The study of dual integral equations with generalized Legendre functions

Size: px
Start display at page:

Download "The study of dual integral equations with generalized Legendre functions"

Transcription

1 J. Mth. Anl. Appl. 34 (5) The study of dul integrl equtions with generlized Legendre funtions B.M. Singh, J. Rokne,R.S.Dhliwl Deprtment of Mthemtis, The University of Clgry, Clgry, Albert, Cnd TN-N4 Reeived Februry 4 Avilble online 7 Jnury 5 Submitted by H.M. Srivstv Abstrt Closed form solutions for dul integrl equtions involving generlized Legendre funtions s kernels re obtined. Conneted to these dul integrl equtions n ext solution for dul integrl equtions involving sine funtions s kernels is lso obtined. Properties of generlized Legendre funtions nd the inversion theorem for the generlized Mehler Fok trnsforms re used to obtin the solution of dul integrl equtions 4 Elsevier In. All rights reserved.. Introdution Dul integrl equtions involving Legendre funtions of imginry rguments nd trigonometril funtions hve been onsidered by. By mking use of the method of we obtin the solution of more generl type of dul integrl equtions involving generlized Legendre funtions in Setion 3 nd in Setion 4 we obtin solution of the dul integrl equtions involving trigonometril sine funtions. The inversion theorem for the generlized Mehler Fok trnsforms is used to find the solution of dul integrl equtions. The inversion theorem for the generlized Mehler Fok trnsforms hs been given by 3 * Corresponding uthor. E-mil ddress: dhli.r@shw. (R.S. Dhliwl). Deprtment of Computer Siene, The University of Clgry, Clgry, Albert, Cnd TN-N4. -47X/$ see front mtter 4 Elsevier In. All rights reserved. doi:.6/j.jm.4.9.5

2 76 B.M. Singh et l. / J. Mth. Anl. Appl. 34 (5) nd 4. The relevnt referenes for dul nd triple integrl equtions re given by 5. The nlysis is forml nd no ttempt hs been mde to justify hnges in the order of integrtions. It is worth mentioning tht the generlized Legendre funtion is very speilized se of the G-funtion nd lso the H -funtion nd tht dul integrl equtions involving more generl G- nd H -funtions hve lredy been solved by mny different tehniques (inluding, for exmple, the tehniques used by the present uthors) in 6. In Ref. 6, pp , the dul integrl equtions (3.3.) nd (3.3.) involving H -funtions hve been solved. By seleting prtiulr vlues for the onstnts in the H -funtions, in the dul integrl equtions (3.3.) nd (3.3.) we n obtin the dul integrl equtions involving generlized Legendre funtions nd then integrting with respet to y we obtin dul integrl equtions whih re different from the dul integrl equtions (9), () nd (8), (9) of this pper. The reson is tht the dul integrl equtions (9), () nd (8), (9) re formed by integrting with respet to the index of the generlized Legender funtion. Finlly we find tht the solution of the dul integrl equtions (9), () nd (8), (9) re not prtiulr se of the solution of the dul integrl equtions (3.3.) nd (3.3.) mentioned in the book of Srivstv et l. 6, pp Integrls involving generlized Legendre funtions nd some useful results In this setion we disuss some integrls involving the generlized Legendre funtion. We n esily find with help of the book 7, p. 33() ( ) sinh() µ µ osh() os(xτ) dτ = osh() osh(x) µ H( x), () µ< nd with the help of the book 8 nd fter some mnipultions we find tht ( ) 3/ + µ µ sinh() µ + i τ ) µ i τ ) sinh(f ) sin(x) osh() dτ = osh(x) osh() µ H(x ), () µ> nd H( ) denotes the Heviside unit funtion. Furthermore, = f, f>, nd P µ (osh()) is the generlized Legendre funtion defined in the book 9, +i τ p. 37.

3 B.M. Singh et l. / J. Mth. Anl. Appl. 34 (5) From, the generlized Mehler Fok trnsform is defined by ψ ( osh() ) = nd its inversion formul is F(τ)= fτ sinh(f τ) osh() F(τ)dτ (3) µ + i τ ) µ i τ ) osh() ψ ( osh() ) sinh() d. (4) Equtions () nd () re of the form (3). Mking use of the inversion formul given by Eq. (4) we find from Eqs. () nd () tht os(xτ) τ sin(xτ) τ = sinh(τf ) µ + i τ ) µ i τ ) ( µ) = x x sinh() +µ P µ osh() d +i τ, µ< osh() osh(x) +µ, (5) + µ) sinh() µ P µ osh() d +i τ, µ> osh(x) osh() µ. (6) Mking use of the inversion theorem for Fourier osine trnsforms, we get by using the results () nd () tht osh() = sinhµ () os(τs) ds µ), µ< osh() osh(x) +µ, (7) osh() = sinh() µ + µ) sinh(f τ) µ + i τ ) µ i τ ) sin(τs) ds, µ> osh(s) osh() µ. (8)

4 78 B.M. Singh et l. / J. Mth. Anl. Appl. 34 (5) Dul integrl equtions with generlized Legendre funtion kernels We now onsider the pir of equtions A(τ)P µ +i τ τa(τ)sinh(τf ) osh() dτ = f (), <<, µ >, (9) µ + i τ ) µ i τ ) P µ osh() dτ +i τ = f (), < <, µ <, () A(τ) is the unknown funtion to be determined. Multiplying Eq. (9) by + µ ) sinh() µ osh(x) osh() µ, integrting with respet to from to x, then differentiting both sides with respet to x nd mking use of the result (6), we find tht A(τ) os(xτ) dτ = d + µ ) dx x f ()sinh() µ d osh(x) osh() µ = F (x) (sy), x<. () Multiplying Eq. () by () µ ) sinh() +µ osh() osh(x) µ nd integrting both sides with respet to over x to, we find, by using Eq. (5) tht A(τ) os(xτ) dτ = f ()sinh() +µ d ( µ ) osh() osh(x) +µ x = F (x) (sy), <x<. () Mking use of the inversion theorem for Fourier osine trnsforms, we get from Eqs. () nd () tht A(τ) = F (x) os(xτ) dx + F (x) os(xτ) dx. (3) In some ses it is very useful to find the following expression: τa(τ)sinh(τf ) µ + i τ ) µ i τ ) P µ osh() dτ +i τ = G (), <<. (4) Integrting Eq. (3) by prts we find tht

5 A(τ) = τ B.M. Singh et l. / J. Mth. Anl. Appl. 34 (5) F () sin(τ) F () sin(τ) τ τ τ F (x) sin(xτ) dx F (x) sin(xτ) dx, <τ<, (5) prime denotes the derivtive with respet tot x. Substituting from Eq. (5) into Eq. (4), we find by mking use of the integrl () tht for µ <, { sinh() µ F () G () = + µ ) osh() osh() µ } F (x) dx osh(x) osh() µ { F () } F (x) dx +, osh() osh() µ osh(x) osh() µ <<. (6) We n esily find tht G () = = + A(τ)P µ +i τ sinh() µ µ ) osh() dτ F (x) dx osh() osh(x) +µ F (x) dx osh() osh(x) +µ, <<, µ <. (7) Now we onsider the following dul integrl equtions: τa(τ)p µ +i τ A(τ) sinh(τf ) osh() dτ = f (), <<, µ >, (8) µ + i τ ) µ i τ ) P µ osh() dτ +i τ = f (), < <, µ <. (9)

6 73 B.M. Singh et l. / J. Mth. Anl. Appl. 34 (5) We shll use the sme method of solving the dul integrl equtions (8) nd (9) s for the dul equtions (9) nd (). The finl result is A(τ) = F 3 (x) sin(xτ) dx + F 4 (x) sin(xτ) dx, () F 3 (x) = + µ ) x d F 4 (x) = ( µ ) dx sinh() µ f () d, () osh(x) osh() µ x sinh() +µ f () d. () osh() osh(x) +µ 4. Dul integrl equtions involving sine funtions kernels We shll now onsider the following dul integrl equtions: τ A(τ) sin(xτ) dτ = g(x), <x<, (3) A(τ) µ + i τ ) µ i τ ) oseh(f τ) sin(xτ) dτ = g (x), < x <, (4) <µ<. Differentiting both sides of Eq. (3) by x, we find tht A(τ) os(xτ) dτ = g (x), <x<, (5) prime denotes derivtive with respet to x. Multiplying both sides of Eq. (5) by sinh µ () ( osh() osh(x) +µ), µ) integrting with respet to x nd using Eq. (7) we find tht osh() A(τ) dτ = n (), <<, (6) n () = sinh µ () µ) g (x) dx. (7) osh() osh(x) +µ

7 B.M. Singh et l. / J. Mth. Anl. Appl. 34 (5) Multiplying Eq. (4) by µ osh(x) osh() sinh() µ + µ) nd integrting both sides with respet to x, between the limits nd, we find tht osh() A(τ) dτ = n (), < <, (8) n () = sinh() µ + µ) g (x) dx. (9) osh(x) osh() µ Equtions (6) nd (8) re of the form (3). Hene mking use of Eq. (4) we find tht A(τ) = τf sinh(f τ) µ + i τ ) µ i τ ) { n ()P µ osh() sinh() d +i τ + } n ()P µ osh() sinh() d. (3) +i τ Eqution (3) gives the solution of the dul integrl equtions (5) nd (4) but not of (3) nd (4). For the purpose of verifition substituting Eq. (3) into (3) nd interhnging the order of integrtion we find tht x sinh() µ n () d + µ) = g(x), <x<. (3) osh(x) osh() µ Substituting the expression for n () from Eq. (7) into Eq. (3), interhnging the order of integrtion nd using the following integrl: x u we find tht sinh() d = osh(x) osh() µ osh() osh(u) +µ os(µ), (3) g() =. Mking use of the ondition (33) we find tht Eq. (3) is solution of the dul integrl equtions (3) nd (4). If µ = then the dul integrl equtions (3) nd (4) redue to the following dul integrl equtions: (33)

8 73 B.M. Singh et l. / J. Mth. Anl. Appl. 34 (5) τ A(τ) sin(xτ) dτ = g(x), <x<, (34) A(τ) oth(f τ) sin(xτ) dτ = h(x), < x <, (35) h(x) = g (x). Mking use of Eqs. (7), (9), (3) nd (36) we n write the solution of the dul integrl equtions in the following form: A(τ) = τf tnh(f τ) + Ω = n () = ω = n () = Ω()P +i τ osh() sinh() d (36) ω()p +i τ osh() sinh() d, (37) g (x) dx, (38) osh() osh(x) h(x) dx. (39) osh(x) osh() When f =, the solution of the dul integrl equtions (34) nd (35) is given by, pp. 3 3 in Eq. (3.6) of his pper. Our solution nd Bbloin s solution re the sme nd they re only orret if g() =. This is the only new ondition whih should hve been imposed in the Bbloin solution. It is, however not mentioned in his pper. Tht ondition rises due to differentition of Eq. (3). Referenes A.A. Bbloin, The solution of some dul integrl equtions, Prikl. Mt. Mekh. 8 (964) 5 3, English trnsl. in Appl. Mth. Meh. 8 (965) B. Noble, The solution of Bessel funtion dul integrl equtions by multiplying-ftor method, Pro. Cmbridge Philos. So. 59 (963) P.L. Rosenthl, On generliztion of Mehler s inversion formul nd some of its pplitions, Ph.D. disserttion, Oregon Stte University, I.N. Sneddon, The Use of Integrl Trnsforms, MGrw Hill, New York, I.N. Sneddon, Mixed Boundry Vlue Problems in Potentil Theory, North-Hollnd, Amsterdm, H.M. Srivstv, K.C. Gupt, S.P. Goyl, The H -Funtions of One nd Two Vribles with Applitions, South Asin Publishers, New Delhi, 98.

9 B.M. Singh et l. / J. Mth. Anl. Appl. 34 (5) A. Erdelyi, Tbles of Integrl Trnsforms, vol., MGrw Hill, New York, F. Oberhettinger, Tbellen zur Fourier Trnsform, Springer-Verlg, Heidelberg, A. Erdelyi (Ed.), Tbles of Integrl Trnsforms, vol., MGrw Hill, New York, 954. W. Mgnus, F. Oberhettinger, R.P. Soni, Formuls nd Theorems for Speil Funtions of Mthemtil Physis, Springer-Verlg, Heidelberg, 966.

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx, MATH3403: Green s Funtions, Integrl Equtions nd the Clulus of Vritions 1 Exmples 5 Qu.1 Show tht the extreml funtion of the funtionl I[y] = 1 0 [(y ) + yy + y ] dx, where y(0) = 0 nd y(1) = 1, is y(x)

More information

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs A.I. KECHRINIOTIS AND N.D. ASSIMAKIS Deprtment of Eletronis Tehnologil Edutionl Institute of Lmi, Greee EMil: {kehrin,

More information

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates Int. J. Nonliner Anl. Appl. 8 27 No. 47-6 ISSN: 28-6822 eletroni http://dx.doi.org/.2275/ijn.26.483 Hermite-Hdmrd ineulity for geometrilly usionvex funtions on o-ordintes Ali Brni Ftemeh Mlmir Deprtment

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

The Riemann-Lebesgue Lemma

The Riemann-Lebesgue Lemma Physics 215 Winter 218 The Riemnn-Lebesgue Lemm The Riemnn Lebesgue Lemm is one of the most importnt results of Fourier nlysis nd symptotic nlysis. It hs mny physics pplictions, especilly in studies of

More information

Solutions to Assignment 1

Solutions to Assignment 1 MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove

More information

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals. MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].

More information

On the Co-Ordinated Convex Functions

On the Co-Ordinated Convex Functions Appl. Mth. In. Si. 8, No. 3, 085-0 0 085 Applied Mthemtis & Inormtion Sienes An Interntionl Journl http://.doi.org/0.785/mis/08038 On the Co-Ordinted Convex Funtions M. Emin Özdemir, Çetin Yıldız, nd Ahmet

More information

arxiv: v1 [math.ca] 21 Aug 2018

arxiv: v1 [math.ca] 21 Aug 2018 rxiv:1808.07159v1 [mth.ca] 1 Aug 018 Clulus on Dul Rel Numbers Keqin Liu Deprtment of Mthemtis The University of British Columbi Vnouver, BC Cnd, V6T 1Z Augest, 018 Abstrt We present the bsi theory of

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

An iterative method for solving nonlinear functional equations

An iterative method for solving nonlinear functional equations J. Mth. Anl. Appl. 316 (26) 753 763 www.elsevier.com/locte/jm An itertive method for solving nonliner functionl equtions Vrsh Dftrdr-Gejji, Hossein Jfri Deprtment of Mthemtics, University of Pune, Gneshkhind,

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Integrals Depending on a Parameter

Integrals Depending on a Parameter Universidd Crlos III de Mdrid Clulus II Mrin Delgdo Téllez de Ceped Unit 3 Integrls Depending on Prmeter Definition 3.1. Let f : [,b] [,d] R, if for eh fixed t [,d] the funtion f(x,t) is integrble over

More information

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS Krgujev Journl of Mthemtis Volume 38() (204), Pges 35 49. DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS MOHAMMAD W. ALOMARI Abstrt. In this pper, severl bouns for the ifferene between two Riemn-

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

The Double Integral. The Riemann sum of a function f (x; y) over this partition of [a; b] [c; d] is. f (r j ; t k ) x j y k

The Double Integral. The Riemann sum of a function f (x; y) over this partition of [a; b] [c; d] is. f (r j ; t k ) x j y k The Double Integrl De nition of the Integrl Iterted integrls re used primrily s tool for omputing double integrls, where double integrl is n integrl of f (; y) over region : In this setion, we de ne double

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

LIAPUNOV-TYPE INTEGRAL INEQUALITIES FOR CERTAIN HIGHER-ORDER DIFFERENTIAL EQUATIONS

LIAPUNOV-TYPE INTEGRAL INEQUALITIES FOR CERTAIN HIGHER-ORDER DIFFERENTIAL EQUATIONS Eletroni Journl of Differentil Equtions, Vol. 9(9, No. 8, pp. 1 14. ISSN: 17-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu LIAPUNOV-TYPE INTEGRAL INEQUALITIES

More information

Hyers-Ulam stability of Pielou logistic difference equation

Hyers-Ulam stability of Pielou logistic difference equation vilble online t wwwisr-publitionsom/jns J Nonliner Si ppl, 0 (207, 35 322 Reserh rtile Journl Homepge: wwwtjnsom - wwwisr-publitionsom/jns Hyers-Ulm stbility of Pielou logisti differene eqution Soon-Mo

More information

Lecture Summaries for Multivariable Integral Calculus M52B

Lecture Summaries for Multivariable Integral Calculus M52B These leture summries my lso be viewed online by liking the L ion t the top right of ny leture sreen. Leture Summries for Multivrible Integrl Clulus M52B Chpter nd setion numbers refer to the 6th edition.

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

Some integral inequalities of the Hermite Hadamard type for log-convex functions on co-ordinates

Some integral inequalities of the Hermite Hadamard type for log-convex functions on co-ordinates Avilble online t www.tjns.om J. Nonliner Si. Appl. 9 06), 5900 5908 Reserh Artile Some integrl inequlities o the Hermite Hdmrd type or log-onvex untions on o-ordintes Yu-Mei Bi, Feng Qi b,, College o Mthemtis,

More information

f (z) dz = 0 f(z) dz = 2πj f(z 0 ) Generalized Cauchy Integral Formula (For pole with any order) (n 1)! f (n 1) (z 0 ) f (n) (z 0 ) M n!

f (z) dz = 0 f(z) dz = 2πj f(z 0 ) Generalized Cauchy Integral Formula (For pole with any order) (n 1)! f (n 1) (z 0 ) f (n) (z 0 ) M n! uhy s Theorems I Ang M.S. Otober 26, 212 Augustin-Louis uhy 1789 1857 Referenes Murry R. Spiegel omplex V ribles with introdution to onf orml mpping nd its pplitions Dennis G. Zill, P. D. Shnhn A F irst

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

ON CO-ORDINATED OSTROWSKI AND HADAMARD S TYPE INEQUALITIES FOR CONVEX FUNCTIONS II

ON CO-ORDINATED OSTROWSKI AND HADAMARD S TYPE INEQUALITIES FOR CONVEX FUNCTIONS II TJMM 9 (7), No., 35-4 ON CO-ORDINATED OSTROWSKI AND HADAMARD S TYPE INEQUALITIES FOR CONVEX FUNCTIONS II MUHAMMAD MUDDASSAR, NASIR SIDDIQUI, AND MUHAMMAD IQBAL Abstrt. In this rtile, we estblish vrious

More information

2. Topic: Summation of Series (Mathematical Induction) When n = 1, L.H.S. = S 1 = u 1 = 3 R.H.S. = 1 (1)(1+1)(4+5) = 3

2. Topic: Summation of Series (Mathematical Induction) When n = 1, L.H.S. = S 1 = u 1 = 3 R.H.S. = 1 (1)(1+1)(4+5) = 3 GCE A Level Otober/November 008 Suggested Solutions Mthemtis H (970/0) version. MATHEMATICS (H) Pper Suggested Solutions. Topi: Definite Integrls From the digrm: Are A = y dx = x Are B = x dy = y dy dx

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Dong-Myung Lee, Jeong-Gon Lee, and Ming-Gen Cui. 1. introduction

Dong-Myung Lee, Jeong-Gon Lee, and Ming-Gen Cui. 1. introduction J. Kore So. Mth. Edu. Ser. B: Pure Appl. Mth. ISSN 16-0657 Volume 11, Number My 004), Pges 133 138 REPRESENTATION OF SOLUTIONS OF FREDHOLM EQUATIONS IN W Ω) OF REPRODUCING KERNELS Dong-Myung Lee, Jeong-Gon

More information

J. Math. Anal. Appl. Some identities between basic hypergeometric series deriving from a new Bailey-type transformation

J. Math. Anal. Appl. Some identities between basic hypergeometric series deriving from a new Bailey-type transformation J. Mth. Anl. Appl. 345 008 670 677 Contents lists ville t ScienceDirect J. Mth. Anl. Appl. www.elsevier.com/locte/jm Some identities between bsic hypergeometric series deriving from new Biley-type trnsformtion

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

Line Integrals. Chapter Definition

Line Integrals. Chapter Definition hpter 2 Line Integrls 2.1 Definition When we re integrting function of one vrible, we integrte long n intervl on one of the xes. We now generlize this ide by integrting long ny curve in the xy-plne. It

More information

MATH , Calculus 2, Fall 2018

MATH , Calculus 2, Fall 2018 MATH 36-2, 36-3 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly

More information

A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS

A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS Commun. Koren Mth. So. 31 016, No. 1, pp. 65 94 http://dx.doi.org/10.4134/ckms.016.31.1.065 A STUDY OF Q-CONTIGUOUS FUNCTION RELATIONS Hrsh Vrdhn Hrsh, Yong Sup Kim, Medht Ahmed Rkh, nd Arjun Kumr Rthie

More information

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES CHARLIE COLLIER UNIVERSITY OF BATH These notes hve been typeset by Chrlie Collier nd re bsed on the leture notes by Adrin Hill nd Thoms Cottrell. These

More information

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms Core Logrithms nd eponentils Setion : Introdution to logrithms Notes nd Emples These notes ontin subsetions on Indies nd logrithms The lws of logrithms Eponentil funtions This is n emple resoure from MEI

More information

Parabola and Catenary Equations for Conductor Height Calculation

Parabola and Catenary Equations for Conductor Height Calculation ELECTROTEHNICĂ, ELECTRONICĂ, AUTOMATICĂ, 6 (), nr. 3 9 Prbol nd Ctenr Equtions for Condutor Height Clultion Alen HATIBOVIC Abstrt This pper presents new equtions for ondutor height lultion bsed on the

More information

Well Centered Spherical Quadrangles

Well Centered Spherical Quadrangles Beiträge zur Algebr und Geometrie Contributions to Algebr nd Geometry Volume 44 (003), No, 539-549 Well Centered Sphericl Qudrngles An M d Azevedo Bred 1 Altino F Sntos Deprtment of Mthemtics, University

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Section 3.6. Definite Integrals

Section 3.6. Definite Integrals The Clulus of Funtions of Severl Vribles Setion.6 efinite Integrls We will first define the definite integrl for funtion f : R R nd lter indite how the definition my be extended to funtions of three or

More information

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones. Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

More information

Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b

Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b Mth 32 Substitution Method Stewrt 4.5 Reversing the Chin Rule. As we hve seen from the Second Fundmentl Theorem ( 4.3), the esiest wy to evlute n integrl b f(x) dx is to find n ntiderivtive, the indefinite

More information

Math Fall 2006 Sample problems for the final exam: Solutions

Math Fall 2006 Sample problems for the final exam: Solutions Mth 42-5 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series

More information

Asymptotic results for Normal-Cauchy model

Asymptotic results for Normal-Cauchy model Asymptotic results for Norml-Cuchy model John D. Cook Deprtment of Biosttistics P. O. Box 342, Unit 49 The University of Texs, M. D. Anderson Cncer Center Houston, Texs 7723-42, USA cook@mdnderson.org

More information

A Mathematical Model for Unemployment-Taking an Action without Delay

A Mathematical Model for Unemployment-Taking an Action without Delay Advnes in Dynmil Systems nd Applitions. ISSN 973-53 Volume Number (7) pp. -8 Reserh Indi Publitions http://www.ripublition.om A Mthemtil Model for Unemployment-Tking n Ation without Dely Gulbnu Pthn Diretorte

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

ON THE C-INTEGRAL BENEDETTO BONGIORNO

ON THE C-INTEGRAL BENEDETTO BONGIORNO ON THE C-INTEGRAL BENEDETTO BONGIORNO Let F : [, b] R be differentible function nd let f be its derivtive. The problem of recovering F from f is clled problem of primitives. In 1912, the problem of primitives

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS #A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform Applied Mthemticl Sciences, Vol. 8, 214, no. 11, 525-53 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/1.12988/ms.214.312715 The Solution of Volterr Integrl Eqution of the Second Kind by Using the Elzki

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications AP CALCULUS Test #6: Unit #6 Bsi Integrtion nd Applitions A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS PART OF THE EXAMINATION. () The ext numeril vlue of the orret

More information

Line Integrals and Entire Functions

Line Integrals and Entire Functions Line Integrls nd Entire Funtions Defining n Integrl for omplex Vlued Funtions In the following setions, our min gol is to show tht every entire funtion n be represented s n everywhere onvergent power series

More information

The Riemann-Stieltjes Integral

The Riemann-Stieltjes Integral Chpter 6 The Riemnn-Stieltjes Integrl 6.1. Definition nd Eistene of the Integrl Definition 6.1. Let, b R nd < b. ( A prtition P of intervl [, b] is finite set of points P = { 0, 1,..., n } suh tht = 0

More information

Integrals along Curves.

Integrals along Curves. Integrls long Curves. 1. Pth integrls. Let : [, b] R n be continuous function nd let be the imge ([, b]) of. We refer to both nd s curve. If we need to distinguish between the two we cll the function the

More information

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations AMATH 731: Applied Functionl Anlysis Fll 2009 1 Introduction Some bsics of integrl equtions An integrl eqution is n eqution in which the unknown function u(t) ppers under n integrl sign, e.g., K(t, s)u(s)

More information

CHENG Chun Chor Litwin The Hong Kong Institute of Education

CHENG Chun Chor Litwin The Hong Kong Institute of Education PE-hing Mi terntionl onferene IV: novtion of Mthemtis Tehing nd Lerning through Lesson Study- onnetion etween ssessment nd Sujet Mtter HENG hun hor Litwin The Hong Kong stitute of Edution Report on using

More information

The Regularization-Homotopy Method for the Two-Dimensional Fredholm Integral Equations of the First Kind

The Regularization-Homotopy Method for the Two-Dimensional Fredholm Integral Equations of the First Kind Mthemtil nd Computtionl Applitions Artile The Regulriztion-Homotopy Method for the Two-Dimensionl Fredholm Integrl Equtions of the First Kind Ahmet Altürk Deprtment of Mthemtis, Amsy University, Ipekkoy,

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

MATH Final Review

MATH Final Review MATH 1591 - Finl Review November 20, 2005 1 Evlution of Limits 1. the ε δ definition of limit. 2. properties of limits. 3. how to use the diret substitution to find limit. 4. how to use the dividing out

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

Double integrals on regions (Sect. 15.2) Review: Fubini s Theorem on rectangular domains

Double integrals on regions (Sect. 15.2) Review: Fubini s Theorem on rectangular domains ouble integrls on regions (Set. 5.) Review: Fubini s on retngulr domins. Fubini s on non-retngulr domins. Tpe I: omin funtions (). Tpe II: omin funtions (). Finding the limits of integrtion. Review: Fubini

More information

On the Scale factor of the Universe and Redshift.

On the Scale factor of the Universe and Redshift. On the Sle ftor of the Universe nd Redshift. J. M. unter. john@grvity.uk.om ABSTRACT It is proposed tht there hs been longstnding misunderstnding of the reltionship between sle ftor of the universe nd

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

More information

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Improper Integrls MATH 2, Clculus II J. Robert Buchnn Deprtment of Mthemtics Spring 28 Definite Integrls Theorem (Fundmentl Theorem of Clculus (Prt I)) If f is continuous on [, b] then b f (x) dx = [F(x)]

More information

6.1 Definition of the Riemann Integral

6.1 Definition of the Riemann Integral 6 The Riemnn Integrl 6. Deinition o the Riemnn Integrl Deinition 6.. Given n intervl [, b] with < b, prtition P o [, b] is inite set o points {x, x,..., x n } [, b], lled grid points, suh tht x =, x n

More information

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall)

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall) Green s functions 3. G(t, τ) nd its derivtives G (k) t (t, τ), (k =,..., n 2) re continuous in the squre t, τ t with respect to both vribles, George Green (4 July 793 3 My 84) In 828 Green privtely published

More information

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0. STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

More information

Now, given the derivative, can we find the function back? Can we antidifferenitate it?

Now, given the derivative, can we find the function back? Can we antidifferenitate it? Fundmentl Theorem of Clculus. Prt I Connection between integrtion nd differentition. Tody we will discuss reltionship between two mjor concepts of Clculus: integrtion nd differentition. We will show tht

More information

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1 Section 5.4 Fundmentl Theorem of Clculus 2 Lectures College of Science MATHS : Clculus (University of Bhrin) Integrls / 24 Definite Integrl Recll: The integrl is used to find re under the curve over n

More information

DEFINITE INTEGRALS. f(x)dx exists. Note that, together with the definition of definite integrals, definitions (2) and (3) define b

DEFINITE INTEGRALS. f(x)dx exists. Note that, together with the definition of definite integrals, definitions (2) and (3) define b DEFINITE INTEGRALS JOHN D. MCCARTHY Astrct. These re lecture notes for Sections 5.3 nd 5.4. 1. Section 5.3 Definition 1. f is integrle on [, ] if f(x)dx exists. Definition 2. If f() is defined, then f(x)dx.

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

Generalized Techniques in Numerical Integration

Generalized Techniques in Numerical Integration Generlized Techniques in Numericl Integrtion. p. 1/29 Generlized Techniques in Numericl Integrtion Richrd M. Slevinsky nd Hssn Sfouhi Mthemticl Section Cmpus Sint-Jen, University of Albert hssn.sfouhi@ulbert.c

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN Electronic Journl of Differentil Equtions, Vol. 203 (203), No. 28, pp. 0. ISSN: 072-669. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu LYAPUNOV-TYPE INEQUALITIES FOR

More information

AP Calculus AB Unit 4 Assessment

AP Calculus AB Unit 4 Assessment Clss: Dte: 0-04 AP Clulus AB Unit 4 Assessment Multiple Choie Identify the hoie tht best ompletes the sttement or nswers the question. A lultor my NOT be used on this prt of the exm. (6 minutes). The slope

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations Introduction to the Clculus of Vritions Jim Fischer Mrch 20, 1999 Abstrct This is self-contined pper which introduces fundmentl problem in the clculus of vritions, the problem of finding extreme vlues

More information

II. Integration and Cauchy s Theorem

II. Integration and Cauchy s Theorem MTH6111 Complex Anlysis 2009-10 Lecture Notes c Shun Bullett QMUL 2009 II. Integrtion nd Cuchy s Theorem 1. Pths nd integrtion Wrning Different uthors hve different definitions for terms like pth nd curve.

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Math 361: Homework 5. x i = 1 (1 u i ) Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

More information

Euler-Maclaurin Summation Formula 1

Euler-Maclaurin Summation Formula 1 Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

More information

Relations between a dual unit vector and Frenet vectors of a dual curve

Relations between a dual unit vector and Frenet vectors of a dual curve Kuwit J. Si. 4 () pp. 59-69, 6 Burk Şhiner *, Mehmet Önder Dept. of Mthemtis, Mnis Cell Byr University, Murdiye, Mnis, 454, Turkey * Corresponding uthor: burk.shiner@bu.edu.tr Abstrt In this pper, we generlize

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

On the degree of regularity of generalized van der Waerden triples

On the degree of regularity of generalized van der Waerden triples On the degree of regulrity of generlized vn der Werden triples Jcob Fox Msschusetts Institute of Technology, Cmbridge, MA 02139, USA Rdoš Rdoičić Deprtment of Mthemtics, Rutgers, The Stte University of

More information

Math 3B: Lecture 9. Noah White. October 18, 2017

Math 3B: Lecture 9. Noah White. October 18, 2017 Mth 3B: Lecture 9 Noh White October 18, 2017 The definite integrl Defintion The definite integrl of function f (x) is defined to be where x = b n. f (x) dx = lim n x n f ( + k x) k=1 Properties of definite

More information

AN ANALYSIS OF TWO DIMENSIONAL INTEGRAL EQUATIONS OF THE SECOND KIND

AN ANALYSIS OF TWO DIMENSIONAL INTEGRAL EQUATIONS OF THE SECOND KIND AN ANALYSIS OF TWO DIMENSIONAL INTEGRAL EQUATIONS,... 5 LE MATEMATICHE Vol. LXII (2007) - Fs. I, pp. 5-39 AN ANALYSIS OF TWO DIMENSIONAL INTEGRAL EQUATIONS OF THE SECOND KIND M. M. EL-BORAI - M. A. ABDOU

More information

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx Mth 5 2006-2007) Yum-Tong Siu Lgrnge Multipliers nd Vritionl Problems with Constrints Integrl Constrints. Consider the vritionl problem of finding the extremls for the functionl J[y] = F x,y,y )dx with

More information