ONE-DIMENSIONAL CIRCULAR DIFFRACTION PATTERNS

Size: px
Start display at page:

Download "ONE-DIMENSIONAL CIRCULAR DIFFRACTION PATTERNS"

Transcription

1 274 Surface Science 222 (1989) North-Holland, Amsterdam ONE-DIMENSIONAL CIRCULAR DIFFRACTION PATTERNS Hiroshi DAIMON and Shozo IN0 Department 5f Pkysics, Faculty of Science, University 5j Tokyo, Hongo, ~unkyo-k~ Tokyo ii3, Japan Received 23 February 1989; accepted for publication 5 June 1989 Circular diffraction patterns from a bulk crystal have been found in MEED patterns by using a newly developed two-dimensional spherical mirror analyzer. From the analysis of the energy dependence of their radii and from the fact that they are not associated with the tangential Kikuchi lines, the circles were interpreted by the concept of one-dimensional diffraction along the crystallographic axes. The hemi-circular patterns, which have been observed in RHEED patterns near superstructurat spots from a surface structure, were also explained by this concept. 1. Introduction The concept of diffraction from a one-dimensional atomic row was first discussed by Emslie [l]. He found a hemi-circle in the RHEED (reflection high energy electron diffraction) pattern and considered it a result of one-dimensional diffraction. Tillman [2] studied the hen&circle quantitatively and deduced that they were a one-dimensional Kikuchi pattern. After that, Shinohara [3] considered it as a Kikuchi envelope because the her&circles are always associated with many Kikuchi lines and often they look like a polygon. Because the radii of the circles of a one-dimensional Kikuchi pattern and those of a Kikuchi-envelope are equal, the concept of one-dimensional diffraction is not a definite one at present and usually the circles are considered as a Kikuchi envelope. Very recently, Peng et al. [4] re-examined the concept of one-dimensional diffraction using the idea of surface channeling of electrons along rows of atoms parallel to the crystal surface in the condition of surface wave resonance. In the present study, we found a full-circle diffraction pattern for the first time in a MEED (medium energy electron diffraction) pattern. Although it seems to be the result of one-dimensional diffraction, the concept of channeling of surface wave resonance is not readily applicable /89/$ Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

2 H. Daimon, S. ho / One-dimensional circular diffraction patterns Experiment The experiments were performed with a spherical mirror analyzer [5,6], which has been developed recently by ourselves. By using this analyzer, the pattern of a two-dimensional angular-distribution of charged particles emitted from a surface for a given kinetic energy can be directly observed. Fig. 1 shows a schematic diagram of the analyzer. It consists of a hemispherical grid G, a hemispherical electrode D, a small aperture A, six guard rings GR, and a two-dimensional detection system, which consists of a pair of microchannel plates M and a phosphorous screen P. The radius of D is twice as large as G. The centers 0 of the two hemispheres are common and their great circles are in the same plane, which is perpendicular to the paper in fig. 1, including 0, A, and S. The sample S and the aperture A in this plane, are symmetric with respect to 0. When particles of energy E (ev) are analyzed, the grid G is earthed and a potential E (V) is applied to the electrode D. Then all the particles emitted from the sample surface that have the same kinetic energy E converge at the exit aperture and pass through it, giving their angular distribution on the two-dimensional detector. The small electron gun e, used in the present experiment, was mounted inside the grid. 3. Results and discussion Figs. 2a and 2c show diffraction patterns taken from a clean Si(ll1) surface using the newly developed analyzer. The energies of the electrons in 2a and 2c are 3 kev and 1.5 kev, respectively. The energy resolution is about 1% in the whole display region except at the horizontal band AB just below the center of the screen. The resolution at the horizontal band AB is worse than 4% and the Fig. 1. A schematic diagram of a newly developed spherical mirror analyzer. G is a hemispherical grid, D a hemispherical electrode, A a smal aperture, M a pair of microchannel plates, and P a phosphorous screen. GR are guard rings. The small electron gun e, used in the present experiment, is mounted inside the grid.

3 signal to background ratio is poor. Although the method of measurement is peculiar, the patterns obtained are essentially the usual MEED patterns. The incidence angle of the electrons is 45 o and the screen is placed parallel to the Fig. 2. Circular diffraction patterns observed in the MEED pattern from clean Si(111)7 X 7, taken by using the newly developed spherical mirror analyzer. (a) and (c) are the patterns with electron energies of 3 kev and 1.5 kev, respectively. (b) and (d) are the calculated patterns using eq. (2) for the patterns (a) and (c). respectively.

4 H. Daimon, S. Ino / One-dimensional circdar ~iffrac~~o~ parterns Fig. 2. Continued. surface. The shadow of the electron gun is seen in the upper left part of the screen. In figs. 2a and 2c, many circles are observed around the zone axes together with three major Kikuchi bands. Their radii increase as the electron energy decreases. The centers of these circles always coincide with the zone axes.

5 278 H. Daimon, S. Inno / One-&men&ma1 circular diffraction patterns Fig. 3. Schematic representation of one-dimensional diffraction of a spherical wave I,!J emitted from an atom A. Hence, these circles are considered to be the result of diffraction from a one-dimensional atomic row along those axes. The me~urement was done below 3.3 kev, since the resistance voltage of the apparatus was not so high. The Kikuchi bands and the circular patterns were always observed for electron energies above 1 kev. The circular patterns and the Kikuchi bands became clear as the incident energy increased. The circular patterns sometimes looked like circles made of arc (fig. 2c) or sometimes looked like disks (fig. 2a). This difference is similar to that between Kikuchi lines and Kikuchi bands. The analysis was made in the following way. Consider an atom A in a linear regular row of spacing a as shown in fig. 3. A spherical wave 4 is created at the atom A by inelastic scattering of the incident electron. Part of the spherical wave that propagates toward atoms B, C, and D is elastically scattered by those atoms and creates scattered waves $J, I/J* etc. Interference occurs constructively in the cone whose angle from the axis is 8, when the path-length difference is an integral multiple of the wavelength of the electron: a(1 - cos 19) = nx, (1) where n is an integer and X is the wave length of the electron. When n = 1, eq. (1) becomes: cos 0= 1 --X/a. (2) Figs. 2b and 2d show the calculated patterns using eq. (2) for those energies which correspond to figs. 2a and 2c, respectively, where the innerpotential was set to 12 ev in the calculation of h. The value 12 ev was obtained by RHEED rod intensity analysis [7]. The Kikuchi bands are also calculated in the usual manner. The interatomic spacing a used in the one-dimensional diffraction (eq. (2)) and the interplanar spacing d used in the calculation of the Kikuchi bands are much different. The Kikuchi bands seen in the figure originate from (110) planes, etc., whose spacing is 1.92 A (= fia,/4). In the notation of reciprocal space, the bands originate from (220) reflections. The spacing al,,, in one-dimensional diffraction for the [IlO] axis is not 1.92 A for the inter-planar spacing but 3.84 A (= fia,/2) for the interatomic spacing in the [llo] direction as seen in fig. 4. Similarly, a,,1 and aill for the [112] and [ill]

6 H. Daimon, S. Ino / One-dimensional circular diffraction patterns 219 [loll Fig. 4. Structure of the silicon lattice. The long broken lines show the unit of one-dimensional diffraction, a in eqs. (1) and (2), for each axis. directions are 6.65 and 9.41 A, respectively. These spacings are also much different from those corresponding to the interplanar spacing of 1.11 and 3.14.& respectively. The calculated patterns using these spacings reproduced the observed patterns quantitatively well at all energies used in the measurement. In the following we discuss the difference between the Kikuchi envelope and the one-dimensional diffraction pattern. Her&circles have commonly been observed in RHEED experiments on flat surfaces. Fig. 5 [8,9] shows a RHEED pattern from a clean Si(111)7 X 7 surface. The circle denoted KE is Fig. 5. RHEED pattern from clean.%(111)7x7 with [llo] incidence at an electron energy of 20 kev.

7 280 H. Daimon, S. Ino / One-dimensionai circular diffraction patterns the same kind of circle that Emslie [l], Tillman [2], and Peng et al. [4] considered to be originating from a one-dimensional diffraction and for a long time we considered it as the Kikuchi envelope. This circle corresponds to the circular pattern for [110] in fig. 2. The distinction between the Kikuchi envelope and the circle from a one-dimensional diffraction is very difficult because the positions and the radii of both circles are the same, and the circle is always associated with many Kikuchi lines in the RHEED energy region unlike in the MEED region. Moreover, the circle sometimes looks like a polygon. Hence, the circle is sometimes really a Kikuchi envelope. It cannot be excluded, however, that the circle from a one-dimensional diffraction overlaps the Kikuchi envelope. In the MEED experiment in fig. 2, the Kikuchi lines cannot be seen. Hence, the circle in the MEED region is considered to be the circle from a one-dimensional diffraction. In fig. 5, additional circles R,-R, are observed. These circles cannot be explained by the three-dimensional Kikuchi envelope. Recently, researchers [9,10] noticed them but the origin has not been understood. These circles can also be explained by one-dimensional diffraction using the interatomic spacing in the linear chain in the superstructure lattice. The interatomic spacing u,~+, in this case should be the unit mesh size of the 7 X 7 reconstructed surface. The radius of the circle R, is explained by eq. (1) with IPI = n. For example the circle R, can be explained by eq. (1) with n = 2 and a = 7 X allo, where ul10 is the interatomic spacing along the [llo] axis, 3.84 A. These circles are not associated with Kikuchi lines. Hence, these are the circles from the one-dimensional diffraction by surface atomic rows. Although the origin of the circle near the fundament~ spots, for instance KE, in the RHEED pattern is not definite, the circles near the superstructural spots, for instance RI-R,, are explained as the circles from the one-dimensional diffraction. The circles R,-R, can be explained by the idea of surface axial channeling of Peng et al. [4] as well as KE. In the MEED energy region (< 3 kev), however, this concept is not readily applicable because the channeling of an electron is not likely to take place below 50 kev [ll]. The wave function of the channeling wave below about 50 kev is s like, the maximum density of which is on the atomic nuclei. The mean free path of the channeling wave near the nuclei is short because the probability of inelastic scattering is large. The fact that Kikuchi lines cannot be seen in the MEED pattern suggests that a mechanism exists which concentrates the wave within the atomic row and that the scattering along a one-dimensinal chain is stronger than other scattering. The intensity ratio between the circle and Kikuchi lines, which make the Kikuchi envelopes, is considered to be the ratio between the waves confined in the row and the waves outside the row. Although the reason is not clear at present, the experimental results suggest that the wave is likely to propagate along one-dimensional axes.

8 H. Daimon, S. Ino / One-dimensional circular diffraction patterns 281 Although it is only a supposition at present, the following idea may help to understand why the wave is likely to be confined along the axis. When an atom is located near the origin of the spherical wave, the wave field behind the atom increases because the forward scattering is strong. This effect collects the waves along the axis. Hence, the wave field along axes will be stronger than along other regions. This ratio is roughly estimated to be the ratio between the total elastic scattering cross section of the nearest neighbour atom at distance r in the row and all solid angles 4?rr *. This ratio increases as the kinetic energy decreases because the cross section increases as the kinetic energy decreases. Hence, the probability of the forward scattering and the probability of the wave field along the axis in the MEED energy region is considered to be higher than that in the RHEED energy region. 4. Summary So far the observation of circles has been limited in the RHEED patterns from flat surfaces, and the circles were hen&circles. The present work showed that: (1) one-dimensional diffraction can occur not only at surfaces but also in bulk, so surface wave resonance is not necessary, (2) one-dimensional diffraction can occur in the MEED energy region below 3 kev, and (3) the circles observed were full-circles. The reason why these patterns have not been observed so far may be that the energy resolution used during previous experiments of MEED was worse than the present one. The energy selection method in usual diffraction experiments is a retarding grid method. Hence, in the MEED or HEED energy region, it is difficult to supply a high retarding voltage to the grids, which are usually composed with narrow spacings. The spacing of the electrodes of the new analyzer used here is very large, and a high voltage is easily supplied to them. Acknowledgements The authors wish to thank Professor A. Ichimiya for stimulating discussions. This work was supported by a Grant in Aid for Special Distinguished Research Project ( ) from the Ministry of Education, Science and Culture. References [l] A.G. Emslie, Phys. Rev. 45 (1934) 43. [2] J.R. Tillman, Phil. Mag. S (1935) 485.

9 282 H. Daimon, S. Ino / One-dimensional circular diffraction patterns [3] K. Shinohara, Phys. Rev. 47 (1935) 730. [4] L.M. Peng, J.M. Cowley and Nan Yao, Ultramicroscopy 26 (1988) 189. [5] H. Daimon, Rev. Sci. Instr. 59 (1988) 545. [6] H. Daimon and S. Ino, J. Vacuum Sot. Japan 31 (1988) 954. [7] J.F. Menadue, Acta Cryst. A 28 (1972) 1. [8] S. Ino, Japan. J. Appl. Phys. 16 (1977) 891. [9] S. Ino, Japan. J. Appl. Phys. 17 (1978) [lo] Y. Gotoh and S. Ino, Japan. J. Appl. Phys. 17 (1978) [ll] K. Kambe, G. Lehmpfuhl and F. Fujimoto, Z. Naturforsch. 29a (1974) 1034.

disordered, ordered and coherent with the substrate, and ordered but incoherent with the substrate.

disordered, ordered and coherent with the substrate, and ordered but incoherent with the substrate. 5. Nomenclature of overlayer structures Thus far, we have been discussing an ideal surface, which is in effect the structure of the topmost substrate layer. The surface (selvedge) layers of the solid however

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

Crystal Structure and Electron Diffraction

Crystal Structure and Electron Diffraction Crystal Structure and Electron Diffraction References: Kittel C.: Introduction to Solid State Physics, 8 th ed. Wiley 005 University of Michigan, PHY441-44 (Advanced Physics Laboratory Experiments, Electron

More information

4. Other diffraction techniques

4. Other diffraction techniques 4. Other diffraction techniques 4.1 Reflection High Energy Electron Diffraction (RHEED) Setup: - Grazing-incidence high energy electron beam (3-5 kev: MEED,

More information

Structure of Surfaces

Structure of Surfaces Structure of Surfaces C Stepped surface Interference of two waves Bragg s law Path difference = AB+BC =2dsin ( =glancing angle) If, n =2dsin, constructive interference Ex) in a cubic lattice of unit cell

More information

The University of Hong Kong Department of Physics

The University of Hong Kong Department of Physics The University of Hong Kong Department of Physics Physics Laboratory PHYS3551 Introductory Solid State Physics Experiment No. 3551-2: Electron and Optical Diffraction Name: University No: This experiment

More information

desorption (ESD) of the O,/Si( 111) surface K. Sakamoto *, K. Nakatsuji, H. Daimon, T. Yonezawa, S. Suga

desorption (ESD) of the O,/Si( 111) surface K. Sakamoto *, K. Nakatsuji, H. Daimon, T. Yonezawa, S. Suga -!!!I c%sj ELSEVIER Surface Science 306 (1994) 93-98.:.:.j:::~:::~~~::::::~:~::~~:~~,:~.~...,.. ~. :...:E.:.:: :.:.::::::~.:.:.:.:.:.:.,:.:,:,:. ~.~:+::.:.::::::j:::~::::.:...( ~ :.:.::.:.:.:,:..:,: :,,...

More information

ELECTRON CURRENT IMAGE DIFFRACTION FROM CRYSTAL SURFACES AT LOW ENERGIES

ELECTRON CURRENT IMAGE DIFFRACTION FROM CRYSTAL SURFACES AT LOW ENERGIES C. BRENT BARGERON, A. NORMAN JETTE, and BERRY H. NALL ELECTRON CURRENT IMAGE DIFFRACTION FROM CRYSTAL SURFACES AT LOW ENERGIES Low-energy electron diffraction patterns in current images of crystal surfaces

More information

Electron Diffraction

Electron Diffraction Electron iffraction o moving electrons display wave nature? To answer this question you will direct a beam of electrons through a thin layer of carbon and analyze the resulting pattern. Theory Louis de

More information

Physics 100 PIXE F06

Physics 100 PIXE F06 Introduction: Ion Target Interaction Elastic Atomic Collisions Very low energies, typically below a few kev Surface composition and structure Ion Scattering spectrometry (ISS) Inelastic Atomic Collisions

More information

Introduction to X-ray and neutron scattering

Introduction to X-ray and neutron scattering UNESCO/IUPAC Postgraduate Course in Polymer Science Lecture: Introduction to X-ray and neutron scattering Zhigunov Alexander Institute of Macromolecular Chemistry ASCR, Heyrovsky sq., Prague -16 06 http://www.imc.cas.cz/unesco/index.html

More information

3.012 Structure An Introduction to X-ray Diffraction

3.012 Structure An Introduction to X-ray Diffraction 3.012 Structure An Introduction to X-ray Diffraction This handout summarizes some topics that are important for understanding x-ray diffraction. The following references provide a thorough explanation

More information

Brown University PHYS 0060 Physics Department LAB B -190

Brown University PHYS 0060 Physics Department LAB B -190 Physics Department LAB B -190 THE FORCE OF A MAGNETIC FIELD ON A MOVING ELECTRIC CHARGE DETERMINATION OF THE RATIO OF CHARGE TO MASS, e/m, FOR ELECTRONS References: H.D. Young, University Physics, Eleventh

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

A NEW LEED INSTRUMENT FOR QUANTITATIVE SPOT PROFILE ANALYSIS

A NEW LEED INSTRUMENT FOR QUANTITATIVE SPOT PROFILE ANALYSIS A NEW LEED INSTRUMENT FOR QUANTITATIVE SPOT PROFILE ANALYSIS U. Scheithauer, G. Meyer and M. Henzler Institut für Festkörperphysik, Universität Hannover, Appelstr. 2 Keywords LEED, spot profile analysis,

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

Basic structure of SEM

Basic structure of SEM Table of contents Basis structure of SEM SEM imaging modes Comparison of ordinary SEM and FESEM Electron behavior Electron matter interaction o Elastic interaction o Inelastic interaction o Interaction

More information

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2 Photoelectron spectroscopy Instrumentation Nanomaterials characterization 2 RNDr. Věra V Vodičkov ková,, PhD. Photoelectron Spectroscopy general scheme Impact of X-ray emitted from source to the sample

More information

48 K. B. Korotchenko, Yu. L. Pivovarov, Y. Takabayashi where n is the number of quantum states, L is the normalization length (N = 1 for axial channel

48 K. B. Korotchenko, Yu. L. Pivovarov, Y. Takabayashi where n is the number of quantum states, L is the normalization length (N = 1 for axial channel Pis'ma v ZhETF, vol. 95, iss. 8, pp. 481 { 485 c 01 April 5 Quantum Eects for Parametric X-ray Radiation during Channeling: Theory and First Experimental Observation K. B. Korotchenko 1), Yu. L. Pivovarov,

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

Silver Thin Film Characterization

Silver Thin Film Characterization Silver Thin Film Characterization.1 Introduction Thin films of Ag layered structures, typically less than a micron in thickness, are tailored to achieve desired functional properties. Typical characterization

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center Film Characterization Tutorial G.J. Mankey, 01/23/04 Theory vs. Experiment A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the

More information

CHANNELING IN DIRECT DARK MATTER DETECTION

CHANNELING IN DIRECT DARK MATTER DETECTION CHANNELING IN DIRECT DARK MATTER DETECTION Nassim Bozorgnia UCLA Based on work in progress with G. Gelmini and P. Gondolo SNOWPAC 2010 Outline Channeling and blocking in crystals Channeling effect in direct

More information

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY S. Hara, T. Kumagai, S. Izumi and S. Sakai Department of mechanical engineering, University of

More information

Ultrafast Electron Crystallography: Principles and Dynamics

Ultrafast Electron Crystallography: Principles and Dynamics 15 Chapter 2 Ultrafast Electron Crystallography: Principles and Dynamics Part of this chapter was adapted from D.-S. Yang, N. Gedik, A. H. Zewail, J. Phys. Chem. C 111, 4889 (2007). 16 Introduction The

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomic and Nuclear Physics Introductory experiments ualism of wave and particle L Physics Leaflets P6.1.5.1 iffraction of electrons in a polycrystalline lattice (ebye-scherrer diffraction) Objects of the

More information

MICRO-FOUR-POINT PROBES IN A UHV SCANNING ELECTRON MICROSCOPE FOR IN-SITU SURFACE-CONDUCTIVITY MEASUREMENTS

MICRO-FOUR-POINT PROBES IN A UHV SCANNING ELECTRON MICROSCOPE FOR IN-SITU SURFACE-CONDUCTIVITY MEASUREMENTS Surface Review and Letters, Vol. 7, Nos. 5 & 6 (2000) 533 537 c World Scientific Publishing Company MICRO-FOUR-POINT PROBES IN A UHV SCANNING ELECTRON MICROSCOPE FOR IN-SITU SURFACE-CONDUCTIVITY MEASUREMENTS

More information

Fluctuation Suppression during the ECH Induced Potential Formation in the Tandem Mirror GAMMA 10

Fluctuation Suppression during the ECH Induced Potential Formation in the Tandem Mirror GAMMA 10 EXC/P8-2 Fluctuation Suppression during the ECH Induced Potential Formation in the Tandem Mirror GAMMA M. Yoshikawa ), Y. Miyata ), M. Mizuguchi ), Y. Oono ), F. Yaguchi ), M. Ichimura ), T. Imai ), T.

More information

Weak-Beam Dark-Field Technique

Weak-Beam Dark-Field Technique Basic Idea recall bright-field contrast of dislocations: specimen close to Bragg condition, s î 0 Weak-Beam Dark-Field Technique near the dislocation core, some planes curved to s = 0 ) strong Bragg reflection

More information

Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy

Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy N. Shibata, S.D. Findlay, H. Sasaki, T. Matsumoto, H. Sawada, Y. Kohno, S. Otomo, R. Minato and Y. Ikuhara

More information

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å)

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å) Crystallography: neutron, electron, and X-ray scattering from periodic lattice, scattering of waves by periodic structures, Miller indices, reciprocal space, Ewald construction. Diffraction: Specular,

More information

Experiment 12 ELECTRON DIFFRACTION. Diffraction by Graphite 1. Diffraction by Aluminum 3. The Electron Diffraction Apparatus 5

Experiment 12 ELECTRON DIFFRACTION. Diffraction by Graphite 1. Diffraction by Aluminum 3. The Electron Diffraction Apparatus 5 1-i Experiment 1 ELECTRON DIFFRACTION Introduction 1 Diffraction by Graphite 1 Diffraction by Aluminum 3 The Electron Diffraction Apparatus 5 Procedure and Analysis 6 References 7 Prelab Problems 8 Appendix

More information

V 11: Electron Diffraction

V 11: Electron Diffraction Martin-Luther-University Halle-Wittenberg Institute of Physics Advanced Practical Lab Course V 11: Electron Diffraction An electron beam conditioned by an electron optical system is diffracted by a polycrystalline,

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/44295 holds various files of this Leiden University dissertation. Author: Badan, C. Title: Surface-structure dependence of water-related adsorbates on platinum

More information

Overview of scattering, diffraction & imaging in the TEM

Overview of scattering, diffraction & imaging in the TEM Overview of scattering, diffraction & imaging in the TEM Eric A. Stach Purdue University Scattering Electrons, photons, neutrons Radiation Elastic Mean Free Path (Å)( Absorption Length (Å)( Minimum Probe

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Millikan determined the charge on individual oil droplets using an arrangement as represented in the diagram. The plate voltage necessary to hold a charged droplet stationary

More information

Atomic Diffraction Microscope of the de Broglie Waves

Atomic Diffraction Microscope of the de Broglie Waves ISSN 5-66X, Laser Physics,, Vol., No., pp. 7 5. Pleiades Publishing, Ltd.,. Original Russian Text Astro, Ltd.,. PAPERS Atomic Diffraction Microscope of the de Broglie Waves V. I. Balykin Institute of Spectroscopy,

More information

PHYSICS 202 FINAL EXAM Wednesday, May 12, 2004, 8-10 am SECTION:

PHYSICS 202 FINAL EXAM Wednesday, May 12, 2004, 8-10 am SECTION: PHYSICS 202 FINAL EXAM Wednesday, May 12, 2004, 8-10 am NAME: SECTION: 517 518 519 520 Note: 517 Recitation Mon 4:10 518 Recitation Wed 10:20 519 Recitation Wed 8:00 520 Recitation Mon 1:50 There are a

More information

CHARGE TO MASS RATIO FOR THE ELECTRON

CHARGE TO MASS RATIO FOR THE ELECTRON CHARGE TO MASS RATIO FOR THE ELECTRON OBJECTIVE: To measure the ratio of the charge of an electron to its mass. METHOD: A stream of electrons is accelerated by having them "fall" through a measured potential

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Downloaded from

Downloaded from Question 10.1: Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected, and (b) refracted light? Refractive index

More information

Exam 3--PHYS 202--S10

Exam 3--PHYS 202--S10 ame: Exam 3--PHYS 202--S0 Multiple Choice Identify the choice that best completes the statement or answers the question A person uses a convex lens that has a focal length of 25 cm to inspect a gem The

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Solid State Physics 460 - Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Diffraction (Bragg Scattering) from a powder of crystallites - real example of image at right from http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

More information

Lab 2: Mach Zender Interferometer Overview

Lab 2: Mach Zender Interferometer Overview Lab : Mach Zender Interferometer Overview Goals:. Study factors that govern the interference between two light waves with identical amplitudes and frequencies. Relative phase. Relative polarization. Learn

More information

1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (3)

1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (3) 1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (b) The spreadsheet shown approximately models the behaviour of an alpha particle as it approaches a gold nucleus. The proton number

More information

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice Chapter 5 Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice In chapter 3 and 4, we have demonstrated that the deformed rods, rotational rods and perturbation

More information

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space We have seen that diffraction occurs when, in reciprocal space, Let us now plot this information. Let us designate

More information

Chapter 20: Convergent-beam diffraction Selected-area diffraction: Influence of thickness Selected-area vs. convergent-beam diffraction

Chapter 20: Convergent-beam diffraction Selected-area diffraction: Influence of thickness Selected-area vs. convergent-beam diffraction 1 Chapter 0: Convergent-beam diffraction Selected-area diffraction: Influence of thickness Selected-area diffraction patterns don t generally get much better when the specimen gets thicker. Sometimes a

More information

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Zhigang Chen, Xu Li, Allen Taflove, and Vadim Backman We report what we believe to be a novel backscattering

More information

Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI

Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI atomic chains encapsulated in DWNTs, respectively.

More information

Exercise 1 Atomic line spectra 1/9

Exercise 1 Atomic line spectra 1/9 Exercise 1 Atomic line spectra 1/9 The energy-level scheme for the hypothetical one-electron element Juliettium is shown in the figure on the left. The potential energy is taken to be zero for an electron

More information

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr SET: 1 General Instructions:- DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry

More information

MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD

MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD When the velocity of a charged particle is perpendicular to a uniform magnetic field, the particle moves in a circular path in a plane perpendicular

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx 1 Candidates should be able to : HISTORY Describe the nature of X-rays. Describe in simple terms how X-rays are produced. X-rays were discovered by Wilhelm Röntgen in 1865, when he found that a fluorescent

More information

On the Claim of the Observation of Macro-quantum effects of Magnetic Vector Potential in the Classical Domain

On the Claim of the Observation of Macro-quantum effects of Magnetic Vector Potential in the Classical Domain arxiv:quant-ph/0408023v1 3 Aug 2004 On the Claim of the Observation of Macro-quantum effects of Magnetic Vector Potential in the Classical Domain C. S. Unnikrishnan Gravitation Group, Tata Institute of

More information

Lecture 2: Bonding in solids

Lecture 2: Bonding in solids Lecture 2: Bonding in solids Electronegativity Van Arkel-Ketalaar Triangles Atomic and ionic radii Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonds in Reciprocal space

More information

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity ASSIGNMENT # 1 Special Theory of Relativity 1. What was the objective of conducting the Michelson-Morley experiment? Describe the experiment. How is the negative result of the experiment interpreted? 2.

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Chapter 35 Diffraction and Polarization. Copyright 2009 Pearson Education, Inc.

Chapter 35 Diffraction and Polarization. Copyright 2009 Pearson Education, Inc. Chapter 35 Diffraction and Polarization 35-1 Diffraction by a Single Slit or Disk If light is a wave, it will diffract around a single slit or obstacle. 35-1 Diffraction by a Single Slit or Disk The resulting

More information

Chapter 35 Diffraction and Polarization

Chapter 35 Diffraction and Polarization Chapter 35 Diffraction and Polarization If light is a wave, it will diffract around a single slit or obstacle. The resulting pattern of light and dark stripes is called a diffraction pattern. This pattern

More information

Electron Diffraction

Electron Diffraction Exp-3-Electron Diffraction.doc (TJR) Physics Department, University of Windsor Introduction 64-311 Laboratory Experiment 3 Electron Diffraction In 1924 de Broglie predicted that the wavelength of matter

More information

Quantum Mechanics Tutorial

Quantum Mechanics Tutorial Quantum Mechanics Tutorial The Wave Nature of Matter Wave-particle duality and de Broglie s hypothesis. de Broglie matter waves The Davisson-Germer experiment Matter wave packets Heisenberg uncertainty

More information

A novel design of the MeV gamma-ray imaging detector with Micro-TPC

A novel design of the MeV gamma-ray imaging detector with Micro-TPC Elsevier Science 1 Journal logo A novel design of the MeV gamma-ray imaging detector with Micro-TPC R.Orito *,H.Kubo,K.Miuchi,T.Nagayoshi,A.Takada,T.Tanimori,M.Ueno Department of Physics,Graduate School

More information

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (4/28/09) The Scattering of Light by Small Particles Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract In this experiment we study the scattering of light from

More information

Swanning about in Reciprocal Space. Kenneth, what is the wavevector?

Swanning about in Reciprocal Space. Kenneth, what is the wavevector? Swanning about in Reciprocal Space or, Kenneth, what is the wavevector? Stanford Synchrotron Radiation Laboratory Principles The relationship between the reciprocal lattice vector and the wave vector is

More information

Symmetry of electron diffraction from single-walled carbon nanotubes

Symmetry of electron diffraction from single-walled carbon nanotubes Chemical Physics Letters 400 (2004) 430 435 www.elsevier.com/locate/cplett Symmetry of electron diffraction from single-walled carbon nanotubes Zejian Liu a, Lu-Chang Qin a,b, * a Department of Physics

More information

PLASMA CONFINEMENT IN THE GAMMA 10 TANDEM MIRROR

PLASMA CONFINEMENT IN THE GAMMA 10 TANDEM MIRROR PLASMA CONFINEMENT IN THE GAMMA TANDEM MIRROR K.YATSU, L.G.BRUSKIN, T.CHO, M.HAMADA, M.HIRATA, H.HOJO, M.ICHIMURA, K.ISHII, A.ITAKURA, I.KATANUMA, Y.KIWAMOTO, J.KOHAGURA, S.KUBOTA, A.MASE, Y.NAKASHIMA,

More information

August 15, ~ m. (a) What is the coefficient of static friction between m and the incline?

August 15, ~ m. (a) What is the coefficient of static friction between m and the incline? August 5, 996 Part nstructions: Work all problems. This is a closed book eamination. Start each problem on a new pack of yellow paper and use only one side of each sheet. All problems carry the same weight.

More information

New algoritms for electron diffraction of 3D protein crystals. JP Abrahams, D Georgieva, L Jiang, I Sikhuralidze, NS Pannu

New algoritms for electron diffraction of 3D protein crystals. JP Abrahams, D Georgieva, L Jiang, I Sikhuralidze, NS Pannu New algoritms for electron diffraction of 3D protein crystals JP Abrahams, D Georgieva, L Jiang, I Sikhuralidze, NS Pannu Why new algorithms? New research questions New experimental techniques Better insight

More information

Diffraction of Electrons

Diffraction of Electrons Diffraction of Electrons Object: Apparatus: Verify that electrons are waves; i.e., that they diffract just like light waves. This lab is then used to measure their wavelength or, alternatively, measure

More information

λ = h = h p mv λ = h mv FXA 2008 Candidates should be able to :

λ = h = h p mv λ = h mv FXA 2008 Candidates should be able to : 1 Candidates should be able to : Explain electron diffraction as evidence for the wave nature of particles like electrons. Explain that electrons travelling through polycrystalline graphite will be diffracted

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. (a) The diagram below shows a narrow beam of electrons produced by attracting electrons emitted from a filament wire to a metal plate which has a small hole in it. (i) Why

More information

Limits of the X-Ray Collimation by One Asymmetrical Bragg Reflection

Limits of the X-Ray Collimation by One Asymmetrical Bragg Reflection Limits of the X-Ray Collimation by One Asymmetrical Bragg Reflection 0. Brümmer and H. R. Höche Sektion Physik, Martin-Luther-Universität, Halle-Wittenberg (DDR) J. Nieber Sektion Mathematik/Physik, Pädagogische

More information

A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard Fields

A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard Fields Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 44, No. 2, p. 109 113 (2007) ARTICLE A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard

More information

development of the hard-x-ray angle Resolved X-ray Photoemission spectrometer for Laboratory use

development of the hard-x-ray angle Resolved X-ray Photoemission spectrometer for Laboratory use ANALYTICAL SCIENCES FEBRUARY 2010, VOL. 26 227 2010 The Japan Society for Analytical Chemistry development of the hard-x-ray angle Resolved X-ray Photoemission spectrometer for Laboratory use masaaki kobata,*

More information

Solid-state physics. Laue diagrams: investigating the lattice structure of monocrystals. LEYBOLD Physics Leaflets P

Solid-state physics. Laue diagrams: investigating the lattice structure of monocrystals. LEYBOLD Physics Leaflets P Solid-state physics Properties of crystals X-ray structural analysis LEYBOLD Physics Leaflets P7.1.2.2 Laue diagrams: investigating the lattice structure of monocrystals Objects of the experiment Evaluating

More information

GEOMETRIC THEORY OF FRESNEL DIFFRACTION PATTERNS

GEOMETRIC THEORY OF FRESNEL DIFFRACTION PATTERNS GEOMETRIC THEORY OF FRESNEL DIFFRACTION PATTERNS Part V. Elliptic Obstacles and Apertures BY Y. V. KATHAVATE (From the Department of Physics, Indian Institute of Science, Bangalore) Received April 2, 1945

More information

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between Supplementary Figures: Supplementary Figure. Schematics of light transmission and reflection from a slab confined between two infinite media. Supplementary Figure. Reflectivity of a magneto-electric slab

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: He atoms: [E (ev)] 1/2 = 0.14 / (Å) E 1Å = 0.0196 ev Neutrons: [E (ev)] 1/2 = 0.28 / (Å) E 1Å = 0.0784 ev Electrons:

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

Classical Dynamics: Question Sheet

Classical Dynamics: Question Sheet Pt 1B Advanced Physics Lent 5 Classical Dynamics: Question Sheet J. Ellis Questions are graded A to C in increasing order of difficulty. Energy Method 1(B) A ladder of length l rests against a wall at

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the final sections of this session's syllabus and should be attempted by all students. QUESTION 1 [Marks 23] A thin non-conducting rod is bent to form the arc of a circle of

More information

Scanning Auger Microprobe

Scanning Auger Microprobe Scanning Auger Microprobe This enables images of the elements in the near surface layer of samples to be acquired. SAM a combination of the techniques of SEM and AES. An electron beam is scanned over the

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

A STUDY ON THE BEHAVIOR OF SHOCK WAVE AND VORTEX RING DISCHARGED FROM A PIPE

A STUDY ON THE BEHAVIOR OF SHOCK WAVE AND VORTEX RING DISCHARGED FROM A PIPE A STUDY ON THE BEHAVIOR OF SHOCK WAVE AND VORTEX RING DISCHARGED FROM A PIPE S. KITAJIMA 1, J. IWAMOTO 2 and E. TAMURA 3 Corresponding author S. KITAJIMA ABSTRACT In this paper, the behavior of shock wave

More information

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 CLASS: XII AISSCE 2016 Subject: Physics EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 Q3 Section A ( 1 Mark ) A force F is acting between two charges placed some distances apart in vacuum. If a brass

More information

The ideal fiber pattern exhibits 4-quadrant symmetry. In the ideal pattern the fiber axis is called the meridian, the perpendicular direction is

The ideal fiber pattern exhibits 4-quadrant symmetry. In the ideal pattern the fiber axis is called the meridian, the perpendicular direction is Fiber diffraction is a method used to determine the structural information of a molecule by using scattering data from X-rays. Rosalind Franklin used this technique in discovering structural information

More information

How fast can things go?

How fast can things go? Heinemann Physics 12 4e Year 12 Physics Student Name: Practice Exam 1 (Units 3 & 4) This sample exam has been prepared as part of the Pearson suite of resources for the Units 3 and 4 VCE Physics course,

More information

Coherence and width of spectral lines with Michelson interferometer

Coherence and width of spectral lines with Michelson interferometer Coherence and width of spectral lines TEP Principle Fraunhofer and Fresnel diffraction, interference, spatial and time coherence, coherence conditions, coherence length for non punctual light sources,

More information

Reflection High Energy Electron Diffraction (RHEED)

Reflection High Energy Electron Diffraction (RHEED) Reflection High Energy Electron Diffraction (RHEED) Saito Laboratory October 1, 2014 1 Introduction A crystal surface (or interface with foreign substances) is generally known to have an atomic arrangement

More information

Electric_Field_core_P1

Electric_Field_core_P1 Electric_Field_core_P1 1. [1 mark] An electron enters the region between two charged parallel plates initially moving parallel to the plates. The electromagnetic force acting on the electron A. causes

More information

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Masaki TAKEUCHI, Satoshi OHDACHI and LHD experimental group National Institute for Fusion

More information