Vectors. both a magnitude and a direction. Slide Pearson Education, Inc.

Size: px
Start display at page:

Download "Vectors. both a magnitude and a direction. Slide Pearson Education, Inc."

Transcription

1 Vectors A quantity that is fully described The velocity vector has both a magnitude and a direction. by a single number is called a scalar quantity (i.e., mass, temperature, volume). A quantity having both a magnitude and a direction is called a vector quantity. The geometric representation of a vector is an arrow with the tail of the arrow placed at the point where the measurement is made. We label vectors by drawing a small arrow over the letter that represents the vector, i.e.,: for position, for velocity, for acceleration. Slide 3-16

2 Properties of Vectors Suppose Sam starts from his front door, takes a walk, and ends up 200 ft to the northeast of where he started. We can write Sam s displacement as: The magnitude of Sam s displacement is S S 200 ft, the distance between his initial and final points. Slide 3-17

3 Properties of Vectors Sam and Bill are neighbors. They both walk 200 ft to the northeast of their own front doors. Bill s displacement B (200 ft, northeast) has the same magnitude and direction as Sam s displacement S. Two vectors are equal if they have the same magnitude and direction. This is true regardless of the starting points of the vectors. B S. Slide 3-18

4 Terminology for comparing vectors

5 Scalar Multiplication In general, when a vector is multiplied by a positive scalar, the result is a new vector that is parallel to the original. In general, when a vector is multiplied by a negative scalar, the result is a new vector that is antiparallel to the original.

6 1-D Vector Addition and Subtraction 1-D Vector addition has the effect of increasing a vector s length 1-D Vector subtraction has the effect of decreasing a vector s length and in some cases reversing the direction.

7 2-D Vector addition Slide 1-33

8 QuickCheck 1.3 Given vectors and, what is? Slide 1-38

9 2-D Vector subtraction Slide 1-36

10 QuickCheck 1.4 Given vectors and, what is? Slide 1-40

11 Algebraic Properties Commutative Property We can add vectors in any order. Associative Property We can group vectors in any order.

12 Coordinate Systems and Vector Components A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin, and How to orient the axes. Below is a conventional xy-coordinate system and the four quadrants I through IV. The navigator had better know which way to go, and how far, if she and the crew are to make landfall at the expected location. Slide 3-29

13 Component Vectors The figure shows a vector A and a standard xy-coordinate system. We can define two new vectors that we call the component vectors of A, such that: The component vectors of A are perpendicular to each other and parallel to their respective coordinate axes. This is called the decomposition of A into its component vectors. Slide 3-30

14 Components Suppose a vector A has been decomposed into component vectors A x and A y parallel to the coordinate axes. We can describe each component vector with a single number called the component. The component tells us how big the component vector is, and, with its sign, which ends of the axis the component vector points toward. Shown to the right are two examples of determining the components of a vector. Slide 3-31

15 QuickCheck 3.3 What are the x- and y-components of this vector? A. 3, 2 B. 2, 3 C. 3, 2 D. 2, 3 Slide 3-34

16 QuickCheck 3.4 What are the x- and y-components of this vector? A. 3, 4 B. 3, 4 C. 4, 3 D. 3, 4 Slide 3-36

17 QuickCheck 3.5 What are the x- and y-components of vector C? A. 1, 3 B. 3, 1 C. 1, 1 D. 4, 2 Slide 3-38

18 Moving Between the Geometric Representation and the Component Representation We will frequently need to decompose a vector into its components. We will also need to reassemble a vector from its components. The figure to the right shows how to move back and forth between the geometric and component representations of a vector. Slide 3-39

19 Moving Between the Geometric Representation and the Component Representation If a component vector points left (or down), you must manually insert a minus sign in front of the component, as done for B y in the figure to the right. The role of sines and cosines can be reversed, depending upon which angle is used to define the direction. The angle used to define the direction is almost always between 0 and 90. Slide 3-40

20 QuickCheck 3.7 The angle Φ that specifies the direction of vector is A. tan 1 (C x /C y ). B. tan 1 (C y /C x ). C. tan 1 ( C x / C y ). D. tan 1 ( C y / C x ). Slide 3-59

21 Unit Vectors Each vector in the figure to the right has a magnitude of 1, no units, and is parallel to a coordinate axis. A vector with these properties is called a unit vector. These unit vectors have the special symbols: Unit vectors establish the directions of the positive axes of the coordinate system. Slide 3-45

22 Vector Algebra When decomposing a vector, unit vectors provide a useful way to write component vectors: The full decomposition of the vector A can then be written: Slide 3-46

23 QuickCheck 3.6 Vector C can be written A. 3î + ĵ. B. 4î + 2ĵ. C. î 3ĵ. D. 2î 4ĵ. Slide 3-47

24 Example 3.4 Finding the Direction of Motion Slide 3-43

25 Working With Vectors We can perform vector addition by adding the x- and y- components separately. This method is called algebraic addition. For example, if D A B C, then: Similarly, to find R P Q we would compute: To find T cs, where c is a scalar, we would compute: Slide 3-51

26 Example 1 Vectors with Components Let A = 4î 2ĵ, B = -3î + 5ĵ, and C = A + B. a) Write C in component form b) Draw a coordinate system and on it show vectors A, B, and C. c) What is the magnitude and direction of C?

27 Example 2 Vector Algebra Find vector B if A + B + C = ĵ Find both magnitude and direction, and component form of B.

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto COLLEGE PHYSICS Chapter 3: Two-Dimensional Kinematics Lesson 7 Video Narrated by Jason Harlow, Physics Department, University of Toronto VECTORS A quantity having both a magnitude and a direction is called

More information

Vectors. Introduction. Prof Dr Ahmet ATAÇ

Vectors. Introduction. Prof Dr Ahmet ATAÇ Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both n u m e r i c a l a n d d i r e c t i o n a l properties Mathematical operations of vectors in this chapter A d d i t i o

More information

3.1 Using Vectors 3.3 Coordinate Systems and Vector Components.notebook September 19, 2017

3.1 Using Vectors 3.3 Coordinate Systems and Vector Components.notebook September 19, 2017 Using Vectors A vector is a quantity with both a size (magnitude) and a direction. Figure 3.1 shows how to represent a particle s velocity as a vector. Section 3.1 Using Vectors The particle s speed at

More information

Chapter 3 Vectors Prof. Raymond Lee, revised

Chapter 3 Vectors Prof. Raymond Lee, revised Chapter 3 Vectors Prof. Raymond Lee, revised 9-2-2010 1 Coordinate systems Used to describe a point s position in space Coordinate system consists of fixed reference point called origin specific axes with

More information

Coordinate Systems. Chapter 3. Cartesian Coordinate System. Polar Coordinate System

Coordinate Systems. Chapter 3. Cartesian Coordinate System. Polar Coordinate System Chapter 3 Vectors Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels instructions

More information

10.2 Introduction to Vectors

10.2 Introduction to Vectors Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 10.2 Introduction to Vectors In the previous calculus classes we have seen that the study of motion involved the introduction of a variety

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

Math Review 1: Vectors

Math Review 1: Vectors Math Review 1: Vectors Coordinate System Coordinate system: used to describe the position of a point in space and consists of 1. An origin as the reference point 2. A set of coordinate axes with scales

More information

VECTORS. 3-1 What is Physics? 3-2 Vectors and Scalars CHAPTER

VECTORS. 3-1 What is Physics? 3-2 Vectors and Scalars CHAPTER CHAPTER 3 VECTORS 3-1 What is Physics? Physics deals with a great many quantities that have both size and direction, and it needs a special mathematical language the language of vectors to describe those

More information

Vectors a vector is a quantity that has both a magnitude (size) and a direction

Vectors a vector is a quantity that has both a magnitude (size) and a direction Vectors In physics, a vector is a quantity that has both a magnitude (size) and a direction. Familiar examples of vectors include velocity, force, and electric field. For any applications beyond one dimension,

More information

Vectors. Introduction

Vectors. Introduction Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this chapter Addition Subtraction Introduction

More information

Notes: Vectors and Scalars

Notes: Vectors and Scalars A particle moving along a straight line can move in only two directions and we can specify which directions with a plus or negative sign. For a particle moving in three dimensions; however, a plus sign

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

Course Notes Math 275 Boise State University. Shari Ultman

Course Notes Math 275 Boise State University. Shari Ultman Course Notes Math 275 Boise State University Shari Ultman Fall 2017 Contents 1 Vectors 1 1.1 Introduction to 3-Space & Vectors.............. 3 1.2 Working With Vectors.................... 7 1.3 Introduction

More information

Chapter 3. Vectors. 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors 3.4 Components of a Vector and Unit Vectors

Chapter 3. Vectors. 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors 3.4 Components of a Vector and Unit Vectors Chapter 3 Vectors 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors 3.4 Components of a Vector and Unit Vectors 1 Vectors Vector quantities Physical quantities that

More information

PHYSICS - CLUTCH CH 01: UNITS & VECTORS.

PHYSICS - CLUTCH CH 01: UNITS & VECTORS. !! www.clutchprep.com Physics is the study of natural phenomena, including LOTS of measurements and equations. Physics = math + rules. UNITS IN PHYSICS We measure in nature. Measurements must have. - For

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

3 Vectors. 18 October 2018 PHY101 Physics I Dr.Cem Özdoğan

3 Vectors. 18 October 2018 PHY101 Physics I Dr.Cem Özdoğan Chapter 3 Vectors 3 Vectors 18 October 2018 PHY101 Physics I Dr.Cem Özdoğan 2 3 3-2 Vectors and Scalars Physics deals with many quantities that have both size and direction. It needs a special mathematical

More information

VECTORS vectors & scalars vector direction magnitude scalar only magnitude

VECTORS vectors & scalars vector direction magnitude scalar only magnitude VECTORS Physical quantities are classified in two big classes: vectors & scalars. A vector is a physical quantity which is completely defined once we know precisely its direction and magnitude (for example:

More information

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205 Statics ENGR 1205 Kaitlin Ford kford@mtroyal.ca B175 Today Introductions Review Course Outline and Class Schedule Course Expectations Start Chapter 1 1 the goal of this course is to develop your ability

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Chapter Assignment # s 65, 67, & RT-2 Chapter Goal: To introduce the fundamental concepts of motion and to review related basic mathematical principles.

More information

scalar and - vector - - presentation SCALAR AND VECTOR

scalar and - vector - - presentation SCALAR AND VECTOR http://www.slideshare.net/fikrifadzal/chapter-14scalar-and-vector- and presentation SCLR ND VECTOR Scalars Scalars are quantities which have magnitude without directioni Examples of scalars temperaturere

More information

Vector Algebra August 2013

Vector Algebra August 2013 Vector Algebra 12.1 12.2 28 August 2013 What is a Vector? A vector (denoted or v) is a mathematical object possessing both: direction and magnitude also called length (denoted ). Vectors are often represented

More information

Vectors Primer. M.C. Simani. July 7, 2007

Vectors Primer. M.C. Simani. July 7, 2007 Vectors Primer M.. Simani Jul 7, 2007 This note gives a short introduction to the concept of vector and summarizes the basic properties of vectors. Reference textbook: Universit Phsics, Young and Freedman,

More information

General Physics I, Spring Vectors

General Physics I, Spring Vectors General Physics I, Spring 2011 Vectors 1 Vectors: Introduction A vector quantity in physics is one that has a magnitude (absolute value) and a direction. We have seen three already: displacement, velocity,

More information

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review Chapter 3 Vectors and Two-Dimensional Motion Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size) and

More information

Vectors. (same vector)

Vectors. (same vector) Vectors Our very first topic is unusual in that we will start with a brief written presentation. More typically we will begin each topic with a videotaped lecture by Professor Auroux and follow that with

More information

Worksheet 1.1: Introduction to Vectors

Worksheet 1.1: Introduction to Vectors Boise State Math 275 (Ultman) Worksheet 1.1: Introduction to Vectors From the Toolbox (what you need from previous classes) Know how the Cartesian coordinates a point in the plane (R 2 ) determine its

More information

VECTORS. Given two vectors! and! we can express the law of vector addition geometrically. + = Fig. 1 Geometrical definition of vector addition

VECTORS. Given two vectors! and! we can express the law of vector addition geometrically. + = Fig. 1 Geometrical definition of vector addition VECTORS Vectors in 2- D and 3- D in Euclidean space or flatland are easy compared to vectors in non- Euclidean space. In Cartesian coordinates we write a component of a vector as where the index i stands

More information

Lecture 3- Vectors Chapter 3

Lecture 3- Vectors Chapter 3 1 / 36 Lecture 3- Vectors Chapter 3 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 21 th, 2018 2 / 36 Course Reminders The course

More information

Department of Physics, Korea University

Department of Physics, Korea University Name: Department: Notice +2 ( 1) points per correct (incorrect) answer. No penalty for an unanswered question. Fill the blank ( ) with (8) if the statement is correct (incorrect).!!!: corrections to an

More information

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk Vector Operations Vector Operations ME 202 Multiplication by a scalar Addition/subtraction Scalar multiplication (dot product) Vector multiplication (cross product) 1 2 Graphical Operations Component Operations

More information

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below:

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below: Vectors Extending the concepts of kinematics into two and three dimensions, the idea of a vector becomes very useful. By definition, a vector is a quantity with both a magnitude and a spatial direction.

More information

Lecture 3- Vectors Chapter 3

Lecture 3- Vectors Chapter 3 1 / 36 Lecture 3- Vectors Chapter 3 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 21 th, 2018 2 / 36 Course Reminders The course

More information

Module 3: Cartesian Coordinates and Vectors

Module 3: Cartesian Coordinates and Vectors Module 3: Cartesian Coordinates and Vectors Philosophy is written in this grand book, the universe which stands continually open to our gaze. But the book cannot be understood unless one first learns to

More information

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8 UNIT 1 INTRODUCTION TO VECTORS Lesson TOPIC Suggested Work Sept. 5 1.0 Review of Pre-requisite Skills Pg. 273 # 1 9 OR WS 1.0 Fill in Info sheet and get permission sheet signed. Bring in $3 for lesson

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar Adding Vectors

More information

Chapter 2 A Mathematical Toolbox

Chapter 2 A Mathematical Toolbox Chapter 2 Mathematical Toolbox Vectors and Scalars 1) Scalars have only a magnitude (numerical value) Denoted by a symbol, a 2) Vectors have a magnitude and direction Denoted by a bold symbol (), or symbol

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Otterbein University Department of Physics Physics Laboratory Partner s Name: EXPERIMENT D FORCE VECTORS

Otterbein University Department of Physics Physics Laboratory Partner s Name: EXPERIMENT D FORCE VECTORS Name: Partner s Name: EXPERIMENT 1500-7 2D FORCE VECTORS INTRODUCTION A vector is represented by an arrow: it has a direction and a magnitude (or length). Vectors can be moved around the page without changing

More information

Quadratic equations: complex solutions

Quadratic equations: complex solutions October 28 (H), November 1 (A), 2016 Complex number system page 1 Quadratic equations: complex solutions An issue that can arise when solving a quadratic equation by the Quadratic Formula is the need to

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Distance in the Plane

Distance in the Plane Distance in the Plane The absolute value function is defined as { x if x 0; and x = x if x < 0. If the number a is positive or zero, then a = a. If a is negative, then a is the number you d get by erasing

More information

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar.

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar. UNIT-05 VECTORS Introduction: physical quantity that can be specified by just a number the magnitude is known as a scalar. In everyday life you deal mostly with scalars such as time, temperature, length

More information

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors.

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors. PC1221 Fundamentals of Phsics I Lectures 5 and 6 Vectors Dr Ta Seng Chuan 1 Ground ules Switch off our handphone and pager Switch off our laptop computer and keep it No talking while lecture is going on

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems To locate a point in a plane, two numbers are necessary. We know that any point in the plane can be represented as an ordered pair (a, b) of real numbers, where a is the x-coordinate and b is the y-coordinate.

More information

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems Phsics for Scientists and Engineers Chapter 3 Vectors and Coordinate Sstems Spring, 2008 Ho Jung Paik Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists of a

More information

Physics 40 Chapter 3: Vectors

Physics 40 Chapter 3: Vectors Physics 40 Chapter 3: Vectors Cartesian Coordinate System Also called rectangular coordinate system x-and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference

More information

VISUAL PHYSICS ONLINE THE LANGUAGE OF PHYSICS SCALAR AND VECTORS

VISUAL PHYSICS ONLINE THE LANGUAGE OF PHYSICS SCALAR AND VECTORS VISUAL PHYSICS ONLINE THE LANGUAGE OF PHYSICS SCALAR AND VECTORS SCALAR QUANTITES Physical quantities that require only a number and a unit for their complete specification are known as scalar quantities.

More information

Lecture Notes (Vectors)

Lecture Notes (Vectors) Lecture Notes (Vectors) Intro: - up to this point we have learned that physical quantities can be categorized as either scalars or vectors - a vector is a physical quantity that requires the specification

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

(+4) = (+8) =0 (+3) + (-3) = (0) , = +3 (+4) + (-1) = (+3)

(+4) = (+8) =0 (+3) + (-3) = (0) , = +3 (+4) + (-1) = (+3) Lesson 1 Vectors 1-1 Vectors have two components: direction and magnitude. They are shown graphically as arrows. Motions in one dimension form of one-dimensional (along a line) give their direction in

More information

Four Basic Types of Motion Pearson Education, Inc.

Four Basic Types of Motion Pearson Education, Inc. Four Basic Types of Motion Making a Motion Diagram An easy way to study motion is to make a video of a moving object. A video camera takes images at a fixed rate, typically 30 every second. Each separate

More information

Worksheet 1.4: Geometry of the Dot and Cross Products

Worksheet 1.4: Geometry of the Dot and Cross Products Boise State Math 275 (Ultman) Worksheet 1.4: Geometry of the Dot and Cross Products From the Toolbox (what you need from previous classes): Basic algebra and trigonometry: be able to solve quadratic equations,

More information

Objectives and Essential Questions

Objectives and Essential Questions VECTORS Objectives and Essential Questions Objectives Distinguish between basic trigonometric functions (SOH CAH TOA) Distinguish between vector and scalar quantities Add vectors using graphical and analytical

More information

Chapter 2 One-Dimensional Kinematics

Chapter 2 One-Dimensional Kinematics Review: Chapter 2 One-Dimensional Kinematics Description of motion in one dimension Copyright 2010 Pearson Education, Inc. Review: Motion with Constant Acceleration Free fall: constant acceleration g =

More information

Experiment 3: Vector Addition

Experiment 3: Vector Addition Experiment 3: Vector Addition EQUIPMENT Force Table (4) Pulleys (4) Mass Hangers Masses Level (TA s Table) (2) Protractors (2) Rulers (4) Colored Pencils (bold colors) Figure 3.1: Force Table 15 16 Experiment

More information

Introduction to vectors

Introduction to vectors Lecture 4 Introduction to vectors Course website: http://facult.uml.edu/andri_danlov/teaching/phsicsi Lecture Capture: http://echo360.uml.edu/danlov2013/phsics1fall.html 95.141, Fall 2013, Lecture 3 Outline

More information

Chapter 3 Vectors in Physics

Chapter 3 Vectors in Physics Chapter 3 Vectors in Physics Is 1+1 always =2? Not true for vectors. Direction matters. Vectors in opposite directions can partially cancel. Position vectors, displacement, velocity, momentum, and forces

More information

Vector Addition INTRODUCTION THEORY

Vector Addition INTRODUCTION THEORY Vector Addition INTRODUCTION All measurable quantities may be classified either as vector quantities or as scalar quantities. Scalar quantities are described completely by a single number (with appropriate

More information

Example problem: Free Fall

Example problem: Free Fall Example problem: Free Fall A ball is thrown from the top of a building with an initial velocity of 20.0 m/s straight upward, at an initial height of 50.0 m above the ground. The ball just misses the edge

More information

Chapter 3. Vectors and Two-Dimensional Motion

Chapter 3. Vectors and Two-Dimensional Motion Chapter 3 Vectors and Two-Dimensional Motion 1 Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector A vector quantity has both magnitude (size)

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors Why Vectors? Say you wanted to tell your friend that you re running late and will be there in five minutes. That s precisely enough information for your friend to know when you

More information

Culminating Review for Vectors

Culminating Review for Vectors Culminating Review for Vectors 0011 0010 1010 1101 0001 0100 1011 An Introduction to Vectors Applications of Vectors Equations of Lines and Planes 4 12 Relationships between Points, Lines and Planes An

More information

CHAPTER 2: VECTORS IN 3D

CHAPTER 2: VECTORS IN 3D CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS A vector in three dimensions is a quantity that is determined by its magnitude and direction. Vectors are added and multiplied by numbers

More information

Problem Set 1: Solutions 2

Problem Set 1: Solutions 2 UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Spring 2009 Problems due 15 January 2009. Problem Set 1: Solutions 2 1. A person walks in the following pattern: 3.1 km north,

More information

5 Displacement and Force in Two Dimensions BIGIDEA Write the Big Idea for this chapter.

5 Displacement and Force in Two Dimensions BIGIDEA Write the Big Idea for this chapter. 5 Displacement and Force in Two Dimensions BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about

More information

4.4 Energy in multiple dimensions, dot product

4.4 Energy in multiple dimensions, dot product 4 CONSERVATION LAWS 4.4 Energy in multiple dimensions, dot product Name: 4.4 Energy in multiple dimensions, dot product 4.4.1 Background By this point, you have worked a fair amount with vectors in this

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Lecture 2-2 02-2 1 Last time: Displacement, velocity, graphs Today: Constant acceleration, free fall 02-2 2 2-2.1: An object moves with constant acceleration, starting from

More information

2- Scalars and Vectors

2- Scalars and Vectors 2- Scalars and Vectors Scalars : have magnitude only : Length, time, mass, speed and volume is example of scalar. v Vectors : have magnitude and direction. v The magnitude of is written v v Position, displacement,

More information

Linear Algebra. 1.1 Introduction to vectors 1.2 Lengths and dot products. January 28th, 2013 Math 301. Monday, January 28, 13

Linear Algebra. 1.1 Introduction to vectors 1.2 Lengths and dot products. January 28th, 2013 Math 301. Monday, January 28, 13 Linear Algebra 1.1 Introduction to vectors 1.2 Lengths and dot products January 28th, 2013 Math 301 Notation for linear systems 12w +4x + 23y +9z =0 2u + v +5w 2x +2y +8z =1 5u + v 6w +2x +4y z =6 8u 4v

More information

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods I. Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocity, force, momentum A scalar has only a magnitude. Some scalar quantities: mass, time, temperature

More information

Lecture 2: Vector-Vector Operations

Lecture 2: Vector-Vector Operations Lecture 2: Vector-Vector Operations Vector-Vector Operations Addition of two vectors Geometric representation of addition and subtraction of vectors Vectors and points Dot product of two vectors Geometric

More information

Pre-Calculus Vectors

Pre-Calculus Vectors Slide 1 / 159 Slide 2 / 159 Pre-Calculus Vectors 2015-03-24 www.njctl.org Slide 3 / 159 Table of Contents Intro to Vectors Converting Rectangular and Polar Forms Operations with Vectors Scalar Multiples

More information

Day 1: Introduction to Vectors + Vector Arithmetic

Day 1: Introduction to Vectors + Vector Arithmetic Day 1: Introduction to Vectors + Vector Arithmetic A is a quantity that has magnitude but no direction. You can have signed scalar quantities as well. A is a quantity that has both magnitude and direction.

More information

MATH 60 Course Notebook Chapter #1

MATH 60 Course Notebook Chapter #1 MATH 60 Course Notebook Chapter #1 Integers and Real Numbers Before we start the journey into Algebra, we need to understand more about the numbers and number concepts, which form the foundation of Algebra.

More information

Vectors. September 2, 2015

Vectors. September 2, 2015 Vectors September 2, 2015 Our basic notion of a vector is as a displacement, directed from one point of Euclidean space to another, and therefore having direction and magnitude. We will write vectors in

More information

Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Suggested Videos for Chapter 1 Prelecture Videos Introduction Putting Numbers on Nature Video Tutor Solutions Representing Motion Class Videos Series

More information

8.0 Definition and the concept of a vector:

8.0 Definition and the concept of a vector: Chapter 8: Vectors In this chapter, we will study: 80 Definition and the concept of a ector 81 Representation of ectors in two dimensions (2D) 82 Representation of ectors in three dimensions (3D) 83 Operations

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

Physics 170 Lecture 2. Phys 170 Lecture 2 1

Physics 170 Lecture 2. Phys 170 Lecture 2 1 Physics 170 Lecture 2 Phys 170 Lecture 2 1 Phys 170 Lecture 2 2 dministrivia Registration issues? Web page issues? On Connect? http://www.physics.ubc.ca/~mattison/courses/phys170 Mastering Engineering

More information

Module 02: Math Review

Module 02: Math Review Module 02: Math Review 1 Module 02: Math Review: Outline Vector Review (Dot, Cross Products) Review of 1D Calculus Scalar Functions in higher dimensions Vector Functions Differentials Purpose: Provide

More information

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Vectors 9.1 Introduction In engineering, frequent reference is made to physical quantities, such as force, speed and time. For example, we talk of the speed of a car, and the force in

More information

GEOMETRY AND VECTORS

GEOMETRY AND VECTORS GEOMETRY AND VECTORS Distinguishing Between Points in Space One Approach Names: ( Fred, Steve, Alice...) Problem: distance & direction must be defined point-by-point More elegant take advantage of geometry

More information

Chapter 3. Vectors and Coordinate Systems

Chapter 3. Vectors and Coordinate Systems Chapter 3. Vectors and Coordinate Systems Our universe has three dimensions, so some quantities also need a direction for a full description. For example, wind has both a speed and a direction; hence the

More information

Chapter 1. Representing Motion. 1 Representing Motion. Making a Motion Diagram. Four Types of Motion We ll Study

Chapter 1. Representing Motion. 1 Representing Motion. Making a Motion Diagram. Four Types of Motion We ll Study Chapter 1 1 Representing Motion Representing Motion PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Slide 1-2 Slide 1-3 Slide 1-4 Four Types of Motion We ll Study Making a

More information

LHS Algebra Pre-Test

LHS Algebra Pre-Test Your Name Teacher Block Grade (please circle): 9 10 11 12 Course level (please circle): Honors Level 1 Instructions LHS Algebra Pre-Test The purpose of this test is to see whether you know Algebra 1 well

More information

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books.

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books. Vectors A Vector has Two properties Magnitude and Direction. That s a weirder concept than you think. A Vector does not necessarily start at a given point, but can float about, but still be the SAME vector.

More information

Wed Feb The vector spaces 2, 3, n. Announcements: Warm-up Exercise:

Wed Feb The vector spaces 2, 3, n. Announcements: Warm-up Exercise: Wed Feb 2 4-42 The vector spaces 2, 3, n Announcements: Warm-up Exercise: 4-42 The vector space m and its subspaces; concepts related to "linear combinations of vectors" Geometric interpretation of vectors

More information

Name: Lab Partner: Section: In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored.

Name: Lab Partner: Section: In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored. Chapter 3 Vectors Name: Lab Partner: Section: 3.1 Purpose In this experiment vector addition, resolution of vectors into components, force, and equilibrium will be explored. 3.2 Introduction A vector is

More information

Vectors and Matrices Lecture 2

Vectors and Matrices Lecture 2 Vectors and Matrices Lecture 2 Dr Mark Kambites School of Mathematics 13/03/2014 Dr Mark Kambites (School of Mathematics) COMP11120 13/03/2014 1 / 20 How do we recover the magnitude of a vector from its

More information

Mathematics Revision Guide. Algebra. Grade C B

Mathematics Revision Guide. Algebra. Grade C B Mathematics Revision Guide Algebra Grade C B 1 y 5 x y 4 = y 9 Add powers a 3 a 4.. (1) y 10 y 7 = y 3 (y 5 ) 3 = y 15 Subtract powers Multiply powers x 4 x 9...(1) (q 3 ) 4...(1) Keep numbers without

More information

Chapter 3 Vectors. 3.1 Vector Analysis

Chapter 3 Vectors. 3.1 Vector Analysis Chapter 3 Vectors 3.1 Vector nalysis... 1 3.1.1 Introduction to Vectors... 1 3.1.2 Properties of Vectors... 1 3.2 Coordinate Systems... 6 3.2.1 Cartesian Coordinate System... 6 3.2.2 Cylindrical Coordinate

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information