Python. High-level General-purpose Dynamic Readable Multi-paradigm Portable

Size: px
Start display at page:

Download "Python. High-level General-purpose Dynamic Readable Multi-paradigm Portable"

Transcription

1 Python High-level General-purpose Dynamic Readable Multi-paradigm Portable

2 Pre-Defined Functions Python x + y x * y x - y x / y x**y abs(x) sqrt(x) exp(x) pow(x, y) log(x) sin(x) atan(x) atan2(y, x) floor(x) Matematics x + y x y x y x/y x y x x e x x y log x sin x atan x atan y x x

3 From Mathematics to Python sin 5 2 2

4 From Mathematics to Python sin /2 + sqrt(3) + sin(2)**(5/2)

5 From Mathematics to Python sin /2 + sqrt(3) + sin(2)**(5/2) cos4 2 5 atan 3

6 From Mathematics to Python sin /2 + sqrt(3) + sin(2)**(5/2) cos4 2 5 atan 3 (cos(2/sqrt(5))**4)/atan(3)

7 From Mathematics to Python sin /2 + sqrt(3) + sin(2)**(5/2) cos4 2 5 atan 3 (cos(2/sqrt(5))**4)/atan(3) 1 log 2 (3 9 log 25)

8 From Mathematics to Python sin /2 + sqrt(3) + sin(2)**(5/2) cos4 2 5 atan 3 (cos(2/sqrt(5))**4)/atan(3) 1 log 2 (3 9 log 25) sqrt(1/log(2**abs(3-9*log(25))))

9 From Python to Mathematics log(sin(2 + floor(atan(pi))/sqrt(5)))

10 From Python to Mathematics log(sin(2 + floor(atan(pi))/sqrt(5))) log sin(2 + atan π 5 )

11 From Python to Mathematics log(sin(2 + floor(atan(pi))/sqrt(5))) log sin(2 + atan π 5 ) cos(cos(cos(0.5)))**5

12 From Python to Mathematics log(sin(2 + floor(atan(pi))/sqrt(5))) log sin(2 + atan π 5 ) cos(cos(cos(0.5)))**5 cos 5 cos cos 0.5

13 From Python to Mathematics log(sin(2 + floor(atan(pi))/sqrt(5))) log sin(2 + atan π 5 ) cos(cos(cos(0.5)))**5 cos 5 cos cos 0.5 sin(cos(sin(pi/3)/3)/3)

14 From Python to Mathematics log(sin(2 + floor(atan(pi))/sqrt(5))) log sin(2 + atan π 5 ) cos(cos(cos(0.5)))**5 cos 5 cos cos 0.5 sin(cos(sin(pi/3)/3)/3) sin cos sin π 3 3 3

15 From Mathematics to Python Function A mapping between arguments and results The mapping is implicit, as it is computed when the function is applied to a set of arguments and returns the result of the computation A function accepts arguments and returns results

16 From Mathematics to Python Function A mapping between arguments and results The mapping is implicit, as it is computed when the function is applied to a set of arguments and returns the result of the computation A function accepts arguments and returns results Example: f(x) = x x

17 From Mathematics to Python Function A mapping between arguments and results The mapping is implicit, as it is computed when the function is applied to a set of arguments and returns the result of the computation A function accepts arguments and returns results Example: f(x) = x x Python:

18 From Mathematics to Python Function A mapping between arguments and results The mapping is implicit, as it is computed when the function is applied to a set of arguments and returns the result of the computation A function accepts arguments and returns results Example: f(x) = x x Python: def f(x): return x*x

19 From Mathematics to Python Function A mapping between arguments and results The mapping is implicit, as it is computed when the function is applied to a set of arguments and returns the result of the computation A function accepts arguments and returns results Example: f(x) = x x Python: def f(x): return x*x > f(3)

20 From Mathematics to Python Function A mapping between arguments and results The mapping is implicit, as it is computed when the function is applied to a set of arguments and returns the result of the computation A function accepts arguments and returns results Example: f(x) = x x Python: def f(x): return x*x > f(3) 9

21 From Mathematics to Python Function A mapping between arguments and results The mapping is implicit, as it is computed when the function is applied to a set of arguments and returns the result of the computation A function accepts arguments and returns results Example: f(x) = x x Python: def f(x): return x*x > f(3) 9 > f(5)

22 From Mathematics to Python Function A mapping between arguments and results The mapping is implicit, as it is computed when the function is applied to a set of arguments and returns the result of the computation A function accepts arguments and returns results Example: f(x) = x x Python: def f(x): return x*x > f(3) 9 > f(5) 25

23 Arithmetic in Python A number can be: Integral Rational Real Complex Number

24 Arithmetic in Python A number can be: Integral Rational Real Complex Number A number can also be: Exact Inexact Inexactness is contagious: whenever an inexact number is used in an operation, the result is inexact

25 Arithmetic in Python A number can be: Integral Rational Real Complex Number A number can also be: Exact Inexact Inexactness is contagious: whenever an inexact number is used in an operation, the result is inexact All inexact numbers above a pre-defined limit are infinite and cause an error

26 Arithmetic in Python A number can be: Integral Rational Real Complex Number A number can also be: Exact Inexact Inexactness is contagious: whenever an inexact number is used in an operation, the result is inexact All inexact numbers above a pre-defined limit are infinite and cause an error Inexactness is contagious: whenever an inexact number is used in an operation, the result is inexact

27 Arithmetic in Python A number can be: Integral Rational Real Complex Number A number can also be: Exact Inexact Inexactness is contagious: whenever an inexact number is used in an operation, the result is inexact All inexact numbers above a pre-defined limit are infinite and cause an error Inexactness is contagious: whenever an inexact number is used in an operation, the result is inexact Python uses the word float for inexact numbers

28 Arithmetic in Python Exact Numbers > 10*10

29 Arithmetic in Python Exact Numbers > 10*

30 Arithmetic in Python Exact Numbers > 10* > 10*100

31 Arithmetic in Python Exact Numbers > 10* > 10*

32 Arithmetic in Python Exact Numbers > 10* > 10* > 10**1000

33 Arithmetic in Python Exact Numbers > 10* > 10* > 10**

34 Arithmetic in Python Inexact Numbers > 10.0**10

35 Arithmetic in Python Inexact Numbers > 10.0**

36 Arithmetic in Python Inexact Numbers > 10.0** > 10.0**100

37 Arithmetic in Python Inexact Numbers > 10.0** > 10.0**100 1e+100

38 Arithmetic in Python Inexact Numbers > 10.0** > 10.0**100 1e+100 > 10.0**1000

39 Arithmetic in Python Inexact Numbers > 10.0** > 10.0**100 1e+100 > 10.0**1000 OverflowError: 'Result too large'

40 Arithmetic in Python Inexact Numbers > 10.0** > 10.0**100 1e+100 > 10.0**1000 OverflowError: 'Result too large' Inexact numbers have limited size and limited precision But they are much more efficient to compute There are no solutions, only trade-offs

41 Arithmetic in Python Rounding Errors > (4/3-1)*3-1

42 Arithmetic in Python Rounding Errors > (4/3-1)* e-16

43 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10)

44 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10)

45 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10) > f(5.1)

46 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10) > f(5.1) > f( )

47 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10) > f(5.1) > f( )

48 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10) > f(5.1) > f( ) > f( )

49 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10) > f(5.1) > f( ) > f( )

50 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10) > f(5.1) > f( ) > f( ) > f( )

51 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10) > f(5.1) > f( ) > f( ) > f( ) 0.0

52 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10) > f(5.1) > f( ) > f( ) > f( ) 0.0 > f( )

53 Arithmetic in Python Rounding Errors > (4/3-1)* e-16 Dramatic Example: f(x) = x 0.1 (10 x 10) > def f(x): return x - 0.1*(10*x - 10) > f(5.1) > f( ) > f( ) > f( ) 0.0 > f( )

54 Conditional Expressions x = { x, if x < 0 x, otherwise.

55 Conditional Expressions x = { x, if x < 0 x, otherwise. Conditional Expression An expression whose value depends on one or more conditions if α, return β, else return γ

56 Conditional Expressions x = { x, if x < 0 x, otherwise. Conditional Expression An expression whose value depends on one or more conditions if α, return β, else return γ return β if α, else γ

57 Conditional Expressions x = { x, if x < 0 x, otherwise. Conditional Expression An expression whose value depends on one or more conditions if α, return β, else return γ return β if α, else γ α is the condition, β is the consequent, γ is the alternative

58 Conditional Expressions x = { x, if x < 0 x, otherwise. Conditional Expression An expression whose value depends on one or more conditions if α, return β, else return γ return β if α, else γ α is the condition, β is the consequent, γ is the alternative Logical Expression An expression whose value is either true or false α is a logical expression

59 Conditional Expressions Logical Value x = { x, if x < 0 x, otherwise. True or False In Python: True, False False, None, 0, (and others) are considered false, anything else is considered true (including True) Conditional expressions use the logical value of the condition to evaluate the correct choice

60 Conditional Expressions x = { x, if x < 0 x, otherwise. Predicate A function (or operator) that always returns true or false < is a predicate Relational Operator A predicate that compares entities <, >, =,,, and are relational operator In Python: <, >, ==, <=, >= and!=

61 Conditional Expressions x = { x, if x < 0 x, otherwise. Conditional Expression return β if α else γ

62 Conditional Expressions x = { x, if x < 0 x, otherwise. Conditional Expression return β if α else γ if α, return β, else return γ

63 Conditional Expressions x = { x, if x < 0 x, otherwise. Conditional Expression return β if α else γ if α, return β, else return γ Python: def abs(x): return -x if x < 0 else x

64 Conditional Expressions x = { x, if x < 0 x, otherwise. Conditional Expression return β if α else γ if α, return β, else return γ Python: def abs(x): return -x if x < 0 else x def abs(x): if x < 0: return -x else: return x

65 Conditional Expressions Python: max(x, y) = def max(x, y): return x if x > y else y { x, if x > y y, otherwise.

66 Conditional Expressions Python: max(x, y) = def max(x, y): return x if x > y else y def max(x, y): if x > y: return x else: return y { x, if x > y y, otherwise.

67 Conditional Expressions 1 if x < 0 sgn x = 0 if x = 0 1 otherwise

68 Conditional Expressions 1 if x < 0 sgn x = 0 if x = 0 1 otherwise 1 { if x < 0 sgn x = 0 if x = 0 otherwise 1 otherwise

69 Conditional Expressions Python: 1 if x < 0 sgn x = 0 if x = 0 1 otherwise 1 { if x < 0 sgn x = 0 if x = 0 otherwise 1 otherwise

70 Conditional Expressions Python: 1 if x < 0 sgn x = 0 if x = 0 1 otherwise 1 { if x < 0 sgn x = 0 if x = 0 otherwise 1 otherwise def signum(x): return -1 if x < 0 else 0 if x == 0 else 1

71 Conditional Expressions Python: 1 if x < 0 sgn x = 0 if x = 0 1 otherwise 1 { if x < 0 sgn x = 0 if x = 0 otherwise 1 otherwise def signum(x): return -1 if x < 0 else (0 if x == 0 else 1)

72 Conditional Expressions Python: def signum(x): if x < 0: return -1 else: if x == 0: return 0 else: return 1 1 if x < 0 sgn x = 0 if x = 0 1 otherwise 1 { if x < 0 sgn x = 0 if x = 0 otherwise 1 otherwise

73 Conditional Expressions Python: def signum(x): if x < 0: return -1 elif x == 0: return 0 else: return 1 1 if x < 0 sgn x = 0 if x = 0 1 otherwise 1 { if x < 0 sgn x = 0 if x = 0 otherwise 1 otherwise

74 Local Variables c b. a

75 Local Variables c b. a Heron s formula A = s (s a) (s b) (s c) where s = a + b + c 2

76 Local Variables Heron s formula A = s (s a) (s b) (s c) where s = a + b + c 2 Local Variable s is a local variable A local variable is an additional name That abstracts concepts That simplifies expressions That avoids repeated computations

77 Local Variables Heron s formula A = s (s a) (s b) (s c) where s = a + b + c 2 def triangle_area(a, b, c): s = (a + b + c)/2 return sqrt(s*(s - a)*(s - b)*(s - c))

78 Local Variables Heron s formula A = s (s a) (s b) (s c) where s = a + b + c 2 def triangle_area(a, b, c): s = (a + b + c)/2 return sqrt(s*(s - a)*(s - b)*(s - c)) Local Variable A variable is defined the first time it is given a value The scope of the variable is the function that contains its definition

79 Global Variables pi = def area_circle(r): return pi*r*r

80 Global Variables pi = def area_circle(r): return pi*r*r Global Variable A local variable is visible only in the function where it is defined A global variable is visible in the entire program The definition of global variables is identical to the definition of local variables, but they must be defined outside any function definition In most cases, global variables should be constants

81 Modules Every time Python is restarted, it starts in a clean state All definitions made before are lost In order to save them, put them in a file (called a module) We import the module to regain the definitions Most of Python is stored in modules

82 Modules Every time Python is restarted, it starts in a clean state All definitions made before are lost In order to save them, put them in a file (called a module) We import the module to regain the definitions Most of Python is stored in modules import math

83 Modules Every time Python is restarted, it starts in a clean state All definitions made before are lost In order to save them, put them in a file (called a module) We import the module to regain the definitions Most of Python is stored in modules import math math.sqrt(2) + math.sin(math.pi)

84 Modules Every time Python is restarted, it starts in a clean state All definitions made before are lost In order to save them, put them in a file (called a module) We import the module to regain the definitions Most of Python is stored in modules import math as m m.sqrt(2) + m.sin(m.pi)

85 Modules Every time Python is restarted, it starts in a clean state All definitions made before are lost In order to save them, put them in a file (called a module) We import the module to regain the definitions Most of Python is stored in modules from math import sqrt, sin sqrt(2) + sin(math.pi)

86 Modules Every time Python is restarted, it starts in a clean state All definitions made before are lost In order to save them, put them in a file (called a module) We import the module to regain the definitions Most of Python is stored in modules from math import * sqrt(2) + sin(pi)

87 Modules import khepri khepri.box(khepri.xyz(2,1,1), khepri.xyz(3,4,5)) khepri.cone(khepri.xyz(6,0,0), 1, khepri.xyz(8,1,5)) khepri.cone_frustum(khepri.xyz(11,1,0), 2, khepri.xyz(10,0,5), 1) khepri.sphere(khepri.xyz(8,4,5), 2) khepri.cylinder(khepri.xyz(8,7,0), 1, khepri.xyz(6,8,7)) khepri.regular_pyramid(5, khepri.xyz(-2,1,0), 1, 0, khepri.xyz(2,7,7)) khepri.torus(khepri.xyz(14,6,5), 2, 1)

88 Modules import khepri as kh kh.box(kh.xyz(2,1,1), kh.xyz(3,4,5)) kh.cone(kh.xyz(6,0,0), 1, kh.xyz(8,1,5)) kh.cone_frustum(kh.xyz(11,1,0), 2, kh.xyz(10,0,5), 1) kh.sphere(kh.xyz(8,4,5), 2) kh.cylinder(kh.xyz(8,7,0), 1, kh.xyz(6,8,7)) kh.regular_pyramid(5, kh.xyz(-2,1,0), 1, 0, kh.xyz(2,7,7)) kh.torus(kh.xyz(14,6,5), 2, 1)

89 Modules from khepri import * box(xyz(2,1,1), xyz(3,4,5)) cone(xyz(6,0,0), 1, xyz(8,1,5)) cone_frustum(xyz(11,1,0), 2, xyz(10,0,5), 1) sphere(xyz(8,4,5), 2) cylinder(xyz(8,7,0), 1, xyz(6,8,7)) regular_pyramid(5, xyz(-2,1,0), 1, 0, xyz(2,7,7)) torus(xyz(14,6,5), 2, 1)

90 Cartesian Coordinates Z Y P. z x y X

91 Cartesian Coordinates Distance The distance d between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is d = (q x p x ) 2 + (q y p y ) 2 + (q z p z ) 2

92 Cartesian Coordinates Distance The distance d between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is d = (q x p x ) 2 + (q y p y ) 2 + (q z p z ) 2 def distance(px, py, pz, qx, qy, qz): return sqrt((qx-px)**2 + (qy-py)**2 + (qz-pz)**2)

93 Cartesian Coordinates Distance The distance d between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is d = (q x p x ) 2 + (q y p y ) 2 + (q z p z ) 2 def distance(px, py, pz, qx, qy, qz): return sqrt((qx-px)**2 + (qy-py)**2 + (qz-pz)**2) The distance between P = (2, 1, 3) and Q = (5, 6, 4) is > distance(2, 1, 3, 5, 6, 4)

94 Cartesian Coordinates Distance The distance d between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is d = (q x p x ) 2 + (q y p y ) 2 + (q z p z ) 2 def distance(px, py, pz, qx, qy, qz): return sqrt((qx-px)**2 + (qy-py)**2 + (qz-pz)**2) The distance between P = (2, 1, 3) and Q = (5, 6, 4) is > distance(2, 1, 3, 5, 6, 4) It is not as clear as in mathematics

95 Cartesian Coordinates Intermediate Point The Intermediate point between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is ( p x + q x 2, p y + q y 2, p z + q z ) 2

96 Cartesian Coordinates Intermediate Point The Intermediate point between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is ( p x + q x 2, p y + q y 2, p z + q z ) 2 def intermediate_point(px, py, pz, qx, qy, qz): return...(px+qx)/2, (py+qy)/2, (pz+qz)/2...

97 Cartesian Coordinates Intermediate Point The Intermediate point between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is ( p x + q x 2, p y + q y 2, p z + q z ) 2 def intermediate_point(px, py, pz, qx, qy, qz): return...(px+qx)/2, (py+qy)/2, (pz+qz)/2... We need to handle coordinates as an entity, and not as triplets of numbers

98 Cartesian Coordinates from khepri import *

99 Cartesian Coordinates from khepri import * > xyz(1, 2, 3)

100 Cartesian Coordinates from khepri import * > xyz(1, 2, 3) xyz(1, 2, 3)

101 Cartesian Coordinates from khepri import * > xyz(1, 2, 3) xyz(1, 2, 3) > cx(xyz(1, 2, 3))

102 Cartesian Coordinates from khepri import * > xyz(1, 2, 3) xyz(1, 2, 3) > cx(xyz(1, 2, 3)) 1

103 Cartesian Coordinates from khepri import * > xyz(1, 2, 3) xyz(1, 2, 3) > cx(xyz(1, 2, 3)) 1 > cy(xyz(1, 2, 3))

104 Cartesian Coordinates from khepri import * > xyz(1, 2, 3) xyz(1, 2, 3) > cx(xyz(1, 2, 3)) 1 > cy(xyz(1, 2, 3)) 2

105 Cartesian Coordinates from khepri import * > xyz(1, 2, 3) xyz(1, 2, 3) > cx(xyz(1, 2, 3)) 1 > cy(xyz(1, 2, 3)) 2 > cz(xyz(1, 2, 3))

106 Cartesian Coordinates from khepri import * > xyz(1, 2, 3) xyz(1, 2, 3) > cx(xyz(1, 2, 3)) 1 > cy(xyz(1, 2, 3)) 2 > cz(xyz(1, 2, 3)) 3 cx(xyz(x, y, z)) = x cy(xyz(x, y, z)) = y cz(xyz(x, y, z)) = z

107 Cartesian Coordinates from khepri import * > xyz(1, 2, 3) xyz(1, 2, 3) > cx(xyz(1, 2, 3)) 1 > cy(xyz(1, 2, 3)) 2 > cz(xyz(1, 2, 3)) 3 cx(xyz(x, y, z)) = x cy(xyz(x, y, z)) = y cz(xyz(x, y, z)) = z Operations for Cartesian Coordinates xyz is the constructor cx, cy, and cz, are the selectors

108 Cartesian Coordinates Distance The distance d between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is d = (q x p x ) 2 + (q y p y ) 2 + (q z p z ) 2 def distance(px, py, pz, qx, qy, qz): return sqrt((qx-px)**2 + (qy-py)**2 + (qz-pz)**2) The distance between P = (2, 1, 3) and Q = (5, 6, 4) is > distance(2, 1, 3, 5, 6, 4)

109 Cartesian Coordinates Distance The distance d between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is d = (q x p x ) 2 + (q y p y ) 2 + (q z p z ) 2 def distance(p, q): return sqrt((qx?-px?)**2 + (qy?-py?)**2 + (qz?-pz?)**2) The distance between P = (2, 1, 3) and Q = (5, 6, 4) is > distance(xyz(2, 1, 3), xyz(5, 6, 4))

110 Cartesian Coordinates Distance The distance d between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is d = (q x p x ) 2 + (q y p y ) 2 + (q z p z ) 2 def distance(p, q): return sqrt((cx(q)-cx(p))**2+(cy(q)-cy(p))**2+(cz(q)-cz(p))**2) The distance between P = (2, 1, 3) and Q = (5, 6, 4) is > distance(xyz(2, 1, 3), xyz(5, 6, 4))

111 Cartesian Coordinates Distance The distance d between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is d = (q x p x ) 2 + (q y p y ) 2 + (q z p z ) 2 def distance(p, q): return sqrt((q.x-p.x)**2 + (q.y-p.y)**2 + (q.z-p.z)**2) The distance between P = (2, 1, 3) and Q = (5, 6, 4) is > distance(xyz(2, 1, 3), xyz(5, 6, 4))

112 Cartesian Coordinates Intermediate Point The Intermediate point P m between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is P m = ( p x + q x 2, p y + q y 2, p z + q z ) 2 def intermediate_point(px, py, pz, qx, qy, qz): return...(px+qx)/2, (py+qy)/2, (pz+qz)/2...

113 Cartesian Coordinates Intermediate Point The Intermediate point P m between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is P m = ( p x + q x 2, p y + q y 2, p z + q z ) 2 def intermediate_point(p, q): return xyz((cx(p)+cx(q))/2, (cy(p)+cy(q))/2, (cz(p)+cz(q))/2)

114 Cartesian Coordinates Intermediate Point The Intermediate point P m between P = (p x, p y, p z ) and Q = (q x, q y, q z ) is P m = ( p x + q x 2, p y + q y 2, p z + q z ) 2 def intermediate_point(p, q): return xyz((p.x+q.x)/2, (p.y+q.y)/2, (p.z+q.z)/2)

115 Cartesian Coordinates > xy(1, 2)

116 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0)

117 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3)

118 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3)

119 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3)

120 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3) xyz(1, 0, 3)

121 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3) xyz(1, 0, 3) > x(1)

122 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3) xyz(1, 0, 3) > x(1) xyz(1, 0, 0)

123 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3) xyz(1, 0, 3) > x(1) xyz(1, 0, 0) > y(2)

124 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3) xyz(1, 0, 3) > x(1) xyz(1, 0, 0) > y(2) xyz(0, 2, 0)

125 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3) xyz(1, 0, 3) > x(1) xyz(1, 0, 0) > y(2) xyz(0, 2, 0) > z(3)

126 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3) xyz(1, 0, 3) > x(1) xyz(1, 0, 0) > y(2) xyz(0, 2, 0) > z(3) xyz(0, 0, 3)

127 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3) xyz(1, 0, 3) > x(1) xyz(1, 0, 0) > y(2) xyz(0, 2, 0) > z(3) xyz(0, 0, 3) def xy(x, y): return xyz(x, y, 0) def xz(x, z): return xyz(x, 0, z) def yz(y, z): return xyz(0, y, z)

128 Cartesian Coordinates > xy(1, 2) xyz(1, 2, 0) > yz(2, 3) xyz(0, 2, 3) > xz(1, 3) xyz(1, 0, 3) > x(1) xyz(1, 0, 0) > y(2) xyz(0, 2, 0) > z(3) xyz(0, 0, 3) def xy(x, y): return xyz(x, y, 0) def xz(x, z): return xyz(x, 0, z) def yz(y, z): return xyz(0, y, z) def x(x): return xyz(x, 0, 0) def y(y): return xyz(0, y, 0) def z(z): return xyz(0, 0, z)

129 Cartesian Coordinates Example: Min. number of risers for max. riser of 0.18? Y P 1 X.... P 0

130 Cartesian Coordinates Example: Min. number of risers for max. riser of 0.18? Y P 1 X.... P 0 def minimum_number_of_steps(p0, p1): return ceil((cy(p1) - cy(p0))/0.18)

131 Cartesian Coordinates Example: Min. number of risers for max. riser of 0.18? Y P 1 X.... P 0 def minimum_number_of_steps(p0, p1): return ceil((p1.y - p0.y)/0.18)

132 Cartesian Coordinates Translation Z P Y. X

133 Cartesian Coordinates Translation Z P Y z. x y X

134 Cartesian Coordinates Translation Z P P Y z. x y X

135 Cartesian Coordinates Translation Z P P Y z z z. x x y y y X

136 Cartesian Coordinates Translation Z P V Y P z z z. x x y y y X

137 Cartesian Coordinates Translation Z P V Y P z V z z. x x y y y X

138 Cartesian Coordinates Translation Z P V Y P z V z. x x z y y z y X x y

139 Cartesian Coordinates Translation Z P V Y P z V z. x x z y y z y X x y P = P + V

140 Cartesian Coordinates Translation Z P V Y P z V z. x x z y y z y X x y V = P P

141 Cartesian Coordinates Vectors A vector represents a displacement A vector does not represent a location A vector does not have an origin or a destination A vector is created by the constructor vxyz

142 Cartesian Coordinates Vectors A vector represents a displacement A vector does not represent a location A vector does not have an origin or a destination A vector is created by the constructor vxyz def vxy(dx, dy): return vxyz(dx, dy, 0) def vxz(dx, dz): return vxyz(dx, 0, dz) def vyz(dy, dz): return vxyz(0, dy, dz)

143 Cartesian Coordinates Vectors A vector represents a displacement A vector does not represent a location A vector does not have an origin or a destination A vector is created by the constructor vxyz def vx(dx): return vxyz(dx, 0, 0) def vy(dy): return vxyz(0, dy, 0) def vz(dz): return vxyz(0, 0, dz)

144 Cartesian Coordinates Vectors A vector represents a displacement A vector does not represent a location A vector does not have an origin or a destination A vector is created by the constructor vxyz xyz(x, y, z)+vxyz( x, y, z ) xyz(x + x, y + y, z + z )

145 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1)

146 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4)

147 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4)

148 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3)

149 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5)

150 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8)

151 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1)

152 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2)

153 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2)

154 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2) vxyz(2,2,2)

155 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2) vxyz(2,2,2) > vxy(1,2) - vxz(1,2)

156 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2) vxyz(2,2,2) > vxy(1,2) - vxz(1,2) vxyz(0,2,-2)

157 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2) vxyz(2,2,2) > vxy(1,2) - vxz(1,2) vxyz(0,2,-2) > xyz(1,2,3) + (xyz(4,5,6) - xyz(3,2,1))

158 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2) vxyz(2,2,2) > vxy(1,2) - vxz(1,2) vxyz(0,2,-2) > xyz(1,2,3) + (xyz(4,5,6) - xyz(3,2,1)) xyz(2,5,8)

159 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2) vxyz(2,2,2) > vxy(1,2) - vxz(1,2) vxyz(0,2,-2) > xyz(1,2,3) + (xyz(4,5,6) - xyz(3,2,1)) xyz(2,5,8) > xyz(1,2,3) + xyz(4,5,6) - xyz(3,2,1)

160 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2) vxyz(2,2,2) > vxy(1,2) - vxz(1,2) vxyz(0,2,-2) > xyz(1,2,3) + (xyz(4,5,6) - xyz(3,2,1)) xyz(2,5,8) > xyz(1,2,3) + xyz(4,5,6) - xyz(3,2,1) RuntimeError: Positions cannot be added

161 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2) vxyz(2,2,2) > vxy(1,2) - vxz(1,2) vxyz(0,2,-2) > xyz(1,2,3) + (xyz(4,5,6) - xyz(3,2,1)) xyz(2,5,8) > xyz(1,2,3) + xyz(4,5,6) - xyz(3,2,1) RuntimeError: Positions cannot be added > xyz(1,2,3) - xyz(3,2,1) + xyz(4,5,6)

162 Cartesian Coordinates Examples > xyz(1,2,3) + vxyz(3,2,1) xyz(4,4,4) > xyz(1,2,3) + vx(4) xyz(5,2,3) > xyz(1,2,3) + vyz(4,5) xyz(1,6,8) > xyz(1,2,3) - yz(1,1) vxyz(1,1,2) > vxy(1,2) + vxz(1,2) vxyz(2,2,2) > vxy(1,2) - vxz(1,2) vxyz(0,2,-2) > xyz(1,2,3) + (xyz(4,5,6) - xyz(3,2,1)) xyz(2,5,8) > xyz(1,2,3) + xyz(4,5,6) - xyz(3,2,1) RuntimeError: Positions cannot be added > xyz(1,2,3) - xyz(3,2,1) + xyz(4,5,6) xyz(2,5,8)

163 Polar Coordinates Y 2π n d. X

164 Polar Coordinates. ϕ ρ x y

165 Polar Coordinates. ϕ ρ x y def pol(rho, phi): return xy(rho*cos(phi), rho*sin(phi))

166 Polar Coordinates. ϕ ρ x y def pol(rho, phi): return xy(rho*cos(phi), rho*sin(phi)) > pol(1, 0)

167 Polar Coordinates. ϕ ρ x y def pol(rho, phi): return xy(rho*cos(phi), rho*sin(phi)) > pol(1, 0) xyz(1, 0, 0)

168 Polar Coordinates. ϕ ρ x y def pol(rho, phi): return xy(rho*cos(phi), rho*sin(phi)) > pol(1, 0) xyz(1, 0, 0) > pol(sqrt(2), pi/4)

169 Polar Coordinates. ϕ ρ x y def pol(rho, phi): return xy(rho*cos(phi), rho*sin(phi)) > pol(1, 0) xyz(1, 0, 0) > pol(sqrt(2), pi/4) xyz( , 1.0, 0)

170 Polar Coordinates. ϕ ρ x y def pol(rho, phi): return xy(rho*cos(phi), rho*sin(phi)) > pol(1, 0) xyz(1, 0, 0) > pol(sqrt(2), pi/4) xyz( , 1.0, 0) > pol(1, pi/2)

171 Polar Coordinates. ϕ ρ x y def pol(rho, phi): return xy(rho*cos(phi), rho*sin(phi)) > pol(1, 0) xyz(1, 0, 0) > pol(sqrt(2), pi/4) xyz( , 1.0, 0) > pol(1, pi/2) xyz( e-017, 1.0, 0)

172 Polar Coordinates. ϕ ρ x y def pol(rho, phi): return xy(rho*cos(phi), rho*sin(phi)) > pol(1, 0) xyz(1, 0, 0) > pol(sqrt(2), pi/4) xyz( , 1.0, 0) > pol(1, pi/2) xyz( e-017, 1.0, 0) > pol(1, pi)

173 Polar Coordinates. ϕ ρ x y def pol(rho, phi): return xy(rho*cos(phi), rho*sin(phi)) > pol(1, 0) xyz(1, 0, 0) > pol(sqrt(2), pi/4) xyz( , 1.0, 0) > pol(1, pi/2) xyz( e-017, 1.0, 0) > pol(1, pi) xyz(-1.0, e-016, 0)

174 Polar Coordinates. ϕ ρ x y def vpol(rho, phi): return vxy(rho*cos(phi), rho*sin(phi)) > vpol(1, 0) vxyz(1, 0, 0) > vpol(sqrt(2), pi/4) vxyz( , 1.0, 0) > vpol(1, pi/2) vxyz( e-017, 1.0, 0) > vpol(1, pi) vxyz(-1.0, e-016, 0)

175 Polar Coordinates ρ P P ϕ.

176 Polar Coordinates ρ P P ϕ. > xy(1, 2) + vpol(sqrt(2), pi/4)

177 Polar Coordinates ρ P P ϕ. > xy(1, 2) + vpol(sqrt(2), pi/4) xyz(2.0, 3.0, 0.0)

178 Polar Coordinates ρ P P ϕ. > xy(1, 2) + vpol(sqrt(2), pi/4) xyz(2.0, 3.0, 0.0) > xy(1, 2) + vpol(1, 0)

179 Polar Coordinates ρ P P ϕ. > xy(1, 2) + vpol(sqrt(2), pi/4) xyz(2.0, 3.0, 0.0) > xy(1, 2) + vpol(1, 0) xyz(2.0, 2.0, 0.0)

180 Polar Coordinates ρ P P ϕ. > xy(1, 2) + vpol(sqrt(2), pi/4) xyz(2.0, 3.0, 0.0) > xy(1, 2) + vpol(1, 0) xyz(2.0, 2.0, 0.0) > xy(1, 2) + vpol(1, pi/2)

181 Polar Coordinates ρ P P ϕ. > xy(1, 2) + vpol(sqrt(2), pi/4) xyz(2.0, 3.0, 0.0) > xy(1, 2) + vpol(1, 0) xyz(2.0, 2.0, 0.0) > xy(1, 2) + vpol(1, pi/2) xyz(1.0, 3.0, 0.0)

182 Geometric Modeling

183 Geometric Modeling For AutoCAD from khepri.autocad import *

184 Geometric Modeling For AutoCAD from khepri.autocad import * For Rhino from khepri.rhino import *

185 Geometric Modeling.

186 Geometric Modeling For AutoCAD from khepri.autocad import *. circle(pol(0, 0), 4) circle(pol(4, pi/4), 2) circle(pol(6, pi/4), 1)

187 Geometric Modeling For AutoCAD from khepri.autocad import *. circle(pol(0, 0), 4) circle(pol(4, pi/4), 2) circle(pol(6, pi/4), 1) For Rhino from khepri.rhino import * circle(pol(0, 0), 4) circle(pol(4, pi/4), 2) circle(pol(6, pi/4), 1)

188 Geometric Modeling polygon(pol(1, 2*pi*0/5), pol(1, 2*pi*1/5), pol(1, 2*pi*2/5), pol(1, 2*pi*3/5), pol(1, 2*pi*4/5))

189 Geometric Modeling polygon(pol(1, 2*pi*0/5), pol(1, 2*pi*1/5), pol(1, 2*pi*2/5), pol(1, 2*pi*3/5), pol(1, 2*pi*4/5)).

190 Geometric Modeling regular_polygon(5).

191 Geometric Modeling regular_polygon(3, xy(0, 0), 1, 0, True) regular_polygon(3, xy(0, 0), 1, pi/3, True) regular_polygon(4, xy(3, 0), 1, 0, True) regular_polygon(4, xy(3, 0), 1, pi/4, True) regular_polygon(5, xy(6, 0), 1, 0, True) regular_polygon(5, xy(6, 0), 1, pi/5, True)

192 Geometric Modeling regular_polygon(3, xy(0, 0), 1, 0, True) regular_polygon(3, xy(0, 0), 1, pi/3, True) regular_polygon(4, xy(3, 0), 1, 0, True) regular_polygon(4, xy(3, 0), 1, pi/4, True) regular_polygon(5, xy(6, 0), 1, 0, True) regular_polygon(5, xy(6, 0), 1, pi/5, True).

193 Geometric Modeling rectangle(xy(0, 1), xy(3, 2)) rectangle(xy(3, 2), 1, 2)

194 Geometric Modeling rectangle(xy(0, 1), xy(3, 2)) rectangle(xy(3, 2), 1, 2).

195 Side Effects rectangle(xy(0, 1), xy(3, 2)) rectangle(xy(3, 2), 1, 2).

196 Side Effects rectangle(xy(0, 1), xy(3, 2)) rectangle(xy(3, 2), 1, 2) Side Effects. Every Python expression has a value Some Python expressions also have a side effect All shape-producing expressions cause a side effect on the CAD tool Side effects can be composed by sequencing them A function that only does side effects returns nothing

197 Side Effects. P r P r

198 Side Effects. P r P r def circle_square(p, r, inscribed): if inscribed: creates a circle and a square inscribed in the circle else: creates a circle and a square circumscribed in the circle

199 Side Effects. P r P r def circle_square(p, r, inscribed): if inscribed: creates a circle creates a square inscribed in the circle else: creates a circle creates a square circumscribed in the circle

200 Side Effects. P r P r def circle_square(p, r, inscribed): if inscribed: circle(p, r) rectangle(p + vpol(r, 5/4*pi), p + vpol(r, 1/4*pi)) else: circle(p, r) rectangle(p + vxy(-r, -r), p + vxy(r, r))

201 Side Effects. P r P r def circle_square(p, r, inscribed): circle(p, r) if inscribed: rectangle(p + vpol(r, 5/4*pi), p + vpol(r, 1/4*pi)) else: rectangle(p + vxy(-r, -r), p + vxy(r, r))

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

County Council Named for Kent

County Council Named for Kent \ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

MA Spring 2013 Lecture Topics

MA Spring 2013 Lecture Topics LECTURE 1 Chapter 12.1 Coordinate Systems Chapter 12.2 Vectors MA 16200 Spring 2013 Lecture Topics Let a,b,c,d be constants. 1. Describe a right hand rectangular coordinate system. Plot point (a,b,c) inn

More information

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors . Find the minimum value of the function f (x) x 2 + (A) 6 (B) 3 6 (C) 4 Solution. We have f (x) x 2 + + x 2 + (D) 3 4, which is equivalent to x 0. x 2 + (E) x 2 +, x R. x 2 + 2 (x 2 + ) 2. How many solutions

More information

12. Stresses and Strains

12. Stresses and Strains 12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)

More information

Practice Midterm 2 Math 2153

Practice Midterm 2 Math 2153 Practice Midterm 2 Math 23. Decide if the following statements are TRUE or FALSE and circle your answer. You do NOT need to justify your answers. (a) ( point) If both partial derivatives f x and f y exist

More information

Midterm 1 Solutions Thursday, February 26

Midterm 1 Solutions Thursday, February 26 Math 59 Dr. DeTurck Midterm 1 Solutions Thursday, February 26 1. First note that since f() = f( + ) = f()f(), we have either f() = (in which case f(x) = f(x + ) = f(x)f() = for all x, so c = ) or else

More information

CONTENTS COLLEGE ALGEBRA: DR.YOU

CONTENTS COLLEGE ALGEBRA: DR.YOU 1 CONTENTS CONTENTS Textbook UNIT 1 LECTURE 1-1 REVIEW A. p. LECTURE 1- RADICALS A.10 p.9 LECTURE 1- COMPLEX NUMBERS A.7 p.17 LECTURE 1-4 BASIC FACTORS A. p.4 LECTURE 1-5. SOLVING THE EQUATIONS A.6 p.

More information

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1 POLYNOMIALS A polynomial in x is an expression of the form p(x) = a 0 + a 1 x + a x +. + a n x n Where a 0, a 1, a. a n are real numbers and n is a non-negative integer and a n 0. A polynomial having only

More information

Department of mathematics MA201 Mathematics III

Department of mathematics MA201 Mathematics III Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i

More information

Section Summary. Section 1.5 9/9/2014

Section Summary. Section 1.5 9/9/2014 Section 1.5 Section Summary Nested Quantifiers Order of Quantifiers Translating from Nested Quantifiers into English Translating Mathematical Statements into Statements involving Nested Quantifiers Translated

More information

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,. ? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

1 Arithmetic calculations (calculator is not allowed)

1 Arithmetic calculations (calculator is not allowed) 1 ARITHMETIC CALCULATIONS (CALCULATOR IS NOT ALLOWED) 1 Arithmetic calculations (calculator is not allowed) 1.1 Check the result Problem 1.1. Problem 1.2. Problem 1.3. Problem 1.4. 78 5 6 + 24 3 4 99 1

More information

Lecture Predicates and Quantifiers 1.5 Nested Quantifiers

Lecture Predicates and Quantifiers 1.5 Nested Quantifiers Lecture 4 1.4 Predicates and Quantifiers 1.5 Nested Quantifiers Predicates The statement "x is greater than 3" has two parts. The first part, "x", is the subject of the statement. The second part, "is

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form POLYNOMIALS Important Points 1. A polynomial p(x) in one variable x is an algebraic expression in x of the form p(x) = a nx n +a n-1x n-1 + a 2x 2 +a 1x 1 +a 0x 0 where a 0, a 1, a 2 a n are constants

More information

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics 3.33pt Chain Rule MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Spring 2019 Single Variable Chain Rule Suppose y = g(x) and z = f (y) then dz dx = d (f (g(x))) dx = f (g(x))g (x)

More information

Practice Test III, Math 314, Spring 2016

Practice Test III, Math 314, Spring 2016 Practice Test III, Math 314, Spring 2016 Dr. Holmes April 26, 2016 This is the 2014 test reorganized to be more readable. I like it as a review test. The students who took this test had to do four sections

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

Multivariable Calculus and Matrix Algebra-Summer 2017

Multivariable Calculus and Matrix Algebra-Summer 2017 Multivariable Calculus and Matrix Algebra-Summer 017 Homework 4 Solutions Note that the solutions below are for the latest version of the problems posted. For those of you who worked on an earlier version

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL : Y J G V $ 5 V V G Y 2 25 Y 2» 5 X # VG q q q 6 6 X J 6 $3 ( 6 2 6 2 6 25 3 2 6 Y q 2 25: JJ JJ < X Q V J J Y J Q V (» Y V X Y? G # V Y J J J G J»Y ) J J / J Y Y X ({ G #? J Y ~» 9? ) < ( J VY Y J G (

More information

Introduction to Predicate Logic Part 1. Professor Anita Wasilewska Lecture Notes (1)

Introduction to Predicate Logic Part 1. Professor Anita Wasilewska Lecture Notes (1) Introduction to Predicate Logic Part 1 Professor Anita Wasilewska Lecture Notes (1) Introduction Lecture Notes (1) and (2) provide an OVERVIEW of a standard intuitive formalization and introduction to

More information

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers. Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear

More information

Formulas to remember

Formulas to remember Complex numbers Let z = x + iy be a complex number The conjugate z = x iy Formulas to remember The real part Re(z) = x = z+z The imaginary part Im(z) = y = z z i The norm z = zz = x + y The reciprocal

More information

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx Math 2204 Multivariable Calc Chapter 14: Partial Derivatives I. Review from math 1225 A. First Derivative Sec. 14.3: Partial Derivatives 1. Def n : The derivative of the function f with respect to the

More information

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group.

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group. Concept of a basis A basis refers to a type of function that is transformed by the symmetry operations of a point group. Examples include the spherical harmonics, vectors, internal coordinates (e..g bonds,

More information

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES ? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5

More information

MATHEMATICS AS/M/P1 AS PAPER 1

MATHEMATICS AS/M/P1 AS PAPER 1 Surname Other Names Candidate Signature Centre Number Candidate Number Examiner Comments Total Marks MATHEMATICS AS PAPER 1 Bronze Set B (Edexcel Version) CM Time allowed: 2 hours Instructions to candidates:

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

Some Basic Logic. Henry Liu, 25 October 2010

Some Basic Logic. Henry Liu, 25 October 2010 Some Basic Logic Henry Liu, 25 October 2010 In the solution to almost every olympiad style mathematical problem, a very important part is existence of accurate proofs. Therefore, the student should be

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: TA sessions for tutorial 1 start today Tutorial 2 will go online after lecture 3 Practicals: Make sure to find a team partner very soon

More information

Predicate Logic. Andreas Klappenecker

Predicate Logic. Andreas Klappenecker Predicate Logic Andreas Klappenecker Predicates A function P from a set D to the set Prop of propositions is called a predicate. The set D is called the domain of P. Example Let D=Z be the set of integers.

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F

More information

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo Predicate Logic CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 22 Outline 1 From Proposition to Predicate

More information

2. Second-order Linear Ordinary Differential Equations

2. Second-order Linear Ordinary Differential Equations Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Sometimes we have a curve in the plane defined by a function Fxy= (, ) 0 (1) that involves both x and y, possibly in complicated ways. Examples. We show below the graphs of the

More information

16.3 Conservative Vector Fields

16.3 Conservative Vector Fields 16.3 Conservative Vector Fields Lukas Geyer Montana State University M273, Fall 2011 Lukas Geyer (MSU) 16.3 Conservative Vector Fields M273, Fall 2011 1 / 23 Fundamental Theorem for Conservative Vector

More information

Lecture 13 - Wednesday April 29th

Lecture 13 - Wednesday April 29th Lecture 13 - Wednesday April 29th jacques@ucsdedu Key words: Systems of equations, Implicit differentiation Know how to do implicit differentiation, how to use implicit and inverse function theorems 131

More information

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2 CIRCLE [STRAIGHT OBJECTIVE TYPE] Q. The line x y + = 0 is tangent to the circle at the point (, 5) and the centre of the circles lies on x y = 4. The radius of the circle is (A) 3 5 (B) 5 3 (C) 5 (D) 5

More information

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy)

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Srikanth K S 1 Syllabus Taylor s and Maclaurin s theorems for function of one variable(statement only)- problems.

More information

" W I T H M: A. L I G E T O ' W ^ P L D IST O ISTE -A-IsTD G H! A-I^IT Y IPO PL A.LI-i. :

 W I T H M: A. L I G E T O ' W ^ P L D IST O ISTE -A-IsTD G H! A-I^IT Y IPO PL A.LI-i. : : D D! Y : V Y JY 4 96 J z z Y &! 0 6 4 J 6 4 0 D q & J D J» Y j D J & D & Y = x D D DZ Z # D D D D D D V X D DD X D \ J D V & Q D D Y D V D D? q ; J j j \V ; q» 0 0 j \\ j! ; \?) j: ; : x DD D J J j ;

More information

DISCUSSION CLASS OF DAX IS ON 22ND MARCH, TIME : 9-12 BRING ALL YOUR DOUBTS [STRAIGHT OBJECTIVE TYPE]

DISCUSSION CLASS OF DAX IS ON 22ND MARCH, TIME : 9-12 BRING ALL YOUR DOUBTS [STRAIGHT OBJECTIVE TYPE] DISCUSSION CLASS OF DAX IS ON ND MARCH, TIME : 9- BRING ALL YOUR DOUBTS [STRAIGHT OBJECTIVE TYPE] Q. Let y = cos x (cos x cos x). Then y is (A) 0 only when x 0 (B) 0 for all real x (C) 0 for all real x

More information

ALGEBRA II WITH TRIGONOMETRY EXAM

ALGEBRA II WITH TRIGONOMETRY EXAM First Round : March 7, 00 Second Round: April, 00 at The University of Alabama ALGEBRA II WITH TRIGONOMETRY EXAM Construction of this test directed by Congxiao Liu, Alabama A&M University and Alzaki Fadl

More information

MANY BILLS OF CONCERN TO PUBLIC

MANY BILLS OF CONCERN TO PUBLIC - 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -

More information

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y

More information

Math Practice Exam 3 - solutions

Math Practice Exam 3 - solutions Math 181 - Practice Exam 3 - solutions Problem 1 Consider the function h(x) = (9x 2 33x 25)e 3x+1. a) Find h (x). b) Find all values of x where h (x) is zero ( critical values ). c) Using the sign pattern

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

FFTs in Graphics and Vision. Homogenous Polynomials and Irreducible Representations

FFTs in Graphics and Vision. Homogenous Polynomials and Irreducible Representations FFTs in Graphics and Vision Homogenous Polynomials and Irreducible Representations 1 Outline The 2π Term in Assignment 1 Homogenous Polynomials Representations of Functions on the Unit-Circle Sub-Representations

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

Math 2E Selected Problems for the Final Aaron Chen Spring 2016

Math 2E Selected Problems for the Final Aaron Chen Spring 2016 Math 2E elected Problems for the Final Aaron Chen pring 216 These are the problems out of the textbook that I listed as more theoretical. Here s also some study tips: 1) Make sure you know the definitions

More information

Solutions to Sample Questions for Final Exam

Solutions to Sample Questions for Final Exam olutions to ample Questions for Final Exam Find the points on the surface xy z 3 that are closest to the origin. We use the method of Lagrange Multipliers, with f(x, y, z) x + y + z for the square of the

More information

Engg. Math. I. Unit-I. Differential Calculus

Engg. Math. I. Unit-I. Differential Calculus Dr. Satish Shukla 1 of 50 Engg. Math. I Unit-I Differential Calculus Syllabus: Limits of functions, continuous functions, uniform continuity, monotone and inverse functions. Differentiable functions, Rolle

More information

Additional Practice Lessons 2.02 and 2.03

Additional Practice Lessons 2.02 and 2.03 Additional Practice Lessons 2.02 and 2.03 1. There are two numbers n that satisfy the following equations. Find both numbers. a. n(n 1) 306 b. n(n 1) 462 c. (n 1)(n) 182 2. The following function is defined

More information

SBE MINIMAL REQUIREMENTS

SBE MINIMAL REQUIREMENTS SBE MINIMAL REQUIREMENTS Academic year 2018/2019 The successful student of the SBE Bachelor Degree Program has a strong quantitative attitude and a versatile potential. A general knowledge, with special

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Functions and Equations

Functions and Equations Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Euclid eworkshop # Functions and Equations c 006 CANADIAN

More information

Part I: Propositional Calculus

Part I: Propositional Calculus Logic Part I: Propositional Calculus Statements Undefined Terms True, T, #t, 1 False, F, #f, 0 Statement, Proposition Statement/Proposition -- Informal Definition Statement = anything that can meaningfully

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our

oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2

More information

MY PUTNAM PROBLEMS. log(1 + x) dx = π2

MY PUTNAM PROBLEMS. log(1 + x) dx = π2 MY PUTNAM PROBLEMS These are the problems I proposed when I was on the Putnam Problem Committee for the 984 86 Putnam Exams. Problems intended to be A or B (and therefore relatively easy) are marked accordingly.

More information

Recall that the expression x > 3 is not a proposition. Why?

Recall that the expression x > 3 is not a proposition. Why? Predicates and Quantifiers Predicates and Quantifiers 1 Recall that the expression x > 3 is not a proposition. Why? Notation: We will use the propositional function notation to denote the expression "

More information

Chapter 2. First-Order Partial Differential Equations. Prof. D. C. Sanyal

Chapter 2. First-Order Partial Differential Equations. Prof. D. C. Sanyal BY Prof. D. C. Sanyal Retired Professor Of Mathematics University Of Kalyani West Bengal, India E-mail : dcs klyuniv@yahoo.com 1 Module-2: Quasi-Linear Equations of First Order 1. Introduction In this

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: Tutorial 1 will be online later today TA sessions for questions start next week Practicals: Exams: Make sure to find a team partner very

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Section A. A 5 12 sin cm. AC cos100 7 M15/5/MATHL/HP2/ENG/TZ2/XX/M. 1. (a) (M1) A1 [2 marks] (b) (M1) therefore AC 13.

Section A. A 5 12 sin cm. AC cos100 7 M15/5/MATHL/HP2/ENG/TZ2/XX/M. 1. (a) (M1) A1 [2 marks] (b) (M1) therefore AC 13. 7 M5/5/MATHL/HP/ENG/TZ/XX/M Section A. (a) A 5 sin00 9.5 cm (M) A [ marks] (b) AC 5 5 cos00 (M) therefore AC 3.8 (cm) A [ marks] Total [4 marks]. (a) 098 330 4 43 (M)A [ marks] (b) 5 6 54 65 50 M A [ marks]

More information

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Dr. Asmaa Al Themairi Assistant Professor a a Department of Mathematical sciences, University of Princess Nourah bint Abdulrahman,

More information

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3.

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3. CHAPTER 3 THE LOGIC OF QUANTIFIED STATEMENTS SECTION 3.1 Predicates and Quantified Statements I Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Predicates

More information

NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS. Material Available with Question papers CONTACT ,

NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS. Material Available with Question papers CONTACT , NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS Material Available with Question papers CONTACT 8486 17507, 70108 65319 TEST BACTH SATURDAY & SUNDAY NATIONAL ACADEMY DHARMAPURI http://www.trbtnpsc.com/013/07/trb-questions-and-stu-materials.html

More information

gap> G:=ReducedGroebnerBasis(B,MonomialGrlexOrdering(y,x)); [ x^2-x, x*y-x, y^2-x ]

gap> G:=ReducedGroebnerBasis(B,MonomialGrlexOrdering(y,x)); [ x^2-x, x*y-x, y^2-x ] Mathematics 667 Gröbner bases in GAP A. Hulpke To start using it, one has to define indeterminates (variables) and polynomials. Indeterminates are displayed either by their internal numbers or you can

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2) Math 001 - Term 161 Recitation (R1, R) Question 1: How many rational and irrational numbers are possible between 0 and 1? (a) 1 (b) Finite (c) 0 (d) Infinite (e) Question : A will contain how many elements

More information

Automatic differentiation with Perl

Automatic differentiation with Perl [ Ref: autodiff.zw October 28, 2011 ] Automatic differentiation with Perl by J-L Morel - ( jl_morel@bribes.org ) http://www.bribes.org/perl/ 1 Introduction For some numerical algorithms, it is necessary

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 31 OCTOBER 2018

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 31 OCTOBER 2018 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY OCTOBER 8 Mark Scheme: Each part of Question is worth marks which are awarded solely for the correct answer. Each

More information

JUST THE MATHS UNIT NUMBER PARTIAL DIFFERENTIATION 1 (Partial derivatives of the first order) A.J.Hobson

JUST THE MATHS UNIT NUMBER PARTIAL DIFFERENTIATION 1 (Partial derivatives of the first order) A.J.Hobson JUST THE MATHS UNIT NUMBER 14.1 PARTIAL DIFFERENTIATION 1 (Partial derivatives of the first order) by A.J.Hobson 14.1.1 Functions of several variables 14.1.2 The definition of a partial derivative 14.1.3

More information

MS 3011 Exercises. December 11, 2013

MS 3011 Exercises. December 11, 2013 MS 3011 Exercises December 11, 2013 The exercises are divided into (A) easy (B) medium and (C) hard. If you are particularly interested I also have some projects at the end which will deepen your understanding

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

6 Second Order Linear Differential Equations

6 Second Order Linear Differential Equations 6 Second Order Linear Differential Equations A differential equation for an unknown function y = f(x) that depends on a variable x is any equation that ties together functions of x with y and its derivatives.

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 5 Additional Topics By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-2: Pythagorean

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include PUTNAM TRAINING POLYNOMIALS (Last updated: December 11, 2017) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Name: Class: Date: = 30.6 and t 15. = 125 D. t 21 = 20 = 3.75, S 6

Name: Class: Date: = 30.6 and t 15. = 125 D. t 21 = 20 = 3.75, S 6 Class: Date: Mock Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Two terms of an arithmetic sequence are t = 0.6 and t 1 = 89.6. What is t

More information

Bi. lkent Calculus II Exams

Bi. lkent Calculus II Exams Bi. lkent Calculus II Exams 988-208 Spring 208 Midterm I........ Spring 208 Midterm II....... 2 Spring 207 Midterm I........ 4 Spring 207 Midterm II....... 5 Spring 207 Final........... 7 Spring 206 Midterm

More information

Math 207 Honors Calculus III Final Exam Solutions

Math 207 Honors Calculus III Final Exam Solutions Math 207 Honors Calculus III Final Exam Solutions PART I. Problem 1. A particle moves in the 3-dimensional space so that its velocity v(t) and acceleration a(t) satisfy v(0) = 3j and v(t) a(t) = t 3 for

More information

MIDTERM EXAMINATION. Spring MTH301- Calculus II (Session - 3)

MIDTERM EXAMINATION. Spring MTH301- Calculus II (Session - 3) ASSALAM O ALAIKUM All Dear fellows ALL IN ONE MTH3 Calculus II Midterm solved papers Created BY Ali Shah From Sahiwal BSCS th semester alaoudin.bukhari@gmail.com Remember me in your prayers MIDTERM EXAMINATION

More information

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Tuesday 12 January 2016 Morning Time: 2 hours

More information

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0 Linear Independence: Suppose that V is a vector space and that x, x 2,, x k belong to V {x, x 2,, x k } are linearly independent if r x + r 2 x 2 + + r k x k = only for r = r 2 = = r k = The vectors x,

More information

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Tuesday 12 January 2016 Morning Time: 2 hours

More information

CS156: The Calculus of Computation Zohar Manna Winter 2010

CS156: The Calculus of Computation Zohar Manna Winter 2010 Page 3 of 35 Page 4 of 35 quantifiers CS156: The Calculus of Computation Zohar Manna Winter 2010 Chapter 2: First-Order Logic (FOL) existential quantifier x. F [x] there exists an x such that F [x] Note:

More information

Math 223 Final. July 24, 2014

Math 223 Final. July 24, 2014 Math 223 Final July 24, 2014 Name Directions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total 1. No books, notes, or evil looks. You may use a calculator to do routine arithmetic computations. You may not use your

More information

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane. Math 54 - Vector Calculus Notes 3. - 3. Double Integrals Consider f(x, y) = 8 x y. Let s estimate the volume under this surface over the rectangle R = [, 4] [, ] in the xy-plane. Here is a particular estimate:

More information

[STRAIGHT OBJECTIVE TYPE] log 4 2 x 4 log. x x log 2 x 1

[STRAIGHT OBJECTIVE TYPE] log 4 2 x 4 log. x x log 2 x 1 [STRAIGHT OBJECTIVE TYPE] Q. The equation, log (x ) + log x. log x x log x + log x log + log / x (A) exactly one real solution (B) two real solutions (C) real solutions (D) no solution. = has : Q. The

More information

Function Expressions

Function Expressions Function Expressions Contents 1.0 Overview of Function Expressions... 2 1.1 Expression Creation... 2 1.2 Available Functions... 3 1.3 Argument List... 4 2.0 How to Use the Fortran Functions... 6 3.0 How

More information