Latent Factor Models for Relational Data

Size: px
Start display at page:

Download "Latent Factor Models for Relational Data"

Transcription

1 Latent Factor Models for Relational Data Peter Hoff Statistics, Biostatistics and Center for Statistics and the Social Sciences University of Washington

2 Outline Part 1: Multiplicative factor models for network data Relational data Eigenvalue decomposition model Example: Adolescent social network Singular value decomposition model Example: International conflicts Part 2: Extension to multiway data Multiway data Multiway latent factor models Example: Cold war cooperation and conflict Summary and future work

3 Relational data Relational data: consist of a set of units or nodes A, and a set of measurements Y {y i,j } specific to pairs of nodes (i, j) A A. Examples: International relations A =countries, y i,j = indicator of a dispute initiated by i with target j Needle-sharing network A=IV drug users, y i,j = needle-sharing activity between i and j Protein-protein interactions A=proteins, y i,j = the interaction between i and j Document analysis A 1 =words, A 2 =documents, y i,j = wordcount of i in document j

4 Adolescent health social network Data on 82 12th graders from a single high school: 54 boys, 28 girls ˆPr(y i,j = 1 same sex) = ˆPr(y i,j = 1 opposite sex) = 0.056

5 Inferential goals in the regression framework 0 Y = y i,j measures i j, y 1,1 y 1,2 y 1,3 NA y 1,5 y 2,1 y 2,2 y 2,3 y 2,4 y 2,5 y 3,1 NA y 3,3 y 3,4 NA y 4,1 y 4,2 y 4,3 y 4,4 y 4, x i,j is a vector of explanatory variables. 1 C A 0 X = Consider a basic (generalized) linear model A model can provide y i,j β x i,j + e i,j x 1,1 x 1,2 x 1,3 x 1,4 x 1,5 x 2,1 x 2,2 x 2,3 x 2,4 x 2,5 x 3,1 x 3,2 x 3,3 x 3,4 x 3,5 x 4,1 x 4,2 x 4,3 x 4,4 x 4,5 a measure of the association between X and Y: ˆβ, se( ˆβ) imputations of missing observations: p(y 1,4 Y, X) a probabilistic description of network features: g(ỹ), Ỹ p(ỹ Y, X) C A

6 Model fit glm(formula = y ~ x, family = binomial(link = "logit")) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) <2e-16 *** x * This result says that a model with preferential association is a better description of the data than an i.i.d. binary model log odds ratio log odds ratio

7 Nodal heterogeneity and independence assumptions

8 Model lack of fit Neither of these models do well in terms of representing other features of the data - for example, transitivity: t(y) = y i,j y j,k y k,i i<j<k transitive triples transitive triples

9 Latent variable models Deviations from ordinary regression models can be represented as y i,j β x i,j + e i,j A simple latent variable model might include additive node effects: e i,j = u i + u j + ɛ i,j y i,j β x i,j + u i + u j + ɛ i,j {u 1,..., u n } represent across-node heterogeneity that is additive on the scale of the regressors. Inclusion of these effects in the model can dramatically improve within-sample model fit (measured by R 2, likelihood ratio, BIC, etc.); out-of-sample predictive performance (measured by cross-validation). But this model only captures heterogeneity of outdegree/indegree, and can t represent more complicated structure, such as clustering, transitivity, etc.

10 Fit of additive effects model log odds ratio transitive triples

11 Latent variable models via exchangeability X represents known information about the nodes E represents deviations from the regression model In this case we might be willing to use a model for E in which {e i,j } d = {e gi,gj } for all permutations g. This is a type of exchangeability for arrays, sometimes called weak exchangeability. Theorem (Aldous, Hoover): Let {e i,j } be a weakly exchangeable array. Then {e i,j } = d {ei,j }, where e i,j = f (u i, u j, ɛ i,j ) and {u i }, {ɛ i,j } are all independent random variables.

12 The eigenvalue decomposition model E = M + E M represents systematic patterns and E represents noise. Every symmetric M has a representation of the form M = UΛU where U is an n n matrix with orthonormal columns Λ is an n n diagonal matrix, with elements {λ 1,..., λ n } Many data analysis procedures for symmetric matrix-valued data Y are related to this decomposition. Given a model of the form Y = M + E where E is independent noise, the ED provides Interpretation:y i,j = u i Λu j + ɛ i,j, u i and u j are the ith, jth rows of U Estimation: ˆMR = Û[,1:R]ˆΛ [1:R,1:R] Û [,1:R] if M is assumed to be of rank R.

13 Generalized bilinear regression y i,j β x i,j + u iλu j + ɛ i,j Interpretation: Think of {u 1,..., u n } as vectors of latent nodal attributes: u iλu j = R λ k u i,k u j,k r=1 In general, a latent variable model relating X to Y is g(y i,j ) = β x i,j + u iλv j + ɛ i,j and the parameters can be estimated using a rank-likelihood or multinomial probit. Alternatively, parametric models include If y i,j is binary, If y i,j is count data, If y i,j is continuous, log odds (y i,j = 1) = β x i,j + u i Λu j + ɛ i,j log E[y i,j ] = β x i,j + u i Λu j + ɛ i,j E[y i,j ] = β x i,j + u i Λu j + ɛ i,j Estimation: Given Λ, the predictor is linear in U. This bilinear structure can be exploited (EM, Gibbs sampling).

14 Eigenmodel fit Parameters this model can be fit with the eigenmodel package in R: eigenmodel_mcmc(y,x,r=3) log odds ratio transitive triples The latent factors are able to represent the network transitivity.

15 Underlying structure

16 Missing variables

17 Missing variables The eigenmodel, without having explicit race information, captures a large degree of the racial homophily in friendship: additive model log odds ratio eigenmodel log odds ratio

18 Multiway data Data on pairs is sometimes called two-way data. More generally, data on triples, quadruples, etc. is called multi-way data. A 1, A 2,..., A p represent classes of objects. y i1,i 2,...,i p is the measurement specific to i 1 A 1,..., i p A p. Examples: International relations A 1 = A 2 = countries, A 3 = time, y i,j,t = indicator of a dispute between i and j in year t. Social networks A 1 = A 2 = individuals, A 3 = information sources, y i,j,k = source k s report of the relationship between i and j. Document analysis A 1 = A 2 = words, A 3 = documents, y i,j,k = co-occurrence of words i and j in document k.

19 Factor models for multiway data Recall the decomposition of a two-way array of rank R: m i,j = u iλu j = Now generalize to a three-way array: m i,j,k = R u i,r u j,r λ r r=1 R u i,r u j,r w k,r λ r r=1 {u 1,..., u n } represents variation among the nodes; {w 1,..., w m } represents variation across the networks. Consider the kth slab of M, which is an n n matrix: m i,j,k = = R u i,r u j,r w k,r λ r r=1 R u i,r u j,r λ k,r = u iλ k u j r=1 where λ k,r replaces w k,r λ k

20 Cold war cooperation and conflict data βtrade βgdp βdistance λ λ λ

21 Cold war cooperation and conflict data u USR USR USR SYR CUB IRQ IRQ SYR FRN EGY CAM FRN EGY POR IND AFG AFG TUN CAM ALG EGY ZAM ECU NEW PHI TAW PRK IND AUL ICE PRK IND GUA RVN GRC DOM HAI MYA ROK HUN RUM DRV NEW AUL RVN PHI PRK TUR BUL ARG PER ROK BEL ETH CHL AUS JPN HUN DRV TUR LAO SOM NEP ROK LAO VEN PAK CHN THI PAK GUY INS CHN THI PAK CHN YUG SAL MOR IRN IRN ZIM CAN SEN USA JOR USA GUI JOR UKG ITA USA ISR UKGISR NOR NTH JOR UKG SAF ISR 1985 USR ANG CUB IRQ SYR CAM FRN LEB EGY AFG TUN IND NEW PHI PRK KUW BOT GRCCYP DRV LAO HON MLT PAN ROK TUR LBR BEL COS DEN ETH IRE BFO MAL MLI NIC SAU SOM SRI CZE SPN GDR MYA THI PAK CHN SAL IRN USA GFR LIB UKG ITA ISR NTH SAF u3 u1 USA 1950 ROK AUL NEW PHI UKG TUR ISR PAK HUN CANYUG TAW DOM BUL FRN GRC HAI RUM ECU MYA EGY IND PER AFG JOR SYRPRK CHN USR u1 USA 1960 NOR JPN PAK UKG TUR ROK RVN THI ISR NTH LAO ITA BEL NEP HUN ETH MOR SOM CHL ARG FRNTUN EGY IND AFG JOR ICE AUS IRN IRQ PRK CHN DRV CUB INS USR CAM USA u UKG ROK RVN AULTHI ISR NEW LAO ZAM PHI IND CAM PAK SAF VEN GUY SEN GUA ALG GUI PORSAL EGY JOR IRN IRQ ZIM SYRPRK CHN DRV USR USA u PAK UKG TUR KUW SAU ROK THI ISR MAL GFR HON NTH BEL SAF ITA NEW LAO MLT PAN LBR COS DEN ETH IRE BFO FRN GRC SOM MLI SRI LIB LEB TUN SAL SPN CYP MYA EGY PHI IND AFGBOTCZE GDR ANG IRN NIC IRQ SYRPRK CHN DRV CUB USR CAM u3 u1 USA 1950 PAK UKG TUR ISR ROK AUL HUN NEW CANYUGDOM BUL HAI RUM TAW MYA GRC PER ECU EGY FRN JOR PHI IND AFG CHN PRK SYR USR u1 USA 1960 NOR PAK UKG TUR JPN ISR NTH ROK RVN ITA THI LAO BEL HUN MOR NEP SOM CHL ARG ETH TUN EGY FRN JOR ICE IND AFG IRN CHN AUS IRQ INS DRV PRK CUB USR CAM u1 USA 1970 UKG PAK ISR SAF ROK RVN THI LAO AUL NEW ZAM GUI SEN GUY VEN SAL GUA ALG EGY POR JORZIM PHI IND IRN CHN IRQ DRV PRK SYR CAM USR u1 USA 1985 PAK UKG TUR KUW SAU ISR NTH SAF GFR MAL HON ITA THI ROK LAO BEL DEN COSNEW BFO ETH IRE MLT LBR PAN MLI LIB SAL SOM SRI GRC LEB SPN MYA CYP TUN EGY FRN CZE IND BOT PHI AFG IRN CHN GDR NIC IRQ ANG DRV PRK SYR CUB USR CAM u2 u2 u2 u2

22 Summary and future directions Summary: Latent factor models are a natural way to represent patterns in relational or array-structured data. The latent factor structure can be incorporated into a variety of model forms. Model-based methods Future Directions: give parameter estimates; accommodate missing data; provide predictions; are easy to extend. Dynamic network inference Generalization to multi-level models

23 The SVD model for asymmetric data E = M + E M represents systematic patterns and E represents noise. Every M has a representation of the form M = UDV where, in the case m n, Recall, U is an m n matrix with orthonormal columns; V is an n n matrix with orthonormal columns; D is an n n diagonal matrix, with diagonal elements {d 1,..., d n } typically taken to be a decreasing sequence of non-negative numbers. The squared elements of the diagonal of D are the eigenvalues of M M and the columns of V are the corresponding eigenvectors. The matrix U can be obtained from the first n eigenvectors of MM. The number of non-zero elements of D is the rank of M. Writing the row vectors as {u 1,..., u m }, {v 1,..., v n }, m i,j = u i Dv j.

24 Data analysis with the singular value decomposition Many data analysis procedures for matrix-valued data Y are related to the SVD. Given a model of the form Y = M + E where E is independent noise, the SVD provides Interpretation:y i,j = u i Dv j + ɛ i,j, u i and v j are the ith, jth rows of U, V Estimation: ˆMR = Û[,1:R] ˆD [1:R,1:R] ˆV [,1:R] if M is assumed to be of rank R. Applications: biplots (Gabriel 1971, Gower and Hand 1996) reduced-rank interaction models (Gabriel 1978, 1998) analysis of relational data (Harshman et al., 1982) Factor analysis, image processing, data reduction,... Notes: How to select R? Given R, is ˆM R a good estimator? (E[Y Y] = M M + mσ 2 I ) Work on model-based factor analysis: Rajan and Rayner (1997), Minka (2000), Lopes and West (2004).

25 International conflict network, years of international relations data (Mike Ward and Xun Cao) y i,j = indicator of a militarized disputes initiated by i with target j; x i,j an 8-dimensional covariate vector containing an intercept and 1. population initiator 2. population target 3. polity score initiator 4. polity score target 5. polity score initiator polity score target 6. log distance 7. number of shared intergovernmental organizations Model: y i,j are independent binary random variables with log-odds log odds(y i,j = 1) = β x i,j + u idv j + ɛ i,j

26 International conflict network: parameter estimates log distance polity initiator intergov org polity target polity interaction log pop target log pop initiator regression coefficient

27 International conflict network: description of latent variation AFG ANG ARG AUL BAH BNG BOT BUI CAN CAO CHA CHN COS CUB CYP DOM DRC EGY FRN GHA GRC GUI HON IND INS IRN IRQ ISR ITA JOR JPN KEN LBR LES LIB MAL MYA NIC NIG NIR NTH OMA PAK PHI PRK QAT ROK RWA SAF SAL SAU SEN SIE SRI SUD SWA SYR TAW TAZ THI TOG TUR UAE UGA UKG USA VEN AFG ALB ANG ARG AUL BAH BEL BEN BNG BUI CAM CAN CDI CHA CHL CHN COL CON COS CUB CYP DRC EGY FRN GHA GNB GRC GUI GUY HAI HON IND INS IRN IRQ ISR ITA JOR JPN LBR LES LIB MAA MLI MON MOR MYA MZM NAM NIC NIG NIR NTH OMA PAK PHI PNG PRK QAT ROK RWA SAF SAL SAU SEN SIE SIN SPN SUD SYR TAW TAZ THI TOG TRI TUR UAE UGA UKG USA VEN YEM ZAM ZIM

28 International conflict network: prediction experiment # of links found K=0 K=1 K=2 K= # of pairs checked

29 Factor models for multiway data Recall the decomposition of a two-way array of rank R: m i,j = u idv j = Now generalize to a three-way array: m i,j,k = R u i,r v j,r d r r=1 R u i,r v j,r w k,r d r {u 1,..., u n1 } represents variation along the 1st dimension {v 1,..., v n2 } represents variation along the 2nd dimension {w 1,..., w n3 } represents variation along the 3rd dimension Consider the kth slab of M, which is an n 1 n 2 matrix: R m i,j,k = u i,r v j,r w k,r d r = r=1 r=1 R u i,r v j,r d k,r = u id k v j r=1 where d k,r = w k,r d k

Latent SVD Models for Relational Data

Latent SVD Models for Relational Data Latent SVD Models for Relational Data Peter Hoff Statistics, iostatistics and enter for Statistics and the Social Sciences University of Washington 1 Outline 1 Relational data 2 Exchangeability for arrays

More information

Hierarchical models for multiway data

Hierarchical models for multiway data Hierarchical models for multiway data Peter Hoff Statistics, Biostatistics and the CSSS University of Washington Array-valued data y i,j,k = jth variable of ith subject under condition k (psychometrics).

More information

Mean and covariance models for relational arrays

Mean and covariance models for relational arrays Mean and covariance models for relational arrays Peter Hoff Statistics, Biostatistics and the CSSS University of Washington Outline Introduction and examples Models for multiway mean structure Models for

More information

Probability models for multiway data

Probability models for multiway data Probability models for multiway data Peter Hoff Statistics, Biostatistics and the CSSS University of Washington Outline Introduction and examples Hierarchical models for multiway factors Deep interactions

More information

Higher order patterns via factor models

Higher order patterns via factor models 1/39 Higher order patterns via factor models 567 Statistical analysis of social networks Peter Hoff Statistics, University of Washington 2/39 Conflict data Y

More information

Latent Factor Models for Relational Data

Latent Factor Models for Relational Data Latent Factor Models for Relational Data Peter Hoff Statistics, Biostatistics and Center for Statistics and the Social Sciences University of Washington Outline Part 1: Multiplicative factor models for

More information

The International-Trade Network: Gravity Equations and Topological Properties

The International-Trade Network: Gravity Equations and Topological Properties The International-Trade Network: Gravity Equations and Topological Properties Giorgio Fagiolo Sant Anna School of Advanced Studies Laboratory of Economics and Management Piazza Martiri della Libertà 33

More information

Inferring Latent Preferences from Network Data

Inferring Latent Preferences from Network Data Inferring Latent Preferences from Network John S. Ahlquist 1 Arturas 2 1 UC San Diego GPS 2 NYU 14 November 2015 very early stages Methodological extend latent space models (Hoff et al 2002) to partial

More information

Clustering and blockmodeling

Clustering and blockmodeling ISEG Technical University of Lisbon Introductory Workshop to Network Analysis of Texts Clustering and blockmodeling Vladimir Batagelj University of Ljubljana Lisbon, Portugal: 2nd to 5th February 2004

More information

Hierarchical multilinear models for multiway data

Hierarchical multilinear models for multiway data Hierarchical multilinear models for multiway data Peter D. Hoff 1 Technical Report no. 564 Department of Statistics University of Washington Seattle, WA 98195-4322. December 28, 2009 1 Departments of Statistics

More information

Agriculture, Transportation and the Timing of Urbanization

Agriculture, Transportation and the Timing of Urbanization Agriculture, Transportation and the Timing of Urbanization Global Analysis at the Grid Cell Level Mesbah Motamed Raymond Florax William Masters Department of Agricultural Economics Purdue University SHaPE

More information

Random Effects Models for Network Data

Random Effects Models for Network Data Random Effects Models for Network Data Peter D. Hoff 1 Working Paper no. 28 Center for Statistics and the Social Sciences University of Washington Seattle, WA 98195-4320 January 14, 2003 1 Department of

More information

Lecture 10 Optimal Growth Endogenous Growth. Noah Williams

Lecture 10 Optimal Growth Endogenous Growth. Noah Williams Lecture 10 Optimal Growth Endogenous Growth Noah Williams University of Wisconsin - Madison Economics 702 Spring 2018 Optimal Growth Path Recall we assume exogenous growth in population and productivity:

More information

Dyadic data analysis with amen

Dyadic data analysis with amen Dyadic data analysis with amen Peter D. Hoff May 23, 2017 Abstract Dyadic data on pairs of objects, such as relational or social network data, often exhibit strong statistical dependencies. Certain types

More information

A re examination of the Columbian exchange: Agriculture and Economic Development in the Long Run

A re examination of the Columbian exchange: Agriculture and Economic Development in the Long Run Are examinationofthecolumbianexchange: AgricultureandEconomicDevelopmentintheLongRun AlfonsoDíezMinguela MªDoloresAñónHigón UniversitatdeValéncia UniversitatdeValéncia May2012 [PRELIMINARYRESEARCH,PLEASEDONOTCITE]

More information

Multilinear tensor regression for longitudinal relational data

Multilinear tensor regression for longitudinal relational data Multilinear tensor regression for longitudinal relational data Peter D. Hoff 1 Working Paper no. 149 Center for Statistics and the Social Sciences University of Washington Seattle, WA 98195-4320 November

More information

Econometrics I KS. Module 1: Bivariate Linear Regression. Alexander Ahammer. This version: March 12, 2018

Econometrics I KS. Module 1: Bivariate Linear Regression. Alexander Ahammer. This version: March 12, 2018 Econometrics I KS Module 1: Bivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: March 12, 2018 Alexander Ahammer (JKU) Module 1: Bivariate

More information

Modeling homophily and stochastic equivalence in symmetric relational data

Modeling homophily and stochastic equivalence in symmetric relational data Modeling homophily and stochastic equivalence in symmetric relational data Peter D. Hoff Departments of Statistics and Biostatistics University of Washington Seattle, WA 98195-4322. hoff@stat.washington.edu

More information

Economic Growth: Lecture 1, Questions and Evidence

Economic Growth: Lecture 1, Questions and Evidence 14.452 Economic Growth: Lecture 1, Questions and Evidence Daron Acemoglu MIT October 23, 2018 Daron Acemoglu (MIT) Economic Growth Lecture 1 October 23, 2018 1 / 38 Cross-Country Income Differences Cross-Country

More information

Landlocked or Policy Locked?

Landlocked or Policy Locked? Landlocked or Policy Locked? How Services Trade Protection Deepens Economic Isolation Ingo Borchert University of Sussex Based on research with Batshur Gootiiz, Arti Grover and Aaditya Mattoo FERDI ITC

More information

Network Analysis with Pajek

Network Analysis with Pajek Network Analysis with Pajek Vladimir Batagelj University of Ljubljana Local Development PhD Program version: September 10, 2009 / 07 : 37 V. Batagelj: Network Analysis with Pajek 2 Outline 1 Networks......................................

More information

Lecture Note 13 The Gains from International Trade: Empirical Evidence Using the Method of Instrumental Variables

Lecture Note 13 The Gains from International Trade: Empirical Evidence Using the Method of Instrumental Variables Lecture Note 13 The Gains from International Trade: Empirical Evidence Using the Method of Instrumental Variables David Autor, MIT and NBER 14.03/14.003 Microeconomic Theory and Public Policy, Fall 2016

More information

ECON 581. The Solow Growth Model, Continued. Instructor: Dmytro Hryshko

ECON 581. The Solow Growth Model, Continued. Instructor: Dmytro Hryshko ECON 581. The Solow Growth Model, Continued Instructor: Dmytro Hryshko 1 / 38 The Solow model in continuous time Consider the following (difference) equation x(t + 1) x(t) = g(x(t)), where g( ) is some

More information

Equivariant and scale-free Tucker decomposition models

Equivariant and scale-free Tucker decomposition models Equivariant and scale-free Tucker decomposition models Peter David Hoff 1 Working Paper no. 142 Center for Statistics and the Social Sciences University of Washington Seattle, WA 98195-4320 December 31,

More information

Exponential Random Graph Models (ERGM)

Exponential Random Graph Models (ERGM) Exponential Random Graph Models (ERGM) SN & H Workshop, Duke University Zack W Almquist May 25, 2017 University of Minnesota 1 Preliminaries Statistical Models for Social Networks Classic Probability Models

More information

IDENTIFYING MULTILATERAL DEPENDENCIES IN THE WORLD TRADE NETWORK

IDENTIFYING MULTILATERAL DEPENDENCIES IN THE WORLD TRADE NETWORK IDENTIFYING MULTILATERAL DEPENDENCIES IN THE WORLD TRADE NETWORK PETER R. HERMAN Abstract. When studying the formation of trade between two countries, traditional modeling has described this decision as

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

Model averaging and dimension selection for the singular value decomposition

Model averaging and dimension selection for the singular value decomposition Model averaging and dimension selection for the singular value decomposition Peter D. Hoff December 9, 2005 Abstract Many multivariate data reduction techniques for an m n matrix Y involve the model Y

More information

arxiv:math/ v1 [math.st] 1 Sep 2006

arxiv:math/ v1 [math.st] 1 Sep 2006 Model averaging and dimension selection for the singular value decomposition arxiv:math/0609042v1 [math.st] 1 Sep 2006 Peter D. Hoff February 2, 2008 Abstract Many multivariate data analysis techniques

More information

Sampling and incomplete network data

Sampling and incomplete network data 1/58 Sampling and incomplete network data 567 Statistical analysis of social networks Peter Hoff Statistics, University of Washington 2/58 Network sampling methods It is sometimes difficult to obtain a

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 15 1 / 38 Data structure t1 t2 tn i 1st subject y 11 y 12 y 1n1 Experimental 2nd subject

More information

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University TOPIC MODELING MODELS FOR TEXT DATA

More information

Lecture 9 Endogenous Growth Consumption and Savings. Noah Williams

Lecture 9 Endogenous Growth Consumption and Savings. Noah Williams Lecture 9 Endogenous Growth Consumption and Savings Noah Williams University of Wisconsin - Madison Economics 702/312 Optimal Balanced Growth Therefore we have capital per unit of effective labor in the

More information

Scalable Gaussian process models on matrices and tensors

Scalable Gaussian process models on matrices and tensors Scalable Gaussian process models on matrices and tensors Alan Qi CS & Statistics Purdue University Joint work with F. Yan, Z. Xu, S. Zhe, and IBM Research! Models for graph and multiway data Model Algorithm

More information

INSTITUTIONS AND THE LONG-RUN IMPACT OF EARLY DEVELOPMENT

INSTITUTIONS AND THE LONG-RUN IMPACT OF EARLY DEVELOPMENT DEPARTMENT OF ECONOMICS ISSN 1441-5429 DISCUSSION PAPER 49/12 INSTITUTIONS AND THE LONG-RUN IMPACT OF EARLY DEVELOPMENT James B. Ang * Abstract We study the role of institutional development as a causal

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1 Week 2 Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Part I Other datatypes, preprocessing 2 / 1 Other datatypes Document data You might start with a collection of

More information

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes Week 2 Based in part on slides from textbook, slides of Susan Holmes Part I Other datatypes, preprocessing October 3, 2012 1 / 1 2 / 1 Other datatypes Other datatypes Document data You might start with

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Lecture 6: Methods for high-dimensional problems

Lecture 6: Methods for high-dimensional problems Lecture 6: Methods for high-dimensional problems Hector Corrada Bravo and Rafael A. Irizarry March, 2010 In this Section we will discuss methods where data lies on high-dimensional spaces. In particular,

More information

WP/18/117 Sharp Instrument: A Stab at Identifying the Causes of Economic Growth

WP/18/117 Sharp Instrument: A Stab at Identifying the Causes of Economic Growth WP/18/117 Sharp Instrument: A Stab at Identifying the Causes of Economic Growth By Reda Cherif, Fuad Hasanov, and Lichen Wang 2 2018 International Monetary Fund WP/18/117 IMF Working Paper Institute for

More information

Nonparametric Bayesian Matrix Factorization for Assortative Networks

Nonparametric Bayesian Matrix Factorization for Assortative Networks Nonparametric Bayesian Matrix Factorization for Assortative Networks Mingyuan Zhou IROM Department, McCombs School of Business Department of Statistics and Data Sciences The University of Texas at Austin

More information

!" #$$% & ' ' () ) * ) )) ' + ( ) + ) +( ), - ). & " '" ) / ) ' ' (' + 0 ) ' " ' ) () ( ( ' ) ' 1)

! #$$% & ' ' () ) * ) )) ' + ( ) + ) +( ), - ). &  ' ) / ) ' ' (' + 0 ) '  ' ) () ( ( ' ) ' 1) !" #$$% & ' ' () ) * ) )) ' + ( ) + ) +( ), - ). & " '" ) () -)( / ) ' ' (' + 0 ) ' " ' ) () ( ( ' ) ' 1) )) ) 2') 3 45$" 467" 8" 4 %" 96$ & ' 4 )" 3)" ::" ( & ) ;: < ( ) ) =)+ ( " " " $8> " ') +? @ ::

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran 1. Let A m n be a matrix of real numbers. The matrix AA T has an eigenvector x with eigenvalue b. Then the eigenvector y of A T A

More information

Linear Equations and Matrix

Linear Equations and Matrix 1/60 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Gaussian Elimination 2/60 Alpha Go Linear algebra begins with a system of linear

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

Model averaging and dimension selection for the singular value decomposition

Model averaging and dimension selection for the singular value decomposition Model averaging and dimension selection for the singular value decomposition Peter D. Hoff Technical Report no. 494 Department of Statistics University of Washington January 10, 2006 Abstract Many multivariate

More information

Longitudinal Modeling with Logistic Regression

Longitudinal Modeling with Logistic Regression Newsom 1 Longitudinal Modeling with Logistic Regression Longitudinal designs involve repeated measurements of the same individuals over time There are two general classes of analyses that correspond to

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

36-720: The Rasch Model

36-720: The Rasch Model 36-720: The Rasch Model Brian Junker October 15, 2007 Multivariate Binary Response Data Rasch Model Rasch Marginal Likelihood as a GLMM Rasch Marginal Likelihood as a Log-Linear Model Example For more

More information

International Investment Positions and Exchange Rate Dynamics: A Dynamic Panel Analysis

International Investment Positions and Exchange Rate Dynamics: A Dynamic Panel Analysis International Investment Positions and Exchange Rate Dynamics: A Dynamic Panel Analysis Michael Binder 1 Christian J. Offermanns 2 1 Frankfurt and Center for Financial Studies 2 Frankfurt Motivation Empirical

More information

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Put your solution to each problem on a separate sheet of paper. Problem 1. (5166) Assume that two random samples {x i } and {y i } are independently

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

STAT 510 Final Exam Spring 2015

STAT 510 Final Exam Spring 2015 STAT 510 Final Exam Spring 2015 Instructions: The is a closed-notes, closed-book exam No calculator or electronic device of any kind may be used Use nothing but a pen or pencil Please write your name and

More information

STAT 525 Fall Final exam. Tuesday December 14, 2010

STAT 525 Fall Final exam. Tuesday December 14, 2010 STAT 525 Fall 2010 Final exam Tuesday December 14, 2010 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points will

More information

Homework 6. Due: 10am Thursday 11/30/17

Homework 6. Due: 10am Thursday 11/30/17 Homework 6 Due: 10am Thursday 11/30/17 1. Hinge loss vs. logistic loss. In class we defined hinge loss l hinge (x, y; w) = (1 yw T x) + and logistic loss l logistic (x, y; w) = log(1 + exp ( yw T x ) ).

More information

Correspondence Analysis

Correspondence Analysis Correspondence Analysis Q: when independence of a 2-way contingency table is rejected, how to know where the dependence is coming from? The interaction terms in a GLM contain dependence information; however,

More information

Generalized logit models for nominal multinomial responses. Local odds ratios

Generalized logit models for nominal multinomial responses. Local odds ratios Generalized logit models for nominal multinomial responses Categorical Data Analysis, Summer 2015 1/17 Local odds ratios Y 1 2 3 4 1 π 11 π 12 π 13 π 14 π 1+ X 2 π 21 π 22 π 23 π 24 π 2+ 3 π 31 π 32 π

More information

Manning & Schuetze, FSNLP (c) 1999,2000

Manning & Schuetze, FSNLP (c) 1999,2000 558 15 Topics in Information Retrieval (15.10) y 4 3 2 1 0 0 1 2 3 4 5 6 7 8 Figure 15.7 An example of linear regression. The line y = 0.25x + 1 is the best least-squares fit for the four points (1,1),

More information

Lecture 4: Principal Component Analysis and Linear Dimension Reduction

Lecture 4: Principal Component Analysis and Linear Dimension Reduction Lecture 4: Principal Component Analysis and Linear Dimension Reduction Advanced Applied Multivariate Analysis STAT 2221, Fall 2013 Sungkyu Jung Department of Statistics University of Pittsburgh E-mail:

More information

4 Bias-Variance for Ridge Regression (24 points)

4 Bias-Variance for Ridge Regression (24 points) Implement Ridge Regression with λ = 0.00001. Plot the Squared Euclidean test error for the following values of k (the dimensions you reduce to): k = {0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500,

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery

CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery Tim Roughgarden & Gregory Valiant May 3, 2017 Last lecture discussed singular value decomposition (SVD), and we

More information

A Hierarchical Perspective on Lee-Carter Models

A Hierarchical Perspective on Lee-Carter Models A Hierarchical Perspective on Lee-Carter Models Paul Eilers Leiden University Medical Centre L-C Workshop, Edinburgh 24 The vantage point Previous presentation: Iain Currie led you upward From Glen Gumbel

More information

High-Throughput Sequencing Course

High-Throughput Sequencing Course High-Throughput Sequencing Course DESeq Model for RNA-Seq Biostatistics and Bioinformatics Summer 2017 Outline Review: Standard linear regression model (e.g., to model gene expression as function of an

More information

Figure 36: Respiratory infection versus time for the first 49 children.

Figure 36: Respiratory infection versus time for the first 49 children. y BINARY DATA MODELS We devote an entire chapter to binary data since such data are challenging, both in terms of modeling the dependence, and parameter interpretation. We again consider mixed effects

More information

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin Regression Review Statistics 149 Spring 2006 Copyright c 2006 by Mark E. Irwin Matrix Approach to Regression Linear Model: Y i = β 0 + β 1 X i1 +... + β p X ip + ɛ i ; ɛ i iid N(0, σ 2 ), i = 1,..., n

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

One-stage dose-response meta-analysis

One-stage dose-response meta-analysis One-stage dose-response meta-analysis Nicola Orsini, Alessio Crippa Biostatistics Team Department of Public Health Sciences Karolinska Institutet http://ki.se/en/phs/biostatistics-team 2017 Nordic and

More information

For Adam Smith, the secret to the wealth of nations was related

For Adam Smith, the secret to the wealth of nations was related The building blocks of economic complexity César A. Hidalgo 1 and Ricardo Hausmann a Center for International Development and Harvard Kennedy School, Harvard University, Cambridge, MA 02138 Edited by Partha

More information

Fractional Imputation in Survey Sampling: A Comparative Review

Fractional Imputation in Survey Sampling: A Comparative Review Fractional Imputation in Survey Sampling: A Comparative Review Shu Yang Jae-Kwang Kim Iowa State University Joint Statistical Meetings, August 2015 Outline Introduction Fractional imputation Features Numerical

More information

Linear Regression With Special Variables

Linear Regression With Special Variables Linear Regression With Special Variables Junhui Qian December 21, 2014 Outline Standardized Scores Quadratic Terms Interaction Terms Binary Explanatory Variables Binary Choice Models Standardized Scores:

More information

Lecture 18: Simple Linear Regression

Lecture 18: Simple Linear Regression Lecture 18: Simple Linear Regression BIOS 553 Department of Biostatistics University of Michigan Fall 2004 The Correlation Coefficient: r The correlation coefficient (r) is a number that measures the strength

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Singular Value Decomposition and Principal Component Analysis (PCA) I

Singular Value Decomposition and Principal Component Analysis (PCA) I Singular Value Decomposition and Principal Component Analysis (PCA) I Prof Ned Wingreen MOL 40/50 Microarray review Data per array: 0000 genes, I (green) i,i (red) i 000 000+ data points! The expression

More information

Modeling heterogeneity in random graphs

Modeling heterogeneity in random graphs Modeling heterogeneity in random graphs Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry (Soon: Laboratoire de Probabilités et Modèles Aléatoires, Paris) http://stat.genopole.cnrs.fr/ cmatias

More information

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data.

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data. Structure in Data A major objective in data analysis is to identify interesting features or structure in the data. The graphical methods are very useful in discovering structure. There are basically two

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

ANALYSING BINARY DATA IN A REPEATED MEASUREMENTS SETTING USING SAS

ANALYSING BINARY DATA IN A REPEATED MEASUREMENTS SETTING USING SAS Libraries 1997-9th Annual Conference Proceedings ANALYSING BINARY DATA IN A REPEATED MEASUREMENTS SETTING USING SAS Eleanor F. Allan Follow this and additional works at: http://newprairiepress.org/agstatconference

More information

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2016, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2016, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Booth School of Business Business 41912, Spring Quarter 2016, Mr. Ruey S. Tsay Lecture 5: Multivariate Multiple Linear Regression The model is Y n m = Z n (r+1) β (r+1) m + ɛ

More information

Chapter 1. Modeling Basics

Chapter 1. Modeling Basics Chapter 1. Modeling Basics What is a model? Model equation and probability distribution Types of model effects Writing models in matrix form Summary 1 What is a statistical model? A model is a mathematical

More information

The System of Linear Equations. Direct Methods. Xiaozhou Li.

The System of Linear Equations. Direct Methods. Xiaozhou Li. 1/16 The Direct Methods xiaozhouli@uestc.edu.cn http://xiaozhouli.com School of Mathematical Sciences University of Electronic Science and Technology of China Chengdu, China Does the LU factorization always

More information

Yu Xie, Institute for Social Research, 426 Thompson Street, University of Michigan, Ann

Yu Xie, Institute for Social Research, 426 Thompson Street, University of Michigan, Ann Association Model, Page 1 Yu Xie, Institute for Social Research, 426 Thompson Street, University of Michigan, Ann Arbor, MI 48106. Email: yuxie@umich.edu. Tel: (734)936-0039. Fax: (734)998-7415. Association

More information

Non-linear panel data modeling

Non-linear panel data modeling Non-linear panel data modeling Laura Magazzini University of Verona laura.magazzini@univr.it http://dse.univr.it/magazzini May 2010 Laura Magazzini (@univr.it) Non-linear panel data modeling May 2010 1

More information

Multinomial Logistic Regression Models

Multinomial Logistic Regression Models Stat 544, Lecture 19 1 Multinomial Logistic Regression Models Polytomous responses. Logistic regression can be extended to handle responses that are polytomous, i.e. taking r>2 categories. (Note: The word

More information

Strassen-like algorithms for symmetric tensor contractions

Strassen-like algorithms for symmetric tensor contractions Strassen-like algorithms for symmetric tensor contractions Edgar Solomonik Theory Seminar University of Illinois at Urbana-Champaign September 18, 2017 1 / 28 Fast symmetric tensor contractions Outline

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 27 pages

More information

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010 Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu COMPSTAT

More information

Linear Methods in Data Mining

Linear Methods in Data Mining Why Methods? linear methods are well understood, simple and elegant; algorithms based on linear methods are widespread: data mining, computer vision, graphics, pattern recognition; excellent general software

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

Multi-level Models: Idea

Multi-level Models: Idea Review of 140.656 Review Introduction to multi-level models The two-stage normal-normal model Two-stage linear models with random effects Three-stage linear models Two-stage logistic regression with random

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information