2IV10/2IV60 Computer Graphics

Size: px
Start display at page:

Download "2IV10/2IV60 Computer Graphics"

Transcription

1 I0/I60 omper Grphics Eminion April 6 0 4:00 7:00 This eminion consis of for qesions wih in ol 6 sqesion. Ech sqesion weighs eqll. In ll cses: EXPLAIN YOUR ANSWER. Use skeches where needed o clrif or nswer. Red firs ll qesions compleel. If n lgorihm is sked hen descripion in seps or psedo-code is epeced which is cler enogh o e esil rnsferred o rel code. Aim compcness nd clri. Use ddiionl fncions nd procedres if desired. Gie from ech fncion nd procedre shor descripion of inp nd op. The se of he ook copies of slides noes nd oher meril is no llowed. We consider some sic echniqes for comper grphics. Wh is iewpor in comper grphics erminolog? A iewpor is region of he screen h is sed for showing grphics op picll recnglr re. Gie crierion o disingish cone nd conce polgons. Some chrcerisics of cone polgon re h: - All inerior ngles re < 80 degrees; - All line segmens eween wo inerior poins re compleel inside he polgon; - Gien line hrogh n edge ll poins of he polgon re eiher on his line or on he sme side of he line; - rom ech inerior poin he complee ondr is isile. These do no hold for conce polgons nd cn hence e sed o disingish eween hem. c In he simples model for rnsprenc he color I srfce of he srfce nd he color I ck of he ckgrond re lended ino perceied color I. Gie forml for I ssming rnsprenc coefficien α in he rnge from 0 opqe o fll rnspren. In he simples model I srfce nd I ck nd re weighed wih α nd α nd dded p i.e. I α I srfce α I ck. I is es o mi p opci nd rnsprenc. To check ssie α 0 opqe which gies I I srfce hence we see he srfce which is correc. Also α fll rnspren gies I I ck hence we see he onl he ckgrond which is correc gin. inll if I srfce I ck we ge I α α hence if srfce nd ckgrond he he sme color rnsprenc does no mer nmore. d Wh is he difference in he compion of ligh inensiies eween Phong shding nd Gord shding? In Gord shding colors of erices re inerpoled oer polgons in Phong shding normls of erices re inerpoled followed shding clclion.

2 We consider pr of hperolic srfce descried wih. nd Gie prmeric descripion S nd n implici descripion 0 of his srfce. We ke nd nd ge. Hence. S or he implici eqion we rewrie he gien eqion o ge 0 hence. Derie forml for norml ecor for poin on his srfce eiher sing prmeric or n implici descripion. Using he prmeric descripion we ge:. 0 0 S S N Using he implici eqion we ge:. N c lcle ll inersecion poins of line P wih his srfce wih P P P P nd. A picl r-rcing sk. irs noe h P. Ne we clcle for which les of we find inersecions wih he infinie srfce. Ssiion of P ino he eqion gies. We rewrie his o ge qdric eqion in : 0. or nd Se c If D 4c < 0 hen here re no inersecions. If D > 0 we ge wo les for sing he wellknown c forml:. 4 c ± If D 0 nd 0 here is single inersecion for / proided h 0. The cse D0 nd 0 cn occr for insnce for nd 0. Sch line lies compleel in he nonded srfce. If we find one or wo inersecion poins he finl sep is o check wheher he poins P i re loced wihin he gien poins i.e. he condiions nd i i ms e me.

3 d Gie procedre o drw his srfce ssming procedre DrwTringleA B is ille. or insnce: N 0; // nmer of seps per side d.0/n; // sepsie fncion Pni j: poin; // rerns poin on he srfce specified indices i nd j 0...N egin Pn. i*d; Pn. j*d; Pn. i*i j*j*d*d; procedre DrwSrfce; egin for i 0 o N do for j 0 o N do egin P00 Pni j; // lcle poins of qd P0 Pni j; P0 Pni j; P Pni j; DrwTringleP00 P0 P; // Drw he qd wih wo ringles DrwTringleP00 P P0; Mn lernies re possile for insnce soring nd resing poins. We wn o drw n rc s shown in he figre. The rc srs in poin A 0 psses hrogh poin B 0 nd ends in poin 0. A poin A nd he rc is perpendiclr o he -is poin B he rc is perpendiclr o he -is. We wn o define he cre prmericll s P wih [0 ]. We eplore differen opions o define his rc. Indice for ech opion if i is possile o define n rc h mees he reqiremens nd if no eplin wh no; if es eplin how his cn e done nd define P ecl. We consider: Use of n ellipse scled circle; This is possile: P cosπ sinπ. Use of cre sed on cic fncion 0 ; This is no possile. A poin A nd he ngen o he cre is ericl nd his implies h he derie of is infinie. c Use of single qdric Béier segmen P P0 P P ; nd Agin no possile. A cre h srs A nd ends cn e oined choosing P 0 0 nd P 0. To oin ericl ngens hese poins we ge P p nd P p. These cnno e sisfied simlneosl. Or eqilenl P ms e loced he crossing of he ngen lines A nd B nd if hese lines re prllel sch poin cnno e fond. d Use of single cic Béier segmen P P0 P P P.

4 This is possile. A cre h srs A nd ends cn e oined choosing P 0 0 nd P 0. To oin ericl ngens hese poins nd iming smmeric rc we se P p nd P p where p is consn o e deermined. Hlfw he rc shold cross he -is wih i.e. P /. Ssiion of he les picked for he conrol-poins gies P / P 0 /8 P /8 P /8 P /8 p/4. Hence if we choose p 4/ we oin cic Béier segmen h mees he reqiremens. B A 4 We im o drw he figre shown. In he cener is sqre S 0 cenered on he origin wih sie. The sqre S hs sie < is lower lef corner coincides wih he pper lef corner of S 0 nd S is roed oer α degrees. This pern is repeed he sie of sqre S i is imes he sie of sqre S i. On op of he oher edges sqres re posiioned similrl. We se homogenos rnsformion mri M sch h posiion A in glol coordines is reled o posiion B in locl coordines i AMB. I m e ssmed h T gies rnslion mri long he ecor ; h Rϕ gies roion mri of ϕ degrees rond he origin; nd h Ss gies niform scling mri wih scle fcor s. The roine DrwSqre drws sqre in he locl coordine frme h is implicil defined he mri M. In hese α S 0 locl coordines he sqre h is drwn hs sie nd is cenered on he origin. S Se M sch h cll o DrwSqre drws S ecl ccording o he specificion gien nd he figre. We cn rnsform S 0 o S sing he following seps sing glol rnsformions: T : Moe he sqre sch h he lower lef corner is in he origin; Rα: Roe he sqre rond he origin oer α degrees; S: Scle he sqre wih fcor ; 4 T : Moe he lower lef corner he origin o he pper lef corner of he originl sqre. Using locl rnsformions we ge: 4

5 T : Moe he cener of he sqre o he pper righ corner; S: Scle he sqre wih fcor ; Rα: Roe he sqre rond is origin oer α degrees; 4 T : Moe he sqre sch h is lower lef corner moed o is origin. Noe h onl he order is reersed he rnsformions re he sme. rhermore he roion nd scling cn e inerchnged. Bsed on hese rnsformions we ge M T S RαT. Sppose M hs een se sch h S i hs js een drwn wih cll DrwSqre. Upde M o drw S i wih e noher cll o DrwSqre. Ech ime new sqre is dded he sme rnsformion is pplied gin. This cn e seen if we consider S i nd check which rnsformions re needed in locl coordines o ge S i. Hence: M M T S RαT. B lso M T S RαT M. gies he desired resl. In generl he rnsformion M i for S i is gien M i T S RαT i c I is desired h sqre S n hs sie p nd is roed oer β degrees in ol. How o se nd α o ge his effec? The ol roion ms e eql o β he figre shows h his is eql o nα. Hence α β / n. The sie ms e eql o p repeed scling gies sie eql o n. Hence p/ /n. d Gie procedre o drw he complee figre inclding ll for rms where ech rm consiss of n sqres. or insnce: procedre Drwigren; egin M I; // se M o he ideni mri DrwSqre; // drw S 0 P T SRαT ; // lcle nd sore he sic rnsformion sep for i o n do // for ll leels egin M MP; // dp he rnsformion for he ne leel sqres for j o 4 do // for ll rms egin DrwSqre; // drw sqre M R90M; // ppl glol roion o shif o he ne rm // Noe: fer for roions oer 90 degrees M is ck o is sring posiion Alerniel he loops for leels nd rms cn e inerchnged for insnce: 5

6 procedre Drwigren; egin M I; // se M o he ideni mri DrwSqre; // drw S 0 P T SRαT ; // lcle nd sore he sic rnsformion sep for i 0 o do // for ll rms egin M Ri*90; // se M o roion of degrees for j o n do // for ll leels egin M MP; // dp he rnsformion for he ne leel sqre DrwSqre; // drw sqre 6

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section.

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section. wwwskshieducioncom PARABOLA Le S be given fixed poin (focus) nd le l be given fixed line (Direcrix) Le SP nd PM be he disnce of vrible poin P o he focus nd direcrix respecively nd P SP moves such h PM

More information

1. Consider a PSA initially at rest in the beginning of the left-hand end of a long ISS corridor. Assume xo = 0 on the left end of the ISS corridor.

1. Consider a PSA initially at rest in the beginning of the left-hand end of a long ISS corridor. Assume xo = 0 on the left end of the ISS corridor. In Eercise 1, use sndrd recngulr Cresin coordine sysem. Le ime be represened long he horizonl is. Assume ll ccelerions nd decelerions re consn. 1. Consider PSA iniilly res in he beginning of he lef-hnd

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = = Mi i fd l Phsic 3 Lecure 4 Min poins of od s lecure: Emple: ddiion of elociies Trjecories of objecs in dimensions: dimensions: g 9.8m/s downwrds ( ) g o g g Emple: A foobll pler runs he pern gien in he

More information

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems Lecre 4: Liner Time Invrin LTI sysems 2. Liner sysems, Convolion 3 lecres: Implse response, inp signls s coninm of implses. Convolion, discree-ime nd coninos-ime. LTI sysems nd convolion Specific objecives

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1. Answers o Een Numbered Problems Chper. () 7 m s, 6 m s (b) 8 5 yr 4.. m ih 6. () 5. m s (b).5 m s (c).5 m s (d) 3.33 m s (e) 8. ().3 min (b) 64 mi..3 h. ().3 s (b) 3 m 4..8 mi wes of he flgpole 6. (b)

More information

PHY2048 Exam 1 Formula Sheet Vectors. Motion. v ave (3 dim) ( (1 dim) dt. ( (3 dim) Equations of Motion (Constant Acceleration)

PHY2048 Exam 1 Formula Sheet Vectors. Motion. v ave (3 dim) ( (1 dim) dt. ( (3 dim) Equations of Motion (Constant Acceleration) Insrucors: Field/Mche PHYSICS DEPATMENT PHY 48 Em Ferur, 5 Nme prin, ls firs: Signure: On m honor, I he neiher gien nor receied unuhoried id on his eminion. YOU TEST NUMBE IS THE 5-DIGIT NUMBE AT THE TOP

More information

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

An object moving with speed v around a point at distance r, has an angular velocity. m/s m Roion The mosphere roes wih he erh n moions wihin he mosphere clerly follow cure phs (cyclones, nicyclones, hurricnes, ornoes ec.) We nee o epress roion quniiely. For soli objec or ny mss h oes no isor

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information. Nme D Moion WS The equions of moion h rele o projeciles were discussed in he Projecile Moion Anlsis Acii. ou found h projecile moes wih consn eloci in he horizonl direcion nd consn ccelerion in he ericl

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

Physics 101 Lecture 4 Motion in 2D and 3D

Physics 101 Lecture 4 Motion in 2D and 3D Phsics 11 Lecure 4 Moion in D nd 3D Dr. Ali ÖVGÜN EMU Phsics Deprmen www.ogun.com Vecor nd is componens The componens re he legs of he righ ringle whose hpoenuse is A A A A A n ( θ ) A Acos( θ) A A A nd

More information

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES CHAPTER PARAMETRIC EQUATIONS AND POLAR COORDINATES. PARAMETRIZATIONS OF PLANE CURVES., 9, _ _ Ê.,, Ê or, Ÿ. 5, 7, _ _.,, Ÿ Ÿ Ê Ê 5 Ê ( 5) Ê ˆ Ê 6 Ê ( 5) 7 Ê Ê, Ÿ Ÿ $ 5. cos, sin, Ÿ Ÿ 6. cos ( ), sin (

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1 D Trnsformions Compuer Grphics COMP 770 (6) Spring 007 Insrucor: Brndon Lloyd /6/07 Geomery Geomeric eniies, such s poins in spce, exis wihou numers. Coordines re nming scheme. The sme poin cn e descried

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP UNIT # 09 PARABOLA, ELLIPSE & HYPERBOLA PARABOLA EXERCISE - 0 CHECK YOUR GRASP. Hin : Disnce beween direcri nd focus is 5. Given (, be one end of focl chord hen oher end be, lengh of focl chord 6. Focus

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

FM Applications of Integration 1.Centroid of Area

FM Applications of Integration 1.Centroid of Area FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is

More information

3 Motion with constant acceleration: Linear and projectile motion

3 Motion with constant acceleration: Linear and projectile motion 3 Moion wih consn ccelerion: Liner nd projecile moion cons, In he precedin Lecure we he considered moion wih consn ccelerion lon he is: Noe h,, cn be posiie nd neie h leds o rie of behiors. Clerl similr

More information

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008) MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide

More information

Scalar Conservation Laws

Scalar Conservation Laws MATH-459 Nmerical Mehods for Conservaion Laws by Prof. Jan S. Heshaven Solion se : Scalar Conservaion Laws Eercise. The inegral form of he scalar conservaion law + f ) = is given in Eq. below. ˆ 2, 2 )

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218 Chper Moion long srigh line 9/9/05 Physics 8 Gols for Chper How o describe srigh line moion in erms of displcemen nd erge elociy. The mening of insnneous elociy nd speed. Aerge elociy/insnneous elociy

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

Name: Per: L o s A l t o s H i g h S c h o o l. Physics Unit 1 Workbook. 1D Kinematics. Mr. Randall Room 705

Name: Per: L o s A l t o s H i g h S c h o o l. Physics Unit 1 Workbook. 1D Kinematics. Mr. Randall Room 705 Nme: Per: L o s A l o s H i g h S c h o o l Physics Uni 1 Workbook 1D Kinemics Mr. Rndll Room 705 Adm.Rndll@ml.ne www.laphysics.com Uni 1 - Objecies Te: Physics 6 h Ediion Cunel & Johnson The objecies

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1 COMP28: Decision, Compuion nd Lnguge Noe These noes re inended minly s supplemen o he lecures nd exooks; hey will e useful for reminders ou noion nd erminology. Some sic noion nd erminology An lphe is

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

Ch.4 Motion in 2D. Ch.4 Motion in 2D

Ch.4 Motion in 2D. Ch.4 Motion in 2D Moion in plne, such s in he sceen, is clled 2-dimensionl (2D) moion. 1. Posiion, displcemen nd eloci ecos If he picle s posiion is ( 1, 1 ) 1, nd ( 2, 2 ) 2, he posiions ecos e 1 = 1 1 2 = 2 2 Aege eloci

More information

Version 001 test-1 swinney (57010) 1. is constant at m/s.

Version 001 test-1 swinney (57010) 1. is constant at m/s. Version 001 es-1 swinne (57010) 1 This prin-ou should hve 20 quesions. Muliple-choice quesions m coninue on he nex column or pge find ll choices before nswering. CubeUniVec1x76 001 10.0 poins Acubeis1.4fee

More information

Physics Worksheet Lesson 4: Linear Motion Section: Name:

Physics Worksheet Lesson 4: Linear Motion Section: Name: Physics Workshee Lesson 4: Liner Moion Secion: Nme: 1. Relie Moion:. All moion is. b. is n rbirry coorine sysem wih reference o which he posiion or moion of somehing is escribe or physicl lws re formule.

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

CSE 5365 Computer Graphics. Take Home Test #1

CSE 5365 Computer Graphics. Take Home Test #1 CSE 5365 Comper Graphics Take Home Tes #1 Fall/1996 Tae-Hoon Kim roblem #1) A bi-cbic parameric srface is defined by Hermie geomery in he direcion of parameer. In he direcion, he geomery ecor is defined

More information

Motion in a Straight Line

Motion in a Straight Line Moion in Srigh Line. Preei reched he mero sion nd found h he esclor ws no working. She wlked up he sionry esclor in ime. On oher dys, if she remins sionry on he moing esclor, hen he esclor kes her up in

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Motion. ( (3 dim) ( (1 dim) dt. Equations of Motion (Constant Acceleration) Newton s Law and Weight. Magnitude of the Frictional Force

Motion. ( (3 dim) ( (1 dim) dt. Equations of Motion (Constant Acceleration) Newton s Law and Weight. Magnitude of the Frictional Force Insucos: ield/mche PHYSICS DEPARTMENT PHY 48 Em Sepeme 6, 4 Nme pin, ls fis: Signue: On m hono, I he neihe gien no eceied unuhoied id on his eminion. YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP O

More information

CSE-4303/CSE-5365 Computer Graphics Fall 1996 Take home Test

CSE-4303/CSE-5365 Computer Graphics Fall 1996 Take home Test Comper Graphics roblem #1) A bi-cbic parameric srface is defined by Hermie geomery in he direcion of parameer. In he direcion, he geomery ecor is defined by a poin @0, a poin @0.5, a angen ecor @1 and

More information

when t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63)

when t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63) . The -coordine of pricle in curiliner oion i gien b where i in eer nd i in econd. The -coponen of ccelerion in eer per econd ured i gien b =. If he pricle h -coponen = nd when = find he gniude of he eloci

More information

DESY MVP G.Petrosyan DSP PROGRAM AND DSP SERVER

DESY MVP G.Petrosyan DSP PROGRAM AND DSP SERVER DESY MP G.Perosn DSP PROGRAM AND DSP SERER DSP SYSTEM On figure nd 2 re presened loc digrms of DSP sed LLRF conrol ssem for GUN nd ACC. Mesured signls digiized in ADC cm ino he DSP. The lgorihm relized

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

HYPOTHESIS TESTING. four steps. 1. State the hypothesis and the criterion. 2. Compute the test statistic. 3. Compute the p-value. 4.

HYPOTHESIS TESTING. four steps. 1. State the hypothesis and the criterion. 2. Compute the test statistic. 3. Compute the p-value. 4. Inrodcion o Saisics in Psychology PSY Professor Greg Francis Lecre 24 Hypohesis esing for correlaions Is here a correlaion beween homework and exam grades? for seps. Sae he hypohesis and he crierion 2.

More information

Introduction to LoggerPro

Introduction to LoggerPro Inroducion o LoggerPro Sr/Sop collecion Define zero Se d collecion prmeers Auoscle D Browser Open file Sensor seup window To sr d collecion, click he green Collec buon on he ool br. There is dely of second

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

SCANNING OF FREE-FORM SURFACES BY USING A LASER-STRIPE SENSOR ON A CMM

SCANNING OF FREE-FORM SURFACES BY USING A LASER-STRIPE SENSOR ON A CMM XVIII IMEKO WORLD CONGRESS Merology for Susinle Developmen Sepemer, 17 22, 2006, Rio de Jneiro, Brzil SCANNING OF FREE-FORM SURFACES BY USING A LASER-STRIPE SENSOR ON A CMM Fernández, P. 1, Álvrez, B.

More information

t s (half of the total time in the air) d?

t s (half of the total time in the air) d? .. In Cl or Homework Eercie. An Olmpic long jumper i cpble of jumping 8.0 m. Auming hi horizonl peed i 9.0 m/ he lee he ground, how long w he in he ir nd how high did he go? horizonl? 8.0m 9.0 m / 8.0

More information

I = I = I for this case of symmetry about the x axis, we find from

I = I = I for this case of symmetry about the x axis, we find from 8-5. THE MOTON OF A TOP n his secion, we shll consider he moion of n xilly symmeric body, sch s op, which hs fixed poin on is xis of symmery nd is ced pon by niform force field. The op ws chosen becse

More information

Available Online :

Available Online : fo/u fopjr Hh# u] ugh vjehs de] foifr ns[ NsMs rqjr e/;e eu dj ';ea iq#" flg ldyi dj] lgrs foifr vusd] ^cu^ u NsMs /;s; ds] j?qcj j[s VsdAA jfpr% euo /ez iz.sr ln~xq# Jh j.nsmnlh egj STUDY PACKAGE Subjec

More information

June Further Pure Mathematics FP2 Mark Scheme

June Further Pure Mathematics FP2 Mark Scheme Jne 75 Frher Pre Mheis FP Mrk Shee. e e e e 5 e e 7 M: Siplify o for qri in e ( e )(e 7) e, e 7 M: Solve er qri. ln or ln ln 7 B M A M A A () Mrks. () Using ( e ) or eqiv. o fin e or e: ( = n = ) M A e

More information

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response.

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response. Experimen 4:he Sdies of ransiional processes of 1. Prpose firs-order circi a) Use he oscilloscope o observe he ransiional processes of firs-order circi. b) Use he oscilloscope o measre he ime consan of

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

Phys 110. Answers to even numbered problems on Midterm Map

Phys 110. Answers to even numbered problems on Midterm Map Phys Answers o een numbered problems on Miderm Mp. REASONING The word per indices rio, so.35 mm per dy mens.35 mm/d, which is o be epressed s re in f/cenury. These unis differ from he gien unis in boh

More information

Collision Detection and Bouncing

Collision Detection and Bouncing Collision Deecion nd Bouncing Collisions re Hndled in Two Prs. Deecing he collision Mike Biley mj@cs.oregonse.edu. Hndling he physics of he collision collision-ouncing.ppx If You re Lucky, You Cn Deec

More information

01 = Transformations II. We ve got Affine Transformations. Elementary Transformations. Compound Transformations. Reflection about y-axis

01 = Transformations II. We ve got Affine Transformations. Elementary Transformations. Compound Transformations. Reflection about y-axis Leure Se 5 Trnsformions II CS56Comuer Grhis Rih Riesenfel 7 Ferur We ve go Affine Trnsformions Liner Trnslion CS56 Comoun Trnsformions Buil u omoun rnsformions onening elemenr ones Use for omlie moion

More information

Think of the Relationship Between Time and Space Again

Think of the Relationship Between Time and Space Again Repor nd Opinion, 1(3),009 hp://wwwsciencepubne sciencepub@gmilcom Think of he Relionship Beween Time nd Spce Agin Yng F-cheng Compny of Ruid Cenre in Xinjing 15 Hongxing Sree, Klmyi, Xingjing 834000,

More information

MEP Practice Book ES3. 1. Calculate the size of the angles marked with a letter in each diagram. None to scale

MEP Practice Book ES3. 1. Calculate the size of the angles marked with a letter in each diagram. None to scale ME rctice ook ES3 3 ngle Geometr 3.3 ngle Geometr 1. lculte the size of the ngles mrked with letter in ech digrm. None to scle () 70 () 20 54 65 25 c 36 (d) (e) (f) 56 62 d e 60 40 70 70 f 30 g (g) (h)

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

Par+cle Filtering. CSE 473: Ar+ficial Intelligence Par+cle Filters. Par+cle Filtering: Elapse Time. Representa+on: Par+cles

Par+cle Filtering. CSE 473: Ar+ficial Intelligence Par+cle Filters. Par+cle Filtering: Elapse Time. Representa+on: Par+cles CSE 473: Ar+ficil Inelligence Pr+cle Filers Dieer Fo - - - Universiy of Wshingon [Mos slides were creed y Dn Klein nd Pieer Aeel for CS88 Inro o AI UC Berkeley. All CS88 merils re ville ho://i.erkeley.ed.]

More information

HYPOTHESIS TESTING. four steps. 1. State the hypothesis. 2. Set the criterion for rejecting. 3. Compute the test statistics. 4. Interpret the results.

HYPOTHESIS TESTING. four steps. 1. State the hypothesis. 2. Set the criterion for rejecting. 3. Compute the test statistics. 4. Interpret the results. Inrodcion o Saisics in Psychology PSY Professor Greg Francis Lecre 23 Hypohesis esing for correlaions Is here a correlaion beween homework and exam grades? for seps. Sae he hypohesis. 2. Se he crierion

More information

Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics:

Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics: SPH4U: Inroducion o ork ork & Energy ork & Energy Discussion Definiion Do Produc ork of consn force ork/kineic energy heore ork of uliple consn forces Coens One of he os iporn conceps in physics Alernive

More information

( ) 2 a b ab. To do this, we are to use the Ricci identity (which we use to evaluate the RHS) and the properties of the Lie derivative.

( ) 2 a b ab. To do this, we are to use the Ricci identity (which we use to evaluate the RHS) and the properties of the Lie derivative. Exercise [9.6] This exercise sks s o show h he ccelerion of n (infiniesiml volme mesre V long he worlline he volme s cener e o he effecs of spceime crvre is given by: D V = R V ( b b To o his, we re o

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

LAB # 2 - Equilibrium (static)

LAB # 2 - Equilibrium (static) AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

More information

Chapter 2: Evaluative Feedback

Chapter 2: Evaluative Feedback Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is

More information

Introduction to Numerical Modeling. 7. An Example: QG Barotropic Channel Model (Weather Prediction)

Introduction to Numerical Modeling. 7. An Example: QG Barotropic Channel Model (Weather Prediction) Inrodcion o Nmericl Modelin 7. An Emple: QG Broropic Chnnel Model Weher Predicion Frnk Lnkei The Broropic Model - Firs fncionin nmericl weher predicion model Chrne, J. G., Fjorof, R. nd on Nemnn, J. 95.

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10 Chper 0 Siple Hronic Moion nd Elsiciy Gols or Chper 0 o ollow periodic oion o sudy o siple hronic oion. o sole equions o siple hronic oion. o use he pendulu s prooypicl syse undergoing siple hronic oion.

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

DA 3: The Mean Value Theorem

DA 3: The Mean Value Theorem Differentition pplictions 3: The Men Vlue Theorem 169 D 3: The Men Vlue Theorem Model 1: Pennslvni Turnpike You re trveling est on the Pennslvni Turnpike You note the time s ou pss the Lenon/Lncster Eit

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

DESIGN OF TENSION MEMBERS

DESIGN OF TENSION MEMBERS CHAPTER Srcral Seel Design LRFD Mehod DESIGN OF TENSION MEMBERS Third Ediion A. J. Clark School of Engineering Deparmen of Civil and Environmenal Engineering Par II Srcral Seel Design and Analysis 4 FALL

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Chapter 2 PROBLEM SOLUTIONS

Chapter 2 PROBLEM SOLUTIONS Chper PROBLEM SOLUTIONS. We ssume h you re pproximely m ll nd h he nere impulse rels uniform speed. The elpsed ime is hen Δ x m Δ = m s s. s.3 Disnces reled beween pirs of ciies re ( ) Δx = Δ = 8. km h.5

More information

We are looking for ways to compute the integral of a function f(x), f(x)dx.

We are looking for ways to compute the integral of a function f(x), f(x)dx. INTEGRATION TECHNIQUES Introdction We re looking for wys to compte the integrl of fnction f(x), f(x)dx. To pt it simply, wht we need to do is find fnction F (x) sch tht F (x) = f(x). Then if the integrl

More information

Section 1.2 Angles and Angle Measure

Section 1.2 Angles and Angle Measure Sec.. ngles and ngle Measure LSSIFITION OF NGLES Secion. ngles and ngle Measure. Righ angles are angles which. Sraigh angles are angles which measure measure 90. 80. Every line forms a sraigh angle. 90

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

HW #1 Solutions. Lewis Structures: Using the above rules, determine the molecular structure for Cl2CO. Hint: C is at the center.

HW #1 Solutions. Lewis Structures: Using the above rules, determine the molecular structure for Cl2CO. Hint: C is at the center. HW # Soluions Cron Mss Prolem: ssuming n erge surfce pressure of m, n erge ropospheric emperure of 55 K, n glol CO mixing rio of 385 ppm, wh is he curren mospheric Cron reseroir (in unis of g m -? Compre

More information

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba Lecure 3 Mondy - Deceber 5, 005 Wrien or ls upded: Deceber 3, 005 P44 Anlyicl Mechnics - I oupled Oscillors c Alex R. Dzierb oupled oscillors - rix echnique In Figure we show n exple of wo coupled oscillors,

More information

CBSE 2014 ANNUAL EXAMINATION ALL INDIA

CBSE 2014 ANNUAL EXAMINATION ALL INDIA CBSE ANNUAL EXAMINATION ALL INDIA SET Wih Complee Eplnions M Mrks : SECTION A Q If R = {(, y) : + y = 8} is relion on N, wrie he rnge of R Sol Since + y = 8 h implies, y = (8 ) R = {(, ), (, ), (6, )}

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

CONIC SECTIONS. Chapter 11

CONIC SECTIONS. Chapter 11 CONIC SECTIONS Chpter. Overview.. Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig..). Fig.. Suppose we rotte the line m round

More information

CHAPTER 2 KINEMATICS IN ONE DIMENSION ANSWERS TO FOCUS ON CONCEPTS QUESTIONS

CHAPTER 2 KINEMATICS IN ONE DIMENSION ANSWERS TO FOCUS ON CONCEPTS QUESTIONS Physics h Ediion Cunell Johnson Young Sdler Soluions Mnul Soluions Mnul, Answer keys, Insrucor's Resource Mnul for ll chpers re included. Compleed downlod links: hps://esbnkre.com/downlod/physics-h-ediion-soluions-mnulcunell-johnson-young-sdler/

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang jordnmcd Eigenvlue-eigenvecor pproch o solving firs order ODEs -- ordn norml (cnonicl) form Insrucor: Nm Sun Wng Consider he following se of coupled firs order ODEs d d x x 5 x x d d x d d x x x 5 x x

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information