MATH section 2.7 Related Rates Page 1 of 7

Size: px
Start display at page:

Download "MATH section 2.7 Related Rates Page 1 of 7"

Transcription

1 MATH 0100 section.7 Related Rates Page 1 of 7 Unfotunatel, thee isn t much I can infom befoe ou encounte difficulties in this section. Remembe that this section is all wod poblems. You must be able to convet sentences into diagams, equations, values, and values of ates. Onl thing that is simila in this section is that all ates ae in espect to time. So don t foget to appl implicit diffeentiation. Also, the distance measue ( ) pe unit of time (t ) mentioned in wod poblem is d. Mostl, the vaiable t is not pesent in the equation that we must evaluate. Pa attention to the measuement units; the must be same in ode to ou calculations coect. Take a close look at eamples and stat identifing how the woding in the poblem became the constants and equations. Additional eamples: da ) a) A π? 1 da A π π da π b) da da 1 m/s 0 cm 0. m? π π(0.)(1) 0.6π m /s 4) dl 8 cm/s dw cm/s l 0 cm w 10 cm da? A lw da dl dw 1 1 ( w) + ( l) 1 da dl dw w + l da (10)(8) (0)() cm /s + + dv 6) 4 mm/s diamete 80 mm 40 mm? 4 V π dv 4 1 π dv 4π dv 4 π(40) (4) 600π mm /s l w

2 MATH 0100 section.7 Related Rates Page of 7 8) d d d a)? d d 1 () d () 4()() d d b)? d ( ) 4()() () 9 () d d 4 d ) (4,) d 4 cm, cm cm/s? 8 d d d + 0 d d d (4) () 6 cm/s () d? cm/s

3 MATH 0100 section.7 Related Rates Page of 7 1) 1:00PM 4:00PM km/h B 10 A 10 km B A d km/h In this poblem, we must find Time 1:00PM 4:00PM Distance taveled Boat A Boat B t in h t 0 t 4 at 4:00PM (4)() 140 km (4)() 100 km (10 ) + (10 (140)) + (100) 1 d (10 ) 1 (10) + (100) d (10 ) d ± (10 ) (100)(101) (10 ) d (100) (10 (140)) (100)() (10)() (10)() () () () km/h ) d 1.6 m/s m spotlight (1 ) 1 m

4 MATH 0100 section.7 Related Rates Page 4 of 7 d 1.6m/s 4m? (1 ) 1 4 4(1 ) (1 ) d 1 4 1(1 ) 1 4 d (1 ) 4 4 ( 1.6) ( 1.6) ( 1.6) ( 0.) 0.6 m/s (1 (4)) (8) ) Halfwa fom the bases is 4 ft. d a) 4 ft 4 ft/s? + (90) at 4 ft (4) + (90) (4) + ((4)) (4) + () (4) (4) 1 + () (4) () ± ± (4) () 4 () + 4 () ft d + 0 d d d (4) 4 ( 4) ft/s ( 4 ) 90 ft d 4 ft/s b) 4 ft dv du v 4 ft/s? u v + (90) at v 4 ft u (4) + (90) (4) + ((4)) + + (4) () (4) (4) 1 () u u (4) () u ± ± (4) () 4 () u + 4 () ft 90 ft v dv 4 ft/s

5 MATH 0100 section.7 Related Rates Page of 7 0) du dv u v + 0 du d u v du v dv v dv u u d 8 m? + (1) at 8 m (8) + (1) du (4) 4 (4) ft/s ( 4 ) 1m/s dock 1 m ± 6 6 d + 0 d d boat d 6 ( 1) 6 m/s (8) 8 ) π sin π π π A f peiod 4 π f 1 d (,1) 10 cm/s + 1 at point (, 1) (1) ± 10 ± 9 10 π π π + sin + sin + 4sin

6 MATH 0100 section.7 Related Rates Page 6 of 7 d π π π d 4 sin cos + d π π d + π sin cos d d + πsin( π) d π d + sin( π ) d π d + sin( π ) 1 π 1 ( 10 ) + sin π ( 10 ) 1 π 1 cm/s π 8) 00 ft? tanθ 100cotθ tanθ d csc 1 θ d 100 csc θ d 100csc θ sin θ d Note: fo this tiangle, sinθ. So when 1 1 (8) 0.0 ad/s d 8ft/s θ ft sinθ 00 kite 100 ft

7 MATH 0100 section.7 Related Rates Page 7 of 7 0) a 1 cm b 1 cm π π π dc θ 60 ad /min () ad/min? Fo this eecise we need to use the Law of Cosines (see figue) B c c a + b abcosc c (1) + (1) (1)(1) cosθ π when θ ad a 1 ft π c (1) + (1) (1)(1)cos θ b 1 ft C 1 c c (9)(1) c ± 189 ± (9)(1) ± 1 c 1 c (1) + (1) (1)(1) cosθ dc c 0+ 0 (1)(1) sin 1 θ dc c (1)(1) sinθ dc (1)(1) sinθ c π π (1)(1) sin 180 dc π 90 π π π m/min A

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test # Review Math (Pe -calculus) Name MULTIPLE CHOICE. Choose the one altenative that best completes the statement o answes the question. Use an identit to find the value of the epession. Do not use a

More information

PHYS Summer Professor Caillault Homework Solutions

PHYS Summer Professor Caillault Homework Solutions PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 3 13. Pictue the Poblem: The whale dives along a staight line tilted 20.0 below hoizontal fo 150 m as shown in the figue. Stategy: Resolve

More information

Related Rates - the Basics

Related Rates - the Basics Related Rates - the Basics In this section we exploe the way we can use deivatives to find the velocity at which things ae changing ove time. Up to now we have been finding the deivative to compae the

More information

Trigonometric Functions of Any Angle 9.3 (, 3. Essential Question How can you use the unit circle to define the trigonometric functions of any angle?

Trigonometric Functions of Any Angle 9.3 (, 3. Essential Question How can you use the unit circle to define the trigonometric functions of any angle? 9. Tigonometic Functions of An Angle Essential Question How can ou use the unit cicle to define the tigonometic functions of an angle? Let be an angle in standad position with, ) a point on the teminal

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

Practice Integration Math 120 Calculus I Fall 2015

Practice Integration Math 120 Calculus I Fall 2015 Pactice Integation Math 0 Calculus I Fall 05 Hee s a list of pactice eecises. Thee s a hint fo each one as well as an answe with intemediate steps... ( + d. Hint. Answe. ( 8 t + t + This fist set of indefinite

More information

Practice Integration Math 120 Calculus I D Joyce, Fall 2013

Practice Integration Math 120 Calculus I D Joyce, Fall 2013 Pactice Integation Math 0 Calculus I D Joyce, Fall 0 This fist set of indefinite integals, that is, antideivatives, only depends on a few pinciples of integation, the fist being that integation is invese

More information

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II ENGR 990 Engineeing Mathematics pplication of Tigonometic Functions in Mechanical Engineeing: Pat II Poblem: Find the coodinates of the end-point of a two-link plana obot am Given: The lengths of the links

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving Physics 11 Chapte 3: Vectos and Motion in Two Dimensions The only thing in life that is achieved without effot is failue. Souce unknown "We ae what we epeatedly do. Excellence, theefoe, is not an act,

More information

Double-angle & power-reduction identities. Elementary Functions. Double-angle & power-reduction identities. Double-angle & power-reduction identities

Double-angle & power-reduction identities. Elementary Functions. Double-angle & power-reduction identities. Double-angle & power-reduction identities Double-angle & powe-eduction identities Pat 5, Tigonomety Lectue 5a, Double Angle and Powe Reduction Fomulas In the pevious pesentation we developed fomulas fo cos( β) and sin( β) These fomulas lead natually

More information

PDF Created with deskpdf PDF Writer - Trial ::

PDF Created with deskpdf PDF Writer - Trial :: A APPENDIX D TRIGONOMETRY Licensed to: jsamuels@bmcc.cun.edu PDF Ceated with deskpdf PDF Wite - Tial :: http://www.docudesk.com D T i g o n o m e t FIGURE a A n g l e s Angles can be measued in degees

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math Pecalculus Ch. 6 Review Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. ) ) 6 7 0 Two sides and an angle (SSA) of a tiangle ae

More information

Math Section 4.2 Radians, Arc Length, and Area of a Sector

Math Section 4.2 Radians, Arc Length, and Area of a Sector Math 1330 - Section 4. Radians, Ac Length, and Aea of a Secto The wod tigonomety comes fom two Geek oots, tigonon, meaning having thee sides, and mete, meaning measue. We have aleady defined the six basic

More information

Math Worksheet 1 SHOW ALL OF YOUR WORK! f(x) = (x a) 2 + b. = x 2 + 6x + ( 6 2 )2 ( 6 2 )2 + 7 = (x 2 + 6x + 9) = (x + 3) 2 2

Math Worksheet 1 SHOW ALL OF YOUR WORK! f(x) = (x a) 2 + b. = x 2 + 6x + ( 6 2 )2 ( 6 2 )2 + 7 = (x 2 + 6x + 9) = (x + 3) 2 2 Names Date. Consider the function Math 0550 Worksheet SHOW ALL OF YOUR WORK! f() = + 6 + 7 (a) Complete the square and write the function in the form f() = ( a) + b. f() = + 6 + 7 = + 6 + ( 6 ) ( 6 ) +

More information

Physics 2001 Problem Set 5 Solutions

Physics 2001 Problem Set 5 Solutions Physics 2001 Poblem Set 5 Solutions Jeff Kissel Octobe 16, 2006 1. A puck attached to a sting undegoes cicula motion on an ai table. If the sting beaks at the point indicated in the figue, which path (A,

More information

Practice Problems Test 3

Practice Problems Test 3 Pactice Poblems Test ********************************************************** ***NOTICE - Fo poblems involving ʺSolve the Tiangleʺ the angles in this eview ae given by Geek lettes: A = α B = β C = γ

More information

Section 25 Describing Rotational Motion

Section 25 Describing Rotational Motion Section 25 Decibing Rotational Motion What do object do and wh do the do it? We have a ve thoough eplanation in tem of kinematic, foce, eneg and momentum. Thi include Newton thee law of motion and two

More information

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur = 3.4 Geen s Theoem Geoge Geen: self-taught English scientist, 793-84 So, if we ae finding the amount of wok done ove a non-consevative vecto field F, we do that long u b u 3. method Wok = F d F( () t )

More information

Max/Min Word Problems (Additional Review) Solutions. =, for 2 x 5 1 x 1 x ( 1) 1+ ( ) ( ) ( ) 2 ( ) x = 1 + (2) 3 1 (2) (5) (5) 4 2

Max/Min Word Problems (Additional Review) Solutions. =, for 2 x 5 1 x 1 x ( 1) 1+ ( ) ( ) ( ) 2 ( ) x = 1 + (2) 3 1 (2) (5) (5) 4 2 . a) Given Ma/Min Wod Poblems (Additional Review) Solutions + f, fo 5 ( ) + f (i) f 0 no solution ( ) (ii) f is undefined when (not pat of domain) Check endpoints: + () f () () + (5) 6 f (5) (5) 4 (min.

More information

Kinematics in 2-D (II)

Kinematics in 2-D (II) Kinematics in 2-D (II) Unifom cicula motion Tangential and adial components of Relative velocity and acceleation a Seway and Jewett 4.4 to 4.6 Pactice Poblems: Chapte 4, Objective Questions 5, 11 Chapte

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles.

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles. Cicula motion Objectives Descibe the acceleated motion of objects moving in cicles. Use equations to analyze the acceleated motion of objects moving in cicles.. Descibe in you own wods what this equation

More information

Introduction and Vectors

Introduction and Vectors SOLUTIONS TO PROBLEMS Intoduction and Vectos Section 1.1 Standads of Length, Mass, and Time *P1.4 Fo eithe sphee the volume is V = 4! and the mass is m =!V =! 4. We divide this equation fo the lage sphee

More information

5.8 Trigonometric Equations

5.8 Trigonometric Equations 5.8 Tigonometic Equations To calculate the angle at which a cuved section of highwa should be banked, an enginee uses the equation tan =, whee is the angle of the 224 000 bank and v is the speed limit

More information

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

, the tangent line is an approximation of the curve (and easier to deal with than the curve). 114 Tangent Planes and Linea Appoimations Back in-dimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

Calculus I Section 4.7. Optimization Equation. Math 151 November 29, 2008

Calculus I Section 4.7. Optimization Equation. Math 151 November 29, 2008 Calculus I Section 4.7 Optimization Solutions Math 151 Novembe 9, 008 The following poblems ae maimum/minimum optimization poblems. They illustate one of the most impotant applications of the fist deivative.

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

4.3 Area of a Sector. Area of a Sector Section

4.3 Area of a Sector. Area of a Sector Section ea of a Secto Section 4. 9 4. ea of a Secto In geomety you leaned that the aea of a cicle of adius is π 2. We will now lean how to find the aea of a secto of a cicle. secto is the egion bounded by a cental

More information

P.7 Trigonometry. What s round and can cause major headaches? The Unit Circle.

P.7 Trigonometry. What s round and can cause major headaches? The Unit Circle. P.7 Tigonomet What s ound and can cause majo headaches? The Unit Cicle. The Unit Cicle will onl cause ou headaches if ou don t know it. Using the Unit Cicle in Calculus is equivalent to using ou multiplication

More information

6.1: Angles and Their Measure

6.1: Angles and Their Measure 6.1: Angles and Thei Measue Radian Measue Def: An angle that has its vetex at the cente of a cicle and intecepts an ac on the cicle equal in length to the adius of the cicle has a measue of one adian.

More information

Trigonometry Standard Position and Radians

Trigonometry Standard Position and Radians MHF 4UI Unit 6 Day 1 Tigonomety Standad Position and Radians A. Standad Position of an Angle teminal am initial am Angle is in standad position when the initial am is the positive x-axis and the vetex

More information

Related Rates Example 1 Example 2 Example 3 Example 4 Example 5. Related Rates. Tamara Kucherenko

Related Rates Example 1 Example 2 Example 3 Example 4 Example 5. Related Rates. Tamara Kucherenko Eample 1 Eample 2 Eample 3 Eample 4 Eample 5 Eample 1 Eample 2 Eample 3 Eample 4 Eample 5 In related rates problems we compute the rate of change of one quantity in terms of the rate of change of the other.

More information

10.2 Parametric Calculus

10.2 Parametric Calculus 10. Paametic Calculus Let s now tun ou attention to figuing out how to do all that good calculus stuff with a paametically defined function. As a woking eample, let s conside the cuve taced out by a point

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

Continuous Charge Distributions: Electric Field and Electric Flux

Continuous Charge Distributions: Electric Field and Electric Flux 8/30/16 Quiz 2 8/25/16 A positive test chage qo is eleased fom est at a distance away fom a chage of Q and a distance 2 away fom a chage of 2Q. How will the test chage move immediately afte being eleased?

More information

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6 MOTION IN A PLANE 1. Scala Quantities Physical quantities that have only magnitude and no diection ae called scala quantities o scalas. e.g. Mass, time, speed etc. 2. Vecto Quantities Physical quantities

More information

Magnetic Dipoles Challenge Problem Solutions

Magnetic Dipoles Challenge Problem Solutions Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom

More information

Chapter 1: Introduction to Polar Coordinates

Chapter 1: Introduction to Polar Coordinates Habeman MTH Section III: ola Coodinates and Comple Numbes Chapte : Intoduction to ola Coodinates We ae all comfotable using ectangula (i.e., Catesian coodinates to descibe points on the plane. Fo eample,

More information

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j. 7. We denote the two foces F A + F B = ma,sof B = ma F A. (a) In unit vecto notation F A = ( 20.0 N)ˆ i and Theefoe, Phys 201A Homewok 6 Solutions F A and F B. Accoding to Newton s second law, a = [ (

More information

Physics 207 Lecture 5. Lecture 5

Physics 207 Lecture 5. Lecture 5 Lectue 5 Goals: Addess sstems with multiple acceleations in 2- dimensions (including linea, pojectile and cicula motion) Discen diffeent efeence fames and undestand how the elate to paticle motion in stationa

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

Math Calculus II Homework # Due Date Solutions

Math Calculus II Homework # Due Date Solutions Math 35 - Calculus II Homework # - 007.08.3 Due Date - 007.09.07 Solutions Part : Problems from sections 7.3 and 7.4. Section 7.3: 9. + d We will use the substitution cot(θ, d csc (θ. This gives + + cot

More information

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think:

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think: PART F: EVALUATING INVERSE TRIG FUNCTIONS Think: (Section 4.7: Inverse Trig Functions) 4.82 A trig function such as sin takes in angles (i.e., real numbers in its domain) as inputs and spits out outputs

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 9

PHYS Summer Professor Caillault Homework Solutions. Chapter 9 PHYS - Summe 007 - Pofesso Caillault Homewok Solutions Chapte 9 3. Pictue the Poblem The owne walks slowly towad the notheast while the cat uns eastwad and the dog uns nothwad. Stategy Sum the momenta

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

Sides and Angles of Right Triangles 6. Find the indicated side length in each triangle. Round your answers to one decimal place.

Sides and Angles of Right Triangles 6. Find the indicated side length in each triangle. Round your answers to one decimal place. Chapte 7 Peequisite Skills BLM 7-1.. Convet a Beaing to an Angle in Standad Position 1. Convet each beaing to an angle in standad position on the Catesian gaph. a) 68 127 c) 215 d) 295 e) N40 W f) S65

More information

FZX: Personal Lecture Notes from Daniel W. Koon St. Lawrence University Physics Department CHAPTER 7

FZX: Personal Lecture Notes from Daniel W. Koon St. Lawrence University Physics Department CHAPTER 7 FZX: Pesonal Lectue Notes fom Daniel W. Koon St. Lawence Univesity Physics Depatment CHAPTER 7 Please epot any glitches, bugs o eos to the autho: dkoon at stlawu.edu. 7. Momentum and Impulse Impulse page

More information

Using the Definitions of the Trigonometric Functions

Using the Definitions of the Trigonometric Functions 1.4 Using the Definitions of the Trigonometric Functions Reciprocal Identities Signs and Ranges of Function Values Pythagorean Identities Quotient Identities February 1, 2013 Mrs. Poland Objectives Objective

More information

4.3 Right Triangle Trigonometry

4.3 Right Triangle Trigonometry Section. Right Tiangle Tigonomet 77. Right Tiangle Tigonomet The Si Tigonometic Functions Ou second look at the tigonometic functions is fom a ight tiangle pespective. Conside a ight tiangle, with one

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( )

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( ) : PHYS 55 (Pat, Topic ) Eample Solutions p. Review of Foce Eample ( ) ( ) What is the dot poduct fo F =,,3 and G = 4,5,6? F G = F G + F G + F G = 4 +... = 3 z z Phs55 -: Foce Fields Review of Foce Eample

More information

Ch04: Motion in two and three dimensions (2D and 3D)

Ch04: Motion in two and three dimensions (2D and 3D) Ch4: Motion in two and thee dimensions (D and 3D) Displacement, elocity and acceleation ectos Pojectile motion Cicula motion Relatie motion 4.: Position and displacement Position of an object in D o 3D

More information

PHYS 301 HOMEWORK #10 (Optional HW)

PHYS 301 HOMEWORK #10 (Optional HW) PHYS 301 HOMEWORK #10 (Optional HW) 1. Conside the Legende diffeential equation : 1 - x 2 y'' - 2xy' + m m + 1 y = 0 Make the substitution x = cos q and show the Legende equation tansfoms into d 2 y 2

More information

Chapter 5: Trigonometric Functions of Angles Homework Solutions

Chapter 5: Trigonometric Functions of Angles Homework Solutions Chapter : Trigonometric Functions of Angles Homework Solutions Section.1 1. D = ( ( 1)) + ( ( )) = + 8 = 100 = 10. D + ( ( )) + ( ( )) = + = 1. (x + ) + (y ) =. (x ) + (y + 7) = r To find the radius, we

More information

Math Analysis Chapter 5 Notes: Analytic Trigonometric

Math Analysis Chapter 5 Notes: Analytic Trigonometric Math Analysis Chapter 5 Notes: Analytic Trigonometric Day 9: Section 5.1-Verifying Trigonometric Identities Fundamental Trig Identities Reciprocal Identities: 1 1 1 sin u = cos u = tan u = cscu secu cot

More information

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates MATH 417 Homewok 3 Instucto: D. Cabea Due June 30 1. Let a function f(z) = u + iv be diffeentiable at z 0. (a) Use the Chain Rule and the fomulas x = cosθ and y = to show that u x = u cosθ u θ, v x = v

More information

AP Centripetal Acceleration Lab

AP Centripetal Acceleration Lab AP PHYSICS NAME: PERIOD: DATE: GRADE: DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP Centipetal Acceleation Lab Note: Data collection will be done by table goups. Data analysis is to be done individually. Copying

More information

MATH 130 FINAL REVIEW

MATH 130 FINAL REVIEW MATH 130 FINAL REVIEW Problems 1 5 refer to triangle ABC, with C=90º. Solve for the missing information. 1. A = 40, c = 36m. B = 53 30', b = 75mm 3. a = 91 ft, b = 85 ft 4. B = 1, c = 4. ft 5. A = 66 54',

More information

0606 ADDITIONAL MATHEMATICS 0606/01 Paper 1, maximum raw mark 80

0606 ADDITIONAL MATHEMATICS 0606/01 Paper 1, maximum raw mark 80 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Intenational Geneal Cetificate of Seconday Education MARK SCHEME fo the Octobe/Novembe 009 question pape fo the guidance of teaches 0606 ADDITIONAL MATHEMATICS

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

of Technology: MIT OpenCourseWare).   (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike. MIT OpenCouseWae http://ocw.mit.eu 6.013/ESD.013J Electomagnetics an Applications, Fall 005 Please use the following citation fomat: Makus Zahn, Eich Ippen, an Davi Staelin, 6.013/ESD.013J Electomagnetics

More information

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b,

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b, SAMPLE QUIZ 3 - PHYSICS 1301.1 his is a closed book, closed notes quiz. Calculatos ae pemitted. he ONLY fomulas that may be used ae those given below. Define all symbols and justify all mathematical expessions

More information

Kinematics of rigid bodies

Kinematics of rigid bodies Kinematics of igid bodies elations between time and the positions, elocities, and acceleations of the paticles foming a igid body. (1) Rectilinea tanslation paallel staight paths Cuilinea tanslation (3)

More information

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph Ch 0 Homework Complete Solutions V Part : S. Stirling Calculus: Earl Transcendental Functions, 4e Larson WATCH for the product rule and the chain rule. If the order that our terms are in differ from the

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

Mathematisch-Naturwissenschaftliche Fakultät I Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Natuwissenschaftliche Fakultät I Humboldt-Univesität zu Belin Institut fü Physik Physikalisches Gundpaktikum Vesuchspotokoll Polaisation duch Reflexion (O11) duchgefüht am 10.11.2009 mit Vesuchspatne

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

Lesson 22 - Trigonometric Identities

Lesson 22 - Trigonometric Identities POP QUIZ Lesson - Trigonometric Identities IB Math HL () Solve 5 = x 3 () Solve 0 = x x 6 (3) Solve = /x (4) Solve 4 = x (5) Solve sin(θ) = (6) Solve x x x x (6) Solve x + = (x + ) (7) Solve 4(x ) = (x

More information

6.4 Period and Frequency for Uniform Circular Motion

6.4 Period and Frequency for Uniform Circular Motion 6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential

More information

Motion in Two Dimensions

Motion in Two Dimensions SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at

More information

0606 ADDITIONAL MATHEMATICS

0606 ADDITIONAL MATHEMATICS UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Intenational Geneal Cetificate of Seconday Education MARK SCHEME fo the Octobe/Novembe 011 question pape fo the guidance of teaches 0606 ADDITIONAL MATHEMATICS

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

Pre- Calculus Mathematics Trigonometric Identities and Equations

Pre- Calculus Mathematics Trigonometric Identities and Equations Pre- Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Chapter 1: Mathematical Concepts and Vectors

Chapter 1: Mathematical Concepts and Vectors Chapte : Mathematical Concepts and Vectos giga G 9 mega M 6 kilo k 3 centi c - milli m -3 mico μ -6 nano n -9 in =.54 cm m = cm = 3.8 t mi = 58 t = 69 m h = 36 s da = 86,4 s ea = 365.5 das You must know

More information

Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses

Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses Instructor: Sal Barone School of Mathematics Georgia Tech May 22, 2015 (updated May 22, 2015) Covered sections: 3.3 & 3.5 Exam 1 (Ch.1 - Ch.3) Thursday,

More information

Fundamental Trigonometric Identities

Fundamental Trigonometric Identities Fundamental Trigonometric Identities MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and write the fundamental trigonometric

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

1.6. Trigonometric Functions. 48 Chapter 1: Preliminaries. Radian Measure

1.6. Trigonometric Functions. 48 Chapter 1: Preliminaries. Radian Measure 48 Chapte : Peliminaies.6 Tigonometic Functions Cicle B' B θ C A Unit of cicle adius FIGURE.63 The adian measue of angle ACB is the length u of ac AB on the unit cicle centeed at C. The value of u can

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

Chapter Eight Notes N P U1C8S4-6

Chapter Eight Notes N P U1C8S4-6 Chapte Eight Notes N P UC8S-6 Name Peiod Section 8.: Tigonometic Identities An identit is, b definition, an equation that is alwas tue thoughout its domain. B tue thoughout its domain, that is to sa that

More information

MAP4C1 Exam Review. 4. Juno makes and sells CDs for her band. The cost, C dollars, to produce n CDs is given by. Determine the cost of making 150 CDs.

MAP4C1 Exam Review. 4. Juno makes and sells CDs for her band. The cost, C dollars, to produce n CDs is given by. Determine the cost of making 150 CDs. MAP4C1 Exam Review Exam Date: Time: Room: Mak Beakdown: Answe these questions on a sepaate page: 1. Which equations model quadatic elations? i) ii) iii) 2. Expess as a adical and then evaluate: a) b) 3.

More information

Vectors Serway and Jewett Chapter 3

Vectors Serway and Jewett Chapter 3 Vectos Sewa and Jewett Chapte 3 Scalas and Vectos Vecto Components and Aithmetic Vectos in 3 Dimensions Unit vectos i, j, k Pactice Poblems: Chapte 3, poblems 9, 19, 31, 45, 55, 61 Phsical quantities ae

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCouseWae http://ocw.mit.edu 3.3 Electical, Optical, and Magnetic Popeties of Mateials Fall 7 Fo infomation about citing these mateials o ou Tems of Use, visit: http://ocw.mit.edu/tems. 3.3 Fall

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

What Form of Gravitation Ensures Weakened Kepler s Third Law?

What Form of Gravitation Ensures Weakened Kepler s Third Law? Bulletin of Aichi Univ. of Education, 6(Natual Sciences, pp. - 6, Mach, 03 What Fom of Gavitation Ensues Weakened Keple s Thid Law? Kenzi ODANI Depatment of Mathematics Education, Aichi Univesity of Education,

More information

Psychometric Methods: Theory into Practice Larry R. Price

Psychometric Methods: Theory into Practice Larry R. Price ERRATA Psychometic Methods: Theoy into Pactice Lay R. Pice Eos wee made in Equations 3.5a and 3.5b, Figue 3., equations and text on pages 76 80, and Table 9.1. Vesions of the elevant pages that include

More information

Chapter 2: Introduction to Implicit Equations

Chapter 2: Introduction to Implicit Equations Habeman MTH 11 Section V: Paametic and Implicit Equations Chapte : Intoduction to Implicit Equations When we descibe cuves on the coodinate plane with algebaic equations, we can define the elationship

More information

f h = u, h g = v, we have u + v = f g. So, we wish

f h = u, h g = v, we have u + v = f g. So, we wish Answes to Homewok 4, Math 4111 (1) Pove that the following examples fom class ae indeed metic spaces. You only need to veify the tiangle inequality. (a) Let C be the set of continuous functions fom [0,

More information

PreCalculus First Semester Exam Review

PreCalculus First Semester Exam Review PreCalculus First Semester Eam Review Name You may turn in this eam review for % bonus on your eam if all work is shown (correctly) and answers are correct. Please show work NEATLY and bo in or circle

More information