1. The horizontal beam represented in Examination Figure 6 carries three loads P 1. and R 2

Size: px
Start display at page:

Download "1. The horizontal beam represented in Examination Figure 6 carries three loads P 1. and R 2"

Transcription

1 Student ID: Exam: RR - Engineering Mechanics, Part 2 When you have completed your exam and reviewed your answers, click Submit Exam. Answers will not be recorded until you hit Submit Exam. If you need to exit before completing the exam, click Cancel Exam. Questions 1 to 20: Select the best answer to each question. Note that a question and its answers may be split across a page break, so be sure that you have seen the entire question and all the answers before choosing an answer. 1. The horizontal beam represented in Examination Figure 6 carries three loads P 1, P 2, and P 3, which act vertically downward and have the magnitudes and positions indicated. The beam rests on two supports at A and B, which are so located that the horizontal distance between the lines of action of the reactions R 1 and R 2 is 24 ft. The magnitude of the reaction R 1 is A. 15,220 lb. B. 15,670 lb. C. 14,330 lb. D. 14,780 lb.

2 2. As indicated in Examination Figure 1, a wooden box containing several objects is supported on a horizontal surface. The total weight of the box and its contents is 150 lb. The horizontal force P required to start the box sliding along this surface is 60 lb. If additional objects weighing 50 lb were placed in the box, the magnitude of the horizontal force required to slide the box along the supporting surface would be A. 60 lb. B. 70 lb. C. 90 lb. D. 80 lb. 3. A body that weighs 50 lb is placed in contact with an inclined plane surface. The coefficient of friction between the surfaces is 0.25 and the angle between the inclined surface and the horizontal reference plane is 28º. In order to keep the body from sliding, by using an applied force whose line of action is parallel to the inclined supporting surface, what is the least permissible magnitude of force? A. 6.3 lb B. 14 lb C. 50 lb D lb 4. A body that weighs 50 lb is placed in contact with an inclined plane surface. The coefficient of friction between the surfaces in contact is If the angle between the inclined surface and a horizontal reference plane is 28º, and if the body is to be prevented from sliding by an applied force whose line of action is parallel to the inclined supporting surface, what is the least permissible magnitude of the force? A lb B lb C. 125 lb D lb

3 5. In Examination Figure 4, the magnitude of the force F 4 and its direction along its line of action are A. 28,800 lb away from P B. 28,800 lb toward P C. 24,400 lb toward P D. 24,400 lb away from P 6. What equation is generally used when it is desirable to consider the resultant moment of the forces acting on a body at rest? A. F 1 = 0 B. F 0 = 1 C. Z 0 = 1 D. M 0 = 0 7. A body that weighs 50 lb is placed in contact with an inclined plane surface. The coefficient of friction between the surfaces in contact is If the angle between the inclined surface and a horizontal reference plane is 28º, what would be the angle of repose for the body and the material used for the surface? A. 17º 00' B. 20º 00' C. 14º 00' D. 30º 00' 8. When solving a practical problem where the magnitudes of two forces are unknown, your calculations can be simplified if one of the reference axes coincides with the line of action of one of the unknown forces and the other reference axis is A. equal to zero. B. vertical to that line of action. C. perpendicular to that line of action. D. horizontal to that line of action.

4 9. As indicated in Examination Figure 5, a body having the shape of a rectangular prism is supported on a horizontal surface. The weight W of the body is 150 lb, and the body is acted upon by a horizontal force P whose magnitude and location are as shown. If the magnitude of the friction force is just sufficient to prevent sliding of the body along the supporting surface, the horizontal distance between the line of action of the weight of the body and the line of action of the total vertical force N exerted on the body by the supporting surface would be A ft. B ft. C ft. D ft. 10. Assume that the conditions are the same as in Examination Figure 8 and question 15, except that the line of action of the force applied to push the body upward along the inclined surface is to be parallel to that surface instead of horizontal. The magnitude of the smallest inclined force that would start the body moving would be A. 58 lb. B. 70 lb. C. 64 lb. D. 54 lb.

5 11. For the beam in Examination Figure 9, the magnitude of the inclined reaction R 1 at A would be A lb. B lb. C lb. D lb. 12. Examination Figure 9 represents a beam that is supported at A and B. The characteristics of the loads P 1 and P 2 that are applied to the beam and the positions of their lines of action are as indicated. If it is assumed that the line of action of the reaction R 2 at B will be vertical, the magnitude of that reaction would be A lb. B lb. C lb. D lb.

6 13. As indicated in Examination Figure 8, a body that weighs 80 lb is to be pushed upward along a plane surface that is inclined so that the angle between a horizontal reference line and the surface is 30º. If the coefficient of friction for the materials of the body and the inclined surface is 0.2, the magnitude of the smallest horizontal force P that would start the body moving (rounded off to the nearest pound) would be A. 52 lb. B. 70 lb. C. 56 lb. D. 34 lb. 14. As indicated in Examination Figure 7, a body that weighs 200 lb is to be supported on a plane surface, which is inclined so that the angle between a horizontal reference plane and the surface is 35º. If the coefficient of friction for the materials used for the body and the surface is 0.3 and the body is to be prevented from sliding down the surface by a force P whose line of action is parallel to the surface, the least magnitude of the force P (rounded off to the nearest pound) should be A. 49 lb. B. 115 lb. C. 66 lb. D. 82 lb.

7 15. The condition that must exist when a body is at rest is that the magnitude of the resultant of forces acting on the body must be A. external. B. 20 percent. C. dependent upon the incline. D A sign is suspended from a supporting frame in the manner indicated in Examination Figure 2. The frame consists of two vertical posts and a horizontal beam, with the sign suspended from this beam by means of two vertical bars. The total weight of the sign is 400 lb and the weight of each of the bars is 50 lb. If each of these bars carries one-half of the total weight of the sign, the force exerted by the left bar on the fixture is A. 250 lb. B. 200 lb. C. 150 lb. D. 225 lb.

8 17. Examination Figure 3 gives the dimensions of the parts of a bracket that supports a body with the aid of a vertical cable. The bracket is composed of a horizontal bar and an inclined bar, and these bars are rigidly fastened to the wall of the building by means of upper and lower fixtures. The weight of the body is 3000 lb, and the weights of the cable and the bars may be neglected. The magnitude of the reaction R 1 exerted by the lower fixture on the horizontal bar is A lb. B lb. C lb. D lb.

9 18. Examination Figure 4 represents a balanced system consisting of four concurrent forces F 1, F 2, F 3, and F 4. The positions of the lines of action of the forces are as shown. The line of action of F 1 is vertical, and that of F 4 is horizontal. The diagram also includes the magnitudes of the forces F 1 and F 2 and the directions of these two forces along their lines of action. The magnitude of the force F 3 and its direction along its line of action are A. 30,200 lb away from P. B. 19,780 lb away from P. C. 19,780 lb toward P. D. 30,200 lb toward P. 19. What will be the result when the applied horizontal force and the friction force form a couple, the lines of action are parallel, and the magnitudes are equal? A. They will act in the same direction. B. They will create friction. C. They will cause the body to rotate. D. They will create a mutual force.

10 20. As indicated in Examination Figure 10, a body that is composed of the three parts AB, BC, and CD (which are rigidly connected to one another) is supported at the points A and B and is subjected to two loads P 1 and P 2 whose characteristics and locations are as shown. If it is assumed that the line of action of the reaction R 1 at B is vertical, the magnitude of that reaction would be A. 498 lb. B. 578 lb. C. 658 lb. D. 738 lb. End of exam

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved.

STATICS. FE Review. Statics, Fourteenth Edition R.C. Hibbeler. Copyright 2016 by Pearson Education, Inc. All rights reserved. STATICS FE Review 1. Resultants of force systems VECTOR OPERATIONS (Section 2.2) Scalar Multiplication and Division VECTOR ADDITION USING EITHER THE PARALLELOGRAM LAW OR TRIANGLE Parallelogram Law: Triangle

More information

Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC.

Name. ME 270 Fall 2005 Final Exam PROBLEM NO. 1. Given: A distributed load is applied to the top link which is, in turn, supported by link AC. Name ME 270 Fall 2005 Final Exam PROBLEM NO. 1 Given: A distributed load is applied to the top link which is, in turn, supported by link AC. Find: a) Draw a free body diagram of link BCDE and one of link

More information

OCR Maths M2. Topic Questions from Papers. Statics

OCR Maths M2. Topic Questions from Papers. Statics OR Maths M2 Topic Questions from Papers Statics PhysicsndMathsTutor.com 51 PhysicsndMathsTutor.com uniformrod of length 60 cm and weight 15 N is freely suspended from its end. Theend of the rod is attached

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

The polar coordinates of a point are given. Find the rectangular coordinates of the point. 1) 7, 2 3 D) - 7 2, A) - 7 2, 7 3

The polar coordinates of a point are given. Find the rectangular coordinates of the point. 1) 7, 2 3 D) - 7 2, A) - 7 2, 7 3 Ch 9. Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The polar coordinates of a point are given. Find the rectangular coordinates

More information

Vector Mechanics: Statics

Vector Mechanics: Statics PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

TEST REPORT. Question file: P Copyright:

TEST REPORT. Question file: P Copyright: Date: February-12-16 Time: 2:00:28 PM TEST REPORT Question file: P12-2006 Copyright: Test Date: 21/10/2010 Test Name: EquilibriumPractice Test Form: 0 Test Version: 0 Test Points: 138.00 Test File: EquilibriumPractice

More information

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A.

3D Force Couple System and Resultant. Q.No.1: Replace the force system by an equivalent force and couple moment at point A. 3D Force Couple System and Resultant Q.No.1: Replace the force system by an equivalent force and couple moment at point A. Q.No.2: Handle forces F1 and F2 are applied to the electric drill. Replace this

More information

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads.

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads. 6.6 FRAMES AND MACHINES APPLICATIONS Frames are commonly used to support various external loads. How is a frame different than a truss? How can you determine the forces at the joints and supports of a

More information

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by Unit 12 Centroids Page 12-1 The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by (12-5) For the area shown

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

EQUATIONS OF MOTION: RECTANGULAR COORDINATES

EQUATIONS OF MOTION: RECTANGULAR COORDINATES EQUATIONS OF MOTION: RECTANGULAR COORDINATES Today s Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-Class

More information

5. Plane Kinetics of Rigid Bodies

5. Plane Kinetics of Rigid Bodies 5. Plane Kinetics of Rigid Bodies 5.1 Mass moments of inertia 5.2 General equations of motion 5.3 Translation 5.4 Fixed axis rotation 5.5 General plane motion 5.6 Work and energy relations 5.7 Impulse

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

More information

Coefficient of Friction

Coefficient of Friction HOUSTON COMMUNITY COLLEGE SYSTEMS SOUTHWEST COLLEGE COLLEGE PHYSICS I PHYS 1401 PRE LAB QUESTIONS Due before lab begins. Coefficient of Friction 1) Explain briefly the different types of frictional forces.

More information

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. READING

More information

Physics, Chapter 3: The Equilibrium of a Particle

Physics, Chapter 3: The Equilibrium of a Particle University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 3: The Equilibrium of a Particle

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. APPLICATIONS

More information

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 2 3 Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from the

More information

MOMENT OF A FORCE ABOUT A POINT

MOMENT OF A FORCE ABOUT A POINT MOMENT OF A FORCE ABOUT A POINT The tendency of a body to rotate about an axis passing through a specific point O when acted upon by a force (sometimes called a torque). 1 APPLICATIONS A torque or moment

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Faculty of Engineering and Department of Physics Engineering Physics 131 Final Examination Saturday April 21, 2018; 14:00 pm 16:30 pm

Faculty of Engineering and Department of Physics Engineering Physics 131 Final Examination Saturday April 21, 2018; 14:00 pm 16:30 pm Faculty of Engineering and Department of Physics Engineering Physics 131 Final Examination Saturday April 21, 2018; 14:00 pm 16:30 pm 1. Closed book exam. No notes or textbooks allowed. 2. Formula sheets

More information

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK Sub. Code: CE1151 Sub. Name: Engg. Mechanics UNIT I - PART-A Sem / Year II / I 1.Distinguish the following system of forces with a suitable

More information

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j

F R. + F 3x. + F 2y. = (F 1x. j + F 3x. i + F 2y. i F 3y. i + F 1y. j F 2x. ) i + (F 1y. ) j. F 2x. F 3y. = (F ) i + (F ) j. ) j General comments: closed book and notes but optional one page crib sheet allowed. STUDY: old exams, homework and power point lectures! Key: make sure you can solve your homework problems and exam problems.

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

Eng Sample Test 4

Eng Sample Test 4 1. An adjustable tow bar connecting the tractor unit H with the landing gear J of a large aircraft is shown in the figure. Adjusting the height of the hook F at the end of the tow bar is accomplished by

More information

Announcements. Equilibrium of a Rigid Body

Announcements. Equilibrium of a Rigid Body Announcements Equilibrium of a Rigid Body Today s Objectives Identify support reactions Draw a free body diagram Class Activities Applications Support reactions Free body diagrams Examples Engr221 Chapter

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in There was no consideration of what might influence that motion. Two main factors need to be addressed to answer questions

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

Equilibrium & Elasticity

Equilibrium & Elasticity PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

More information

Forces of Friction Contact between bodies with a relative velocity produces friction opposite

Forces of Friction Contact between bodies with a relative velocity produces friction opposite Forces of Friction Contact between bodies with a relative velocity produces friction Friction is proportional to the normal force The force of static friction is generally greater than the force of kinetic

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318 Introduction to Mechanics, Heat, and Sound /FIC 318 Lecture III Motion in two dimensions projectile motion The Laws of Motion Forces, Newton s first law Inertia, Newton s second law Newton s third law

More information

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections )

NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections ) NEWTON S LAWS OF MOTION (EQUATION OF MOTION) (Sections 13.1-13.3) Today s Objectives: Students will be able to: a) Write the equation of motion for an accelerating body. b) Draw the free-body and kinetic

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

Sample 5. Determine the tension in the cable and the horizontal and vertical components of reaction at the pin A. Neglect the size of the pulley.

Sample 5. Determine the tension in the cable and the horizontal and vertical components of reaction at the pin A. Neglect the size of the pulley. Sample 1 The tongs are designed to handle hot steel tubes which are being heat-treated in an oil bath. For a 20 jaw opening, what is the minimum coefficient of static friction between the jaws and the

More information

is the study of and. We study objects. is the study of and. We study objects.

is the study of and. We study objects. is the study of and. We study objects. Static Equilibrium Translational Forces Torque Unit 4 Statics Dynamics vs Statics is the study of and. We study objects. is the study of and. We study objects. Recall Newton s First Law All objects remain

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester.

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Ws11 Reg. No. : Question Paper Code : 27275 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Civil Engineering GE 6253 ENGINEERING MECHANICS (Common to all branches except Electrical

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS

EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Today s Objectives: Students will be able to: EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS a) Identify support reactions, and, b) Draw a free-body diagram. In-Class Activities: Check Homework Reading

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1 of 6 Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1. As a practical matter, determining design loads on structural members involves several

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time. P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF MECHANICAL ENGINEERING BRANCH: MECHANICAL YEAR / SEMESTER: I / II UNIT 1 PART- A 1. State Newton's three laws of motion? 2.

More information

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied.

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied. FRICTION 1 Introduction In preceding chapters, it was assumed that surfaces in contact were either frictionless (surfaces could move freely with respect to each other) or rough (tangential forces prevent

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

Chapter -4- Force System Resultant

Chapter -4- Force System Resultant Ishik University / Sulaimani Civil Engineering Department Chapter -4- Force System Resultant 1 2 1 CHAPTER OBJECTIVES To discuss the concept of the moment of a force and show how to calculate it in two

More information

Physics 125, Spring 2006 Monday, May 15, 8:00-10:30am, Old Chem 116. R01 Mon. 12:50 R02 Wed. 12:50 R03 Mon. 3:50. Final Exam

Physics 125, Spring 2006 Monday, May 15, 8:00-10:30am, Old Chem 116. R01 Mon. 12:50 R02 Wed. 12:50 R03 Mon. 3:50. Final Exam Monday, May 15, 8:00-10:30am, Old Chem 116 Name: Recitation section (circle one) R01 Mon. 12:50 R02 Wed. 12:50 R03 Mon. 3:50 Closed book. No notes allowed. Any calculators are permitted. There are no trick

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

STATIC EQUILIBRIUM. Purpose

STATIC EQUILIBRIUM. Purpose Purpose Theory STATIC EQUILIBRIUM a. To understand torque by experimentally measuring and manipulating them. b. To determine static equilibrium conditions by different torques that operate on a system.

More information

Final Exam - Spring

Final Exam - Spring EM121 Final Exam - Spring 2011-2012 Name : Section Number : Record all your answers to the multiple choice problems (1-15) by filling in the appropriate circle. All multiple choice answers will be graded

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and b) Recognize two-force members. In-Class

More information

Mechanics Answers to Examples B (Momentum) - 1 David Apsley

Mechanics Answers to Examples B (Momentum) - 1 David Apsley TOPIC B: MOMENTUM ANSWERS SPRING 2019 (Full worked answers follow on later pages) Q1. (a) 2.26 m s 2 (b) 5.89 m s 2 Q2. 8.41 m s 2 and 4.20 m s 2 ; 841 N Q3. (a) 1.70 m s 1 (b) 1.86 s Q4. (a) 1 s (b) 1.5

More information

2016 ENGINEERING MECHANICS

2016 ENGINEERING MECHANICS Set No 1 I B. Tech I Semester Regular Examinations, Dec 2016 ENGINEERING MECHANICS (Com. to AE, AME, BOT, CHEM, CE, EEE, ME, MTE, MM, PCE, PE) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part-A

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams General Physics I Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

More information

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of:

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of: The exam is closed book and closed notes. There are 30 multiple choice questions. Make sure you put your name, section, and ID number on the SCANTRON form. The answers for the multiple choice Questions

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Chapter 5. Force and Motion I

Chapter 5. Force and Motion I Chapter 5 Force and Motion I 5 Force and Motion I 25 October 2018 PHY101 Physics I Dr.Cem Özdoğan 2 3 5-2 Newtonian Mechanics A force is a push or pull acting on a object and causes acceleration. Mechanics

More information

Equilibrium of a Particle

Equilibrium of a Particle ME 108 - Statics Equilibrium of a Particle Chapter 3 Applications For a spool of given weight, what are the forces in cables AB and AC? Applications For a given weight of the lights, what are the forces

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns b) Identify support reactions c) Recognize

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 13

ENGR-1100 Introduction to Engineering Analysis. Lecture 13 ENGR-1100 Introduction to Engineering Analysis Lecture 13 EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Today s Objectives: Students will be able to: a) Identify support reactions, and, b) Draw a free-body

More information

1. Solve the inequality 2 (3 + x) < 4x + 4 < 8x. Give the result in set notation and graph it.

1. Solve the inequality 2 (3 + x) < 4x + 4 < 8x. Give the result in set notation and graph it. Student ID: 21942320 Exam: 050291RR - Systems of Equations; Inequalities When you have completed your exam and reviewed your answers, click Submit Exam. Answers will not be recorded until you hit Submit

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Signature: INSTRUCTIONS Begin each problem in the space provided

More information

Physics 2210 Fall 2011 David Ailion EXAM 2

Physics 2210 Fall 2011 David Ailion EXAM 2 Dd Physics 2210 Fall 2011 David Ailion EXAM 2 PLEASE FILL IN THE INFORMATION BELOW: Name (printed): Name (signed): Student ID Number (unid): u Discussion Instructor: Marc Lindley Jon Paul Lundquist Peter

More information

Dept of ECE, SCMS Cochin

Dept of ECE, SCMS Cochin B B2B109 Pages: 3 Reg. No. Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, MAY 2017 Course Code: BE 100 Course Name: ENGINEERING MECHANICS Max. Marks: 100 Duration:

More information

Webreview practice test. Forces (again)

Webreview practice test. Forces (again) Please do not write on test. ID A Webreview 4.3 - practice test. Forces (again) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 5.0-kg mass is suspended

More information

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES

THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES THE WORK OF A FORCE, THE PRINCIPLE OF WORK AND ENERGY & SYSTEMS OF PARTICLES Today s Objectives: Students will be able to: 1. Calculate the work of a force. 2. Apply the principle of work and energy to

More information

1. Attempt any ten of the following : 20

1. Attempt any ten of the following : 20 *17204* 17204 21314 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Answer each next main question on a new page. (3) Illustrate your answers with neat sketches wherever

More information

C7047. PART A Answer all questions, each carries 5 marks.

C7047. PART A Answer all questions, each carries 5 marks. 7047 Reg No.: Total Pages: 3 Name: Max. Marks: 100 PJ DUL KLM TEHNOLOGIL UNIVERSITY FIRST SEMESTER.TEH DEGREE EXMINTION, DEEMER 2017 ourse ode: E100 ourse Name: ENGINEERING MEHNIS PRT nswer all questions,

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

More information

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. In-Class

More information

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#:

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#: Faculty of Engineering and Department of Physics ENPH 131 Final Examination Saturday, April 20, 2013; 2:00 pm 4:30 pm Universiade Pavilion Section EB01 (BEAMISH): Rows 1, 3, 5(seats 1-45) Section EB02

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Questions from all units

Questions from all units Questions from all units S.NO 1. 1 UNT NO QUESTON Explain the concept of force and its characteristics. BLOOMS LEVEL LEVEL 2. 2 Explain different types of force systems with examples. Determine the magnitude

More information

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY MADURAI DEPARTMRNT OF MECHANICAL ENGINEERING. Subject Code. Mechanics

VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY MADURAI DEPARTMRNT OF MECHANICAL ENGINEERING. Subject Code. Mechanics VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY MADURAI 625 009 DEPARTMRNT OF MECHANICAL ENGINEERING Year / Sem / Branch I Year / II Sem / CSE Subject Code GE 204 Subject Name Engineering Mechanics Faculty

More information

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /15 PAPER A

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /15 PAPER A SSOCITE DEGREE IN ENGINEERING EXMINTIONS SEMESTER 2 2014/15 PPER COURSE NME: ENGINEERING MECHNICS - STTICS CODE: ENG 2008 GROUP: D ENG II DTE: May 2015 TIME: DURTION: 2 HOURS INSTRUCTIONS: 1. This paper

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α =

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α = Unit 1 1. The subjects Engineering Mechanics deals with (a) Static (b) kinematics (c) Kinetics (d) All of the above 2. If the resultant of two forces P and Q is acting at an angle α with P, then (a) tan

More information

AP Physics 1 Multiple Choice Questions - Chapter 4

AP Physics 1 Multiple Choice Questions - Chapter 4 1 Which of ewton's Three Laws of Motion is best expressed by the equation F=ma? a ewton's First Law b ewton's Second Law c ewton's Third Law d one of the above 4.1 2 A person is running on a track. Which

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

Exam 2--PHYS 101--F17

Exam 2--PHYS 101--F17 Name: Exam 2--PHYS 0--F7 Multiple Choice Identify the choice that best completes the statement or answers the question.. A ball is thrown in the air at an angle of 30 to the ground, with an initial speed

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information