ir. Georgi Radulov 1, dr. ir. Patrick Quinn 2, dr. ir. Hans Hegt 1, prof. dr. ir. Arthur van Roermund 1 Eindhoven University of Technology Xilinx

Size: px
Start display at page:

Download "ir. Georgi Radulov 1, dr. ir. Patrick Quinn 2, dr. ir. Hans Hegt 1, prof. dr. ir. Arthur van Roermund 1 Eindhoven University of Technology Xilinx"

Transcription

1 Calibration of Current Steering D/A Converters ir. eorgi Radulov 1, dr. ir. Patrick Quinn 2, dr. ir. Hans Hegt 1, prof. dr. ir. Arthur van Roermund 1 1 Eindhoven University of Technology 2 Xilinx

2 Current-steering D/A converters Applications demand performance; Errors limit performance; Small errors demand huge resources. Correction methods: Improve performance and Relax design requirements 2

3 Overview Mismatch problem; Current calibration method; MSB unary currents calibration in a 12b 250nm DAC All (MSB unary and LSB binary) currents calibration in a quad-core 12b 180nm DAC; All currents calibration in a 12b-16b flexible 40nm DAC Conclusions 3

4 Mismatch problem Elements real values deviate PDF(I) Deviation depends on: Area Tech. and Circuit parameters I MEAN I I High resolution D/A require Many and accurate elements 2 σ I K I ~ W L ( ) I Large silicon areas Large silicon areas cause Systematic errors Drop of performance INL max ~ n σ I I 4

5 Start-up calibration scheme Mismatch correction; Input offset cancellation; Two phases: φa, φb; φa: I temp =I ref -I offset ; φb: I th (i)=i temp + I offset =I ref ; I offset 1-bit ADC FSM φa: open φa: closed φb: closed φb: open I th (i) I ref I temp with I ref =ΣI bin + I LSB ; Simple logic: 8-state FSM. CALDAC(i) temp CALDAC 5

6 12bit self-calibrating DAC in 250nm CMOS, see ESSCIRC 05

7 12bit DAC implementation 12b current-steering DAC; Segmentation: 6LSB/6MSB; 63 thermo bits calibrated; 6 binary not calibrated; Reference: binary bits; 5bit signed CALDACs; CMOS 0.25µm; Vdd 2.5V. technische universiteit eindhoven 7

8 Chip micrograph 0.98mm Input drivers Latches & Decoder 1.16mm Latches & Decoder CMOS 0.25µm, 1P5M; Coarse (main) current sources designed for 10b Decoder Decoder accuracy in 0.1mm 2 ; FSM & 1bit ADC Cascodes M2, M3a, M3b Array of CALDACs Fully integrated selfcalibration in 0.3mm 2 ; Coarse current sources 5 extra pads for calibration: 4 in & 1 out; technische universiteit eindhoven 8

9 Self-calibration of MSB unary currents measurements SFDR = 68dB SFDR = 81dB Before calibration +13dB After calibration 9

10 Self-calibration of MSB unary currents measurements HD (2,3,4,5) (max) improvement +18dB SFDR improvement +13dB 10

11 Calibration potential Distribution before calibration 3.5 LSB span, σ=1.06lsb; Tech. and design tolerances; Unary currents: +4 bits Distribution after calibration 0.2 LSB span, σ=0.03lsb; Calibration step sets the span; technische universiteit eindhoven 11

12 Static performance INL [LSB] Before 10b MSB unary part dominate; INL max = 1.5LSB; Digital code LSB non-calibrated binary part dominate; INL max = 0.4LSB INL: +2b After 12b INL [LSB] Digital code technische universiteit eindhoven 12

13 Calibration of binary currents Binary no redundancy New sub-dac segmentation (M binary sets) redundancy B 1 1: I ( B)(1) + I ( i)(1) + 1 LSB: = I bin bin ref _ u i= 1 I ref _ bn B 1 2 : I ( B)(2) + I ( i)(1) + 1 LSB: = I bin ref _ bn 3: I ( B)( 1) + I ( B)(2) : = I bin bin ref _ u i= 1 I bin ref _ u equal 1/2 13

14 12b-14b self-calibrating flexible DAC in 180nm CMOS, see APCCAS 08

15 Parallel sub-dac units architecture Current-steering DACs: Parallel current sources (switch current cells), which are switched in groups to create the analog output; a) Unary (Thermometer) grouping; b) Binary grouping; c) Segmented grouping; d) Our NEW grouping: parallel sub-dacs (with an exemplary implementation). technische universiteit eindhoven 15

16 A 12-bit self-calibrated quad-core current-steering DAC recall: 1mm 2 for the presented 12b DAC (250nm CMOS) 0,2mm 2 per 12b DAC (180nm CMOS) -Large LSB binary part; -Full calibration. 16

17 Calibration of unary and binary currents, measurements INL Before calibration After calibration DNL 17

18 Calibration of all DAC currents, measurements DAC accuracy depends only on a design parameter 18

19 Calibration of all DAC currents, dynamic measurements SFDR = 80dB SFDR = 75dB 19

20 12b-16b self-calibrating flexible DAC in 40nm CMOS, unpublished yet

21 A 12b-16b self-calibrated flexible DAC in 40nm CMOS Off-chip calibration engine; Flexibility; Analog outpu N OP K L M H IJ D EF C B A N OP K L M H IJ D EF C B A N OP K L M H IJ D EF C A B N OP M K L H IJ E F D A BC Construction of the full transfer characteristic Narrow gray - sub-dacs set to full-scale 0 ; Italic - sub-dacs convert the12 LSB input data; BOLD - sub-dacs set to full-scale 1. N OP K L M H IJ F E D A BC N OP K L M H IJ F D E A BC N OP K L M H IJ D EF A BC N OP M K L J I H D EF A BC N OP M K L J I H D EF A BC Digital input O N OP MNOP N M M N L M M K L M NOP N OP O P P L K K K L K L K L J H I D EF A BC H IJ D EF A BC H IJ D EF A BC H IJ D EF A BC H IJ D EF A BC H IJ D EF A BC P N O K L M H IJ D EF A BC 15b output 13b output 14b output 12b output 12b output 0.047mm 2 per 12b sub-dac (recall: 1mm 2 for 250nm; 0.2mm 2 for 180nm)

22 Calibration of all DAC currents, INL & slow signals measurements +5 bits Before: SFDR = 59dB After: SFDR = 79dB Before: SFDR = 63dB After: SFDR = 80dB +4 bits

23 Calibration of all DAC currents, dynamic measurements

24 Conclusions Calibration: improves performance; relaxes design requirements; reduces product risks; 3 test-chip demonstrated: aggressive analog area reduction; high current accuracy; analog performance supported by digital.

25 Acknowledgements Xilinx Ireland, Mixed-Signal Design roup Financial support of Dutch Tech. Foundation STW 25

26 Thanks for attention! Discussion technische universiteit eindhoven 26

A novel Capacitor Array based Digital to Analog Converter

A novel Capacitor Array based Digital to Analog Converter Chapter 4 A novel Capacitor Array based Digital to Analog Converter We present a novel capacitor array digital to analog converter(dac architecture. This DAC architecture replaces the large MSB (Most Significant

More information

PARALLEL DIGITAL-ANALOG CONVERTERS

PARALLEL DIGITAL-ANALOG CONVERTERS CMOS Analog IC Design Page 10.2-1 10.2 - PARALLEL DIGITAL-ANALOG CONVERTERS CLASSIFICATION OF DIGITAL-ANALOG CONVERTERS CMOS Analog IC Design Page 10.2-2 CURRENT SCALING DIGITAL-ANALOG CONVERTERS GENERAL

More information

EE247 Lecture 16. Serial Charge Redistribution DAC

EE247 Lecture 16. Serial Charge Redistribution DAC EE47 Lecture 16 D/A Converters D/A examples Serial charge redistribution DAC Practical aspects of current-switch DACs Segmented current-switch DACs DAC self calibration techniques Current copiers Dynamic

More information

EXTENDING THE RESOLUTION OF PARALLEL DIGITAL-ANALOG CONVERTERS

EXTENDING THE RESOLUTION OF PARALLEL DIGITAL-ANALOG CONVERTERS CMOS Analog IC Design Page 10.3-1 10.3 - EXTENDING THE RESOLUTION OF PARALLEL DIGITAL-ANALOG CONVERTERS TECHNIQUE: Divide the total resolution N into k smaller sub-dacs each with a resolution of N k. Result:

More information

EE 435. Lecture 38. DAC Design Current Steering DACs Charge Redistribution DACs ADC Design

EE 435. Lecture 38. DAC Design Current Steering DACs Charge Redistribution DACs ADC Design EE 435 Lecture 38 DAC Design Current Steering DACs Charge edistribution DACs ADC Design eview from last lecture Current Steering DACs X N Binary to Thermometer ndecoder (all ON) S S N- S N V EF F nherently

More information

Digital to Analog Converters I

Digital to Analog Converters I Advanced Analog Building Blocks 2 Digital to Analog Converters I Albert Comerma (PI) (comerma@physi.uni-heidelberg.de) Course web WiSe 2017 DAC parameters DACs parameters DACs non ideal effects DACs performance

More information

Nyquist-Rate D/A Converters. D/A Converter Basics.

Nyquist-Rate D/A Converters. D/A Converter Basics. Nyquist-Rate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1

More information

EE 435. Lecture 36. Quantization Noise ENOB Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 36. Quantization Noise ENOB Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecture 36 Quantization Noise ENOB Absolute and elative Accuracy DAC Design The String DAC . eview from last lecture. Quantization Noise in ADC ecall: If the random variable f is uniformly distributed

More information

A Gray Code Based Time-to-Digital Converter Architecture and its FPGA Implementation

A Gray Code Based Time-to-Digital Converter Architecture and its FPGA Implementation A Gray Code Based Time-to-Digital Converter Architecture and its FPGA Implementation Congbing Li Haruo Kobayashi Gunma University Gunma University Kobayashi Lab Outline Research Objective & Background

More information

D/A Converters. D/A Examples

D/A Converters. D/A Examples D/A architecture examples Unit element Binary weighted Static performance Component matching Architectures Unit element Binary weighted Segmented Dynamic element matching Dynamic performance Glitches Reconstruction

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics D2 - DAC taxonomy and errors» Static and dynamic parameters» DAC taxonomy» DAC circuits» Error sources AY 2015-16

More information

Research Article Linearity Analysis on a Series-Split Capacitor Array for High-Speed SAR ADCs

Research Article Linearity Analysis on a Series-Split Capacitor Array for High-Speed SAR ADCs Hindawi Publishing Corporation LSI Design olume 1, Article ID 76548, 8 pages doi:1.1155/1/76548 Research Article Linearity Analysis on a Series-Split Capacitor Array for High-Speed SAR ADCs Yan Zhu, 1

More information

Digital Circuits, Binary Numbering, and Logic Gates Cornerstone Electronics Technology and Robotics II

Digital Circuits, Binary Numbering, and Logic Gates Cornerstone Electronics Technology and Robotics II Digital Circuits, Binary Numbering, and Logic Gates Cornerstone Electronics Technology and Robotics II Administration: o Prayer Electricity and Electronics, Section 20.1, Digital Fundamentals: o Fundamentals:

More information

Data Converter Fundamentals

Data Converter Fundamentals Data Converter Fundamentals David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 33 Introduction Two main types of converters Nyquist-Rate Converters Generate output

More information

EE 435. Lecture 26. Data Converters. Data Converter Characterization

EE 435. Lecture 26. Data Converters. Data Converter Characterization EE 435 Lecture 26 Data Converters Data Converter Characterization . Review from last lecture. Data Converter Architectures n DAC R-2R (4-bits) R R R R V OUT 2R 2R 2R 2R R d 3 d 2 d 1 d 0 V REF By superposition:

More information

Slide Set Data Converters. Digital Enhancement Techniques

Slide Set Data Converters. Digital Enhancement Techniques 0 Slide Set Data Converters Digital Enhancement Techniques Introduction Summary Error Measurement Trimming of Elements Foreground Calibration Background Calibration Dynamic Matching Decimation and Interpolation

More information

The influence of parasitic capacitors on SAR ADC characteristics

The influence of parasitic capacitors on SAR ADC characteristics The influence of parasitic capacitors on SAR ADC characteristics DMITRY NORMANOV, DMITRY OSIPOV National Research Nuclear University MEPHI ASIC Lab 59, Moscow, Kashirskoe shosse, 3 RUSSIA simplere@ya.ru

More information

Lecture 10, ATIK. Data converters 3

Lecture 10, ATIK. Data converters 3 Lecture, ATIK Data converters 3 What did we do last time? A quick glance at sigma-delta modulators Understanding how the noise is shaped to higher frequencies DACs A case study of the current-steering

More information

Behavioral Model of Split Capacitor Array DAC for Use in SAR ADC Design

Behavioral Model of Split Capacitor Array DAC for Use in SAR ADC Design Behavioral Model of Split Capacitor Array DAC for Use in SAR ADC Design PC.SHILPA 1, M.H PRADEEP 2 P.G. Scholar (M. Tech), Dept. of ECE, BITIT College of Engineering, Anantapur Asst Professor, Dept. of

More information

BEHAVIORAL MODEL OF SPLIT CAPACITOR ARRAY DAC FOR USE IN SAR ADC DESIGN

BEHAVIORAL MODEL OF SPLIT CAPACITOR ARRAY DAC FOR USE IN SAR ADC DESIGN BEHAVIORAL MODEL OF SPLIT CAPACITOR ARRAY DAC FOR USE IN SAR ADC DESIGN 1 P C.SHILPA, 2 M.H PRADEEP 1 P.G. Scholar (M. Tech), Dept. of ECE, BITIT College of Engineering, Anantapur 2 Asst Professor, Dept.

More information

Pipelined multi step A/D converters

Pipelined multi step A/D converters Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India 04 Nov 2006 Motivation for multi step A/D conversion Flash converters: Area and power consumption increase

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics D3 - A/D converters» Error taxonomy» ADC parameters» Structures and taxonomy» Mixed converters» Origin of errors 12/05/2011-1

More information

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors Zhiheng Wei 1a), Keita Yasutomi ) and Shoji Kawahito b) 1 Graduate School of Science and Technology,

More information

FUNCTIONALS OF BROWNIAN BRIDGES ARISING IN THE CURRENT MISMATCH IN D/A CONVERTERS

FUNCTIONALS OF BROWNIAN BRIDGES ARISING IN THE CURRENT MISMATCH IN D/A CONVERTERS Probability in the Engineering and Informational Sciences, 3, 009, 149 17. Printed in the U.S.A. doi:10.1017/s069964809000114 FUNCTIONALS OF BROWNIAN BRIDGES ARISING IN THE CURRENT MISMATCH IN D/A CONVERTERS

More information

Digitally Assisted A/D Conversion- Trading off Analog Precision for Computing Power

Digitally Assisted A/D Conversion- Trading off Analog Precision for Computing Power Digitally Assisted A/D Conversion- Trading off Analog Precision for Computing Power UCB IC-Seminar November 25, 2002 Boris Murmann Prof. Bernhard E. Boser Outline Motivation Research Overview Analog Errors

More information

EE 435. Lecture 26. Data Converters. Differential Nonlinearity Spectral Performance

EE 435. Lecture 26. Data Converters. Differential Nonlinearity Spectral Performance EE 435 Lecture 26 Data Converters Differential Nonlinearity Spectral Performance . Review from last lecture. Integral Nonlinearity (DAC) Nonideal DAC INL often expressed in LSB INL = X k INL= max OUT OF

More information

High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments

High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments Erik Jonsson School of Engineering & Computer Science High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments Yun Chiu Erik Jonsson Distinguished Professor Texas Analog

More information

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1 Lecture 34 Characterization of DACs and Current Scaling DACs (5//) Page 34 LECTURE 34 CHARACTERZATON OF DACS AND CURRENT SCALNG DACS LECTURE ORGANZATON Outline ntroduction Static characterization of DACs

More information

EE 435. Lecture 26. Data Converters. Data Converter Characterization

EE 435. Lecture 26. Data Converters. Data Converter Characterization EE 435 Lecture 26 Data Converters Data Converter Characterization . Review from last lecture. Data Converter Architectures Large number of different circuits have been proposed for building data converters

More information

Successive Approximation ADCs

Successive Approximation ADCs Department of Electrical and Computer Engineering Successive Approximation ADCs Vishal Saxena Vishal Saxena -1- Successive Approximation ADC Vishal Saxena -2- Data Converter Architectures Resolution [Bits]

More information

8-bit 50ksps ULV SAR ADC

8-bit 50ksps ULV SAR ADC 8-bit 50ksps ULV SAR ADC Fredrik Hilding Rosenberg Master of Science in Electronics Submission date: June 2015 Supervisor: Trond Ytterdal, IET Norwegian University of Science and Technology Department

More information

Analog / Mixed-Signal Circuit Design Based on Mathematics

Analog / Mixed-Signal Circuit Design Based on Mathematics 群馬大学 小林研究室 S23-1 Analog Circuits III 10:15-10:45 AM Oct. 28, 2016 (Fri) Analog / Mixed-Signal Circuit Design Based on Mathematics Haruo Kobayashi Haijun Lin Gunma University, Japan Xiamen University of

More information

Pipelined A/D Converters

Pipelined A/D Converters EE247 Lecture 2 AC Converters Pipelined ACs EECS 247 Lecture 2: ata Converters 24 H.K. Page Pipelined A/ Converters Ideal operation Errors and correction Redundancy igital calibration Implementation Practical

More information

Multi-bit Cascade ΣΔ Modulator for High-Speed A/D Conversion with Reduced Sensitivity to DAC Errors

Multi-bit Cascade ΣΔ Modulator for High-Speed A/D Conversion with Reduced Sensitivity to DAC Errors Multi-bit Cascade ΣΔ Modulator for High-Speed A/D Conversion with Reduced Sensitivity to DAC Errors Indexing terms: Multi-bit ΣΔ Modulators, High-speed, high-resolution A/D conversion. This paper presents

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA September 23, 2009 1 / 18 1 Sampling 2 Quantization 3 Digital-to-Analog Converter 4 Analog-to-Digital Converter

More information

Edited By : Engr. Muhammad Muizz bin Mohd Nawawi

Edited By : Engr. Muhammad Muizz bin Mohd Nawawi Edited By : Engr. Muhammad Muizz bin Mohd Nawawi In an electronic circuit, a combination of high voltage (+5V) and low voltage (0V) is usually used to represent a binary number. For example, a binary number

More information

EE 435. Lecture 29. Data Converters. Linearity Measures Spectral Performance

EE 435. Lecture 29. Data Converters. Linearity Measures Spectral Performance EE 435 Lecture 9 Data Converters Linearity Measures Spectral Performance Linearity Measurements (testing) Consider ADC V IN (t) DUT X IOUT V REF Linearity testing often based upon code density testing

More information

EE 435. Lecture 28. Data Converters Linearity INL/DNL Spectral Performance

EE 435. Lecture 28. Data Converters Linearity INL/DNL Spectral Performance EE 435 Lecture 8 Data Converters Linearity INL/DNL Spectral Performance Performance Characterization of Data Converters Static characteristics Resolution Least Significant Bit (LSB) Offset and Gain Errors

More information

Nyquist-Rate A/D Converters

Nyquist-Rate A/D Converters IsLab Analog Integrated ircuit Design AD-51 Nyquist-ate A/D onverters כ Kyungpook National University IsLab Analog Integrated ircuit Design AD-1 Nyquist-ate MOS A/D onverters Nyquist-rate : oversampling

More information

Summary Last Lecture

Summary Last Lecture EE247 Lecture 19 ADC Converters Sampling (continued) Sampling switch charge injection & clock feedthrough Complementary switch Use of dummy device Bottom-plate switching Track & hold T/H circuits T/H combined

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. References

EE241 - Spring 2000 Advanced Digital Integrated Circuits. References EE241 - Spring 2000 Advanced Digital Integrated Circuits Lecture 26 Memory References Rabaey, Digital Integrated Circuits Memory Design and Evolution, VLSI Circuits Short Course, 1998.» Gillingham, Evolution

More information

A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC

A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC A 74.9 db SNDR 1 MHz Bandwidth 0.9 mw Delta-Sigma Time-to-Digital Converter Using Charge Pump and SAR ADC Anugerah Firdauzi, Zule Xu, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology,

More information

Unit 3 Session - 9 Data-Processing Circuits

Unit 3 Session - 9 Data-Processing Circuits Objectives Unit 3 Session - 9 Data-Processing Design of multiplexer circuits Discuss multiplexer applications Realization of higher order multiplexers using lower orders (multiplexer trees) Introduction

More information

Top-Down Design of a xdsl 14-bit 4MS/s Σ Modulator in Digital CMOS Technology

Top-Down Design of a xdsl 14-bit 4MS/s Σ Modulator in Digital CMOS Technology Top-Down Design of a xdsl -bit 4MS/s Σ Modulator in Digital CMOS Technology R. del Río, J.M. de la Rosa, F. Medeiro, B. Pérez-Verdú, and A. Rodríguez-Vázquez Instituto de Microelectrónica de Sevilla CNM-CSIC

More information

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory SRAM Design Chapter Overview Classification Architectures The Core Periphery Reliability Semiconductor Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

A DFT Approach for Diagnosis and Process Variation-Aware Structural Test of Thermometer Coded Current Steering DACs

A DFT Approach for Diagnosis and Process Variation-Aware Structural Test of Thermometer Coded Current Steering DACs A DFT Approach for Diagnosis and Process Variation-Aware Structural Test of Thermometer Coded Current Steering DACs Abstract A design for test (DFT) hardware is proposed to increase the controllability

More information

CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April

CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April Objective - Get familiar with the Xilinx ISE webpack tool - Learn how to design basic combinational digital components -

More information

EE 435. Lecture 25. Data Converters. Architectures. Characterization

EE 435. Lecture 25. Data Converters. Architectures. Characterization EE 435 Lecture 5 Data Coverters Architectures Characterizatio . eview from last lecture. Data Coverters Types: A/D (Aalog to Digital) Coverts Aalog Iput to a Digital Output D/A (Digital to Aalog) Coverts

More information

EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2006 H.K. Page 1. Summary Last Lecture

EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2006 H.K. Page 1. Summary Last Lecture EE247 Lecture 19 ADC Converters Sampling (continued) Clock boosters (continued) Sampling switch charge injection & clock feedthrough Complementary switch Use of dummy device Bottom-plate switching Track

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

EE 505 Lecture 11. Statistical Circuit Modeling. R-string Example Offset Voltages

EE 505 Lecture 11. Statistical Circuit Modeling. R-string Example Offset Voltages EE 505 Lecture 11 Statistical Circuit Modeling -string Example Offset oltages eview from previous lecture: Current Steering DAC Statistical Characterization Binary Weighted IL b= 1 1 IGk 1 1 I

More information

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement

Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Low-Noise Sigma-Delta Capacitance-to-Digital Converter for Sub-pF Capacitive Sensors with Integrated Dielectric Loss Measurement Markus Bingesser austriamicrosystems AG Rietstrasse 4, 864 Rapperswil, Switzerland

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

EE 505 Lecture 7. Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling

EE 505 Lecture 7. Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling EE 505 Lecture 7 Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling . Review from last lecture. MatLab comparison: 512 Samples

More information

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution . (a) (i) ( B C 5) H (A 2 B D) H S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution ( B C 5) H (A 2 B D) H = (FFFF 698) H (ii) (2.3) 4 + (22.3) 4 2 2. 3 2. 3 2 3. 2 (2.3)

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

A DFT Approach for Diagnosis and Process Variation-Aware Structural Test of Thermometer Coded Current Steering DACs

A DFT Approach for Diagnosis and Process Variation-Aware Structural Test of Thermometer Coded Current Steering DACs A DFT Approach for Diagnosis and Process Variation-Aware Structural Test of Thermometer Coded Current Steering DACs 502 Rasit Onur Topaloglu and Alex Orailoglu University of California San Diego Computer

More information

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of 27 WORKBOOK Detailed Eplanations of Try Yourself Questions Electrical Engineering Digital Electronics Number Systems and Codes T : Solution Converting into decimal number system 2 + 3 + 5 + 8 2 + 4 8 +

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 4, 10th October

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 4, 10th October Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 216/17 Aula 4, 1th October ADC Amplitude Quantization: ADC Digital Output Formats V REF +FS RANGE (SPAN) OR FS ANALOG INPUT

More information

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL Kevin Wang 1, Ashok Swaminathan 1,2, Ian Galton 1 1 University of California at San Diego, La Jolla, CA 2 NextWave

More information

Deep Submicron CMOS and the New Era of Creativity in Analog Design

Deep Submicron CMOS and the New Era of Creativity in Analog Design Deep Submicron CMOS and the New Era of Creativity in Analog Design John A. McNeill Worcester Polytechnic Institute (WPI), Worcester, MA mcneill@ece.wpi.edu McNEILL: CREATIVITY IN DSM CMOS MAY 3, 2006 Overview

More information

Introduction to CMOS VLSI Design Lecture 1: Introduction

Introduction to CMOS VLSI Design Lecture 1: Introduction Introduction to CMOS VLSI Design Lecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Introduction Integrated circuits: many transistors

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017 UNIVERSITY OF BOLTON TW35 SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER 2-2016/2017 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each) Subject Code: 17333 Model Answer Page 1/ 27 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna Today! Memory " Classification " ROM Memories " RAM Memory

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.2-3, CISW CJSW 88 Line between Eqs. (3.3-2)

More information

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1(a) Attempt any SIX of the following : [12]

More information

Digital Circuits ECS 371

Digital Circuits ECS 371 Digital Circuits ECS 371 Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 18 Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30 1 Announcement Reading Assignment: Chapter 7: 7-1,

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 26: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Digital Fundamentals CHAPTER 8 Counters Slide 2 Counting

More information

EE 230 Lecture 43. Data Converters

EE 230 Lecture 43. Data Converters EE 230 Lecture 43 Data Converters Review from Last Time: Amplitude Quantization Unwanted signals in the output of a system are called noise. Distortion Smooth nonlinearities Frequency attenuation Large

More information

DATASHEET AD7520, AD7521. Features. Ordering Information. Pinouts. 10-Bit, 12-Bit, Multiplying D/A Converters. FN3104 Rev.4.

DATASHEET AD7520, AD7521. Features. Ordering Information. Pinouts. 10-Bit, 12-Bit, Multiplying D/A Converters. FN3104 Rev.4. DATASHEET AD720, AD72 0Bit, 2Bit, Multiplying D/A Converters The AD720 and AD72 are monolithic, high accuracy, low cost 0bit and 2bit resolution, multiplying digitaltoanalog converters (DAC). Intersil

More information

Measurement and Modeling of MOS Transistor Current Mismatch in Analog IC s

Measurement and Modeling of MOS Transistor Current Mismatch in Analog IC s Measurement and Modeling of MOS Transistor Current Mismatch in Analog IC s Eric Felt Amit Narayan Alberto Sangiovanni-Vincentelli Department of Electrical Engineering and Computer Sciences University of

More information

A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture

A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture Youngchun Kim Electrical and Computer Engineering The University of Texas Wenjuan Guo Intel Corporation Ahmed H Tewfik Electrical and

More information

NPSAT1 Solar Cell Measurement System

NPSAT1 Solar Cell Measurement System NPSAT1 Solar Cell Measurement System Presented by Captain John Salmon, USMC Space Systems Academic Group 777 Dyer Rd., Bldg. 233 Code (SP/Sd), Rm. 125 Monterey, CA 93943 (831) 656-7521 Topics NPSAT1 Overview

More information

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE37 Advanced Analog Circuits INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com NLCOTD: Level Translator VDD > VDD2, e.g. 3-V logic? -V logic VDD < VDD2, e.g. -V logic? 3-V

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 14 EXAMINATION Model Answer

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 14 EXAMINATION Model Answer MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC 27001 2005 Certified) SUMMER 14 EXAMINATION Model Answer Subject Code : 17320 Page No: 1/34 Important Instructions to examiners: 1)

More information

Early Monolithic Pipelined ADCs

Early Monolithic Pipelined ADCs Early Monolithic Pipelined ADCs Stephen H. Lewis Solid-State Circuits Research Laboratory Department of Electrical and Computer Engineering University of California, Davis CA USA 1 Pipelining Stage 1 Stage

More information

Experimental Verification of a Timing Measurement Circuit With Self-Calibration

Experimental Verification of a Timing Measurement Circuit With Self-Calibration 19 th IEEE IMS3TW, Porto Alegre, Brazil Sept. 17, 2014 Experimental Verification of a Timing Measurement Circuit With Self-Calibration Kateshi Chujyo, Daiki Hirabayashi, Kentaroh Katoh Conbing Li, Yutaroh

More information

Shift Register Counters

Shift Register Counters Shift Register Counters Shift register counter: a shift register with the serial output connected back to the serial input. They are classified as counters because they give a specified sequence of states.

More information

An Approximate Parallel Multiplier with Deterministic Errors for Ultra-High Speed Integrated Optical Circuits

An Approximate Parallel Multiplier with Deterministic Errors for Ultra-High Speed Integrated Optical Circuits An Approximate Parallel Multiplier with Deterministic Errors for Ultra-High Speed Integrated Optical Circuits Jun Shiomi 1, Tohru Ishihara 1, Hidetoshi Onodera 1, Akihiko Shinya 2, Masaya Notomi 2 1 Graduate

More information

Chapter 8. Low-Power VLSI Design Methodology

Chapter 8. Low-Power VLSI Design Methodology VLSI Design hapter 8 Low-Power VLSI Design Methodology Jin-Fu Li hapter 8 Low-Power VLSI Design Methodology Introduction Low-Power Gate-Level Design Low-Power Architecture-Level Design Algorithmic-Level

More information

5 Binary to Gray and Gray to Binary converters:

5 Binary to Gray and Gray to Binary converters: 5 Binary to Gray and Gray to Binary converters: Aim: To realize a binary to Grey and Grey Code to binary Converter. Components Required: Digital IC trainer kit, IC 7486 Quad 2 input EXOR The reflected

More information

NJW CHANNEL ELECTRONIC VOLUME

NJW CHANNEL ELECTRONIC VOLUME 2-CHANNEL ELECTRONIC VOLUME GENERAL DESCRIPTION NJW9 is a two channel electronic volume IC. It is included output buffer amplifier and also resistor output terminal for using external amplifier to customize

More information

Pipelined ADC Design. Sources of Errors. Robust Performance of Pipelined ADCs

Pipelined ADC Design. Sources of Errors. Robust Performance of Pipelined ADCs Pipelined ADC Design Sources of Errors Robust Perforance of Pipelined ADCs 1 Review Standard Pipelined ADC Architecture V ref CLK V in S/H Stage 1 Stage 2 Stage 3 Stage k Stage -1 Stage n 1 n 2 n 3 n k

More information

Binary Multipliers. Reading: Study Chapter 3. The key trick of multiplication is memorizing a digit-to-digit table Everything else was just adding

Binary Multipliers. Reading: Study Chapter 3. The key trick of multiplication is memorizing a digit-to-digit table Everything else was just adding Binary Multipliers The key trick of multiplication is memorizing a digit-to-digit table Everything else was just adding 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 4 6 8 2 4 6 8 3 3 6 9 2 5 8 2 24 27 4 4 8 2 6

More information

A Modeling Environment for the Simulation and Design of Charge Redistribution DACs Used in SAR ADCs

A Modeling Environment for the Simulation and Design of Charge Redistribution DACs Used in SAR ADCs 204 UKSim-AMSS 6th International Conference on Computer Modelling and Simulation A Modeling Environment for the Simulation and Design of Charge Redistribution DACs Used in SAR ADCs Stefano Brenna, Andrea

More information

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II CSE241 VLSI Digital Circuits Winter 2003 Lecture 07: Timing II CSE241 L3 ASICs.1 Delay Calculation Cell Fall Cap\Tr 0.05 0.2 0.5 0.01 0.02 0.16 0.30 0.5 2.0 0.04 0.32 0.178 0.08 0.64 0.60 1.20 0.1ns 0.147ns

More information

Minimization techniques

Minimization techniques Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NSIK - 4 Minimization techniques By Prof. nand N. Gharu ssistant Professor Computer Department Combinational Logic Circuits Introduction Standard representation

More information

Digital Logic and Design (Course Code: EE222) Lecture 1 5: Digital Electronics Fundamentals. Evolution of Electronic Devices

Digital Logic and Design (Course Code: EE222) Lecture 1 5: Digital Electronics Fundamentals. Evolution of Electronic Devices Indian Institute of Technolog Jodhpur, Year 207 208 Digital Logic and Design (Course Code: EE222) Lecture 5: Digital Electronics Fundamentals Course Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

STATISTICAL analog-to-digital converters (ADCs) refer

STATISTICAL analog-to-digital converters (ADCs) refer 538 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 62, NO. 6, JUNE 2015 Statistical ADC Enhanced by Pipelining and Subranging Sen Tao, Student Member, IEEE, Emmanuel Abbe, Member, IEEE,

More information

Analog to Digital Conversion. Gary J. Minden October 1, 2013

Analog to Digital Conversion. Gary J. Minden October 1, 2013 Analog to Digital Conversion Gary J. Minden October 1, 2013 1 Mapping Input Voltage to Digital Value Vhigh 0.999 1,023 Vin Vlow 0.0 0 2 Analog to Digital Conversion Analog -- A voltage between Vlow and

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata nd Ed. (0/9/07) Page Errata of CMOS Analog Circuit Design nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 8 Line 4 after figure 3.3, CISW CJSW 0 Line from bottom: F F 5 Replace

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Original slides from Gregory Byrd, North Carolina State University Modified by C. Wilcox, M. Strout, Y. Malaiya Colorado State University Computing Layers Problems Algorithms

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information

DAC10* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017

DAC10* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017 * PRODUCT PAGE QUICK LINKS Last Content Update: 0/3/07 COMPARABLE PARTS View a parametric search of comparable parts. DOCUMENTATION Data Sheet : 0-Bit Current-Out DAC Data Sheet REFERENCE MATERIALS Solutions

More information

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018 DIGITAL ELECTRONICS SYSTEM DESIGN LL 2018 PROFS. IRIS BAHAR & ROD BERESFORD NOVEMBER 9, 2018 LECTURE 19: BINARY ADDITION, UNSIGNED BINARY NUMBERS For the binary number b n-1 b n-2 b 1 b 0. b -1 b -2 b

More information