op$cs Speckle phenomena in Op$cs Vincent.josse@ins$tutop$que.fr Groupe d op$que atomique Bureau R2.21 Diffrac$on from a rough surface (Fourier speckle) Eample Star imaging through turbulence

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations by Peter J Olver Page ix Corrections to First Printing (2014) Last updated: May 2, 2017 Line 7: Change In order the make progress to In order to make progress

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2. 3. Fourier ransorm From Fourier Series to Fourier ransorm [, 2] In communication systems, we oten deal with non-periodic signals. An extension o the time-requency relationship to a non-periodic signal

More information

MATH 423 Linear Algebra II Lecture 3: Subspaces of vector spaces. Review of complex numbers. Vector space over a field.

MATH 423 Linear Algebra II Lecture 3: Subspaces of vector spaces. Review of complex numbers. Vector space over a field. MATH 423 Linear Algebra II Lecture 3: Subspaces of vector spaces. Review of complex numbers. Vector space over a field. Vector space A vector space is a set V equipped with two operations, addition V V

More information