ADVANCED MACROECONOMICS 2015 FINAL EXAMINATION FOR THE FIRST HALF OF SPRING SEMESTER

Size: px
Start display at page:

Download "ADVANCED MACROECONOMICS 2015 FINAL EXAMINATION FOR THE FIRST HALF OF SPRING SEMESTER"

Transcription

1 ADVANCED MACROECONOMICS 2015 FINAL EXAMINATION FOR THE FIRST HALF OF SPRING SEMESTER Hiroyuki Ozaki Keio University, Faculty of Economics June 2, 2015 Important Remarks: You must write all your answers in English although I do not deduct it about the English mistake. More importantly, you need to justify your answers as much as possible. The mark depends on the correctness of your exposition. Consider the problem of maximizing U 0 c) = Uc 0, c 1, c 2,...) := t + c1 θ over the set of all consumption streams in the feasible set 0c R + given the parameters θ [0, 1) and x 0 > 0. 1 x R ) } + c x 1 = 6x 0 and t 1) c t + x t+1 = 6x t Note that the utility function is recursive with the aggregator function W : R + R R defined by W c, u) = + u Answer both of the following two problems. Important Hints: Notice that for any c R +, Uc, c, c,...) = You may get some marks by proving this.) A good strategy to tackle these problems is to begin by finding a steady-state investment level, that is, an investment level which is optimal to hold forever if it is ever attained. 1. Problem 1. Assume that θ = 0. Derive the set of optimal consumption streams. Then, determine the value function. Problem 2. Assume that θ 0, 1) and x 0 = θ /5. Derive the set of optimal consumption streams. Then, find the value of the utility function evaluated by these consumption streams. 1

2 ANSWER KEY Hiroyuki Ozaki Keio University, Faculty of Economics June 3, 2015 In this paragraph, I prove that U 0 the same utility function as in the exam) defined by U 0 0 c) = Uc 0, c 1, c 2,...) := t + c1 θ is recursive with the aggregator function W : R + R R defined by W c, u) = + u ) That is, what I said right after the exam is wrong. To see this, note that U 0 0 c) = t + c1 θ = = = t + c1 θ t + c1 θ t + = + U 0 1 c) + 1 1, t 1 1 ) t 1 1 where the first line holds by the definition of U 0 ; the second line holds by the continuity of ; the third and the fourth lines are trivial; and the last line holds again by the definition of U 0. This shows that U 0 solves Koopmans equation and hence it is recursive with the aggregator function 1). Note that U 0 0, 0, 0,...) = 1. Next, I define the utility function U 1 by U 1 0 c) := t + c1 θ t and I prove that U 1 is recursive with the aggregator function 1). To this end, I do the same thing as above: U 1 0 c) = t + c1 θ 2 t + 1 1

3 = = = Note that U 1 0, 0, 0,...) = 0. t + c1 θ t + c1 θ t + = + U 1 1 c) t t ) t Clearly, U 0 and U 1 are distinct from each other. Furthermore, both are recursive with the identical aggregator function 1). This means that the aggregator function dose not uniquely determine the utility function. This is something that I did not intend. I know some condition under which the aggregator function uniquely determines the utility function and I thought that this condition is now satisfied. I was wrong and I will talk more about this later. Now I proceed in any case. To solve this maximization problem, we need to find the value of u := Uc, c, c,...). Since u satisfies Koopmans equation, we know that it must be the case that u = + u + 1 1, from which it follows that u + 1 = + u + 1. This is simply the quadratic equation of u + 1 and it can be easily solved for u to get and u = u = 1 1 2) 1. 3) Both are increasing in c and hence are the well-defined utility values over constant consumption streams. Furthermore, it is immediate that 2) corresponds to U 0 and 3) corresponds to U 1. However, in what follows, I exploit the fact that there exists a steady-state consumption level which satisfies the Euler equation. And, to guarantee its existence, I require that the utility level corresponding to the steady-state consumption stream be given by 3). To sum up, at this very stage, the utility function need be defined by U 1 instead of U 0. While I do not stint my apology for this mistake, I conclude, after a moment s reflection, that you are given enough information to solve this problem. That is, 1), 3) and the production function that are everything you need to solve this problem. So, I have decided not to give any special treatment in grading your examination papers. 3

4 Here is the answer. First, in order to derive the Euler equation, use Bellman s equation along the line given in the lecture. This is justified because the utility function is recursive. Bellman s equation is V x t ) = max W c t, V x t+1 )) c t + x t+1 = F x t ), c t, x t+1 0 } = max W F x t ) x t+1, V x t+1 )) F x t ) x t+1 0 }. By assuming the interiority of the solution, the first-order necessary condition turns out to be W 1 c t, u t+1 ) = W 2 c t, u t+1 ) V x t+1 ), ) where W i denotes the partial derivative of W with respect to the i-th argument and u t denotes Uc t, c t+1, c t+2,...). The value function V is known to be differentiable by the Benveniste- Scheinkman Theorem and the envelop theorem shows that its derivative V is given by V x t ) = W 1 c t, u t+1 ) F x t ). 5) By combining ) and 5), we finally reach the Euler equation for a one-sector growth model with a recursive-utility-maximizing agent: W 1 c t, u t+1 ) = W 2 c t, u t+1 ) W 1 c t+1, u t+2 ) F x t+1 ). Specifying the aggregator function by 1) and the production function by F x) = 6x leads to the Euler equation for the current problem: c θ t = 3 u t+ 1) 1/2 c θ t+1. 6) I now find the steady-state consumption stream which satisfies the Euler equation 6). Since t) c t = c and u t+1 is given by 3), we have 1 = 3 1/2 which can be easily solved for the steady-state consumption level c : c = 6 1/1 θ). Notice that I would get stuck here if I used 2). Answer to Problem 1. Set θ = 0. Then, c = 6 and the steady-state capital stock x is given by x = 6/5 from the feasibility constraint: c + x = 6 x. Define ˆtx 0 ) by ˆtx 0 ) := min t 0 6 t x 0 > 6/5 }.

5 I hereafter suppress x 0 ).) Consider the consumption stream 0 c given by 0c = 0, 0,..., 0, 6ˆt x 0 6/5, 6, 6,...), 7) where 6ˆt x 0 6/5 is the ˆt-th period s consumption, and the capital stream 1 x defined by 1x = 6x 0, 6 2 x 0,..., 6ˆt 1 x 0, 6/5, 6/5,...), where 6ˆt 1 x 0 is the ˆ)-th period s capital stock. Notice that, in this particular problem, the Inada condition is not satisfied and hence a zero consumption can not be excluded. In fact, the first-order necessary condition ) should be replaced by the inequality recall the Kuhn-Tucker theory in the first lecture), W1 c t, u t+1 ) = W 2 c t, u t+1 ) V x t+1 ) if c t > 0 W 1 c t, u t+1 ) W 2 c t, u t+1 ) V x t+1 ) if c t = 0 and hence, the Euler equation is now the Euler inequality: W1 c t, u t+1 ) = W 2 c t, u t+1 ) W 1 c t+1, u t+2 ) F x t+1 ) if c t > 0 W 1 c t, u t+1 ) W 2 c t, u t+1 ) W 1 c t+1, u t+2 ) F x t+1 ) if c t = 0. This means that the Euler equation 6) now turns out to be 1 = 3 ut+ 1) 1/2 if c t > u t+ 1) 1/2 if c t = 0. 8) Consider the consumption stream 0 c defined by 7). First, note that c ˆt = 6ˆt x 0 6/5 is positive by definition and hence that the first half of 8) is met. Second, note that for any t, U t c ) U6, 6, 6,...) because 6ˆt x 0 6/5 6. Therefore, the second half of 8) is also met. I thus conclude that 7) satisfies 8). Next, I need to show that 7) is the unique consumption stream which satisfies 8). A lot of work might be necessary for this and I do not like to do that here. Instead, I simply assume it. You do not lose any mark without doing this, off course.) Finally, I show that the optimal consumption stream certainly exists by showing that the utility function together with the given production function) is upper-convergent. Here, the upper-convergence theorem in the lecture is invoked.) Since any consumption stream which violates the Euler equation can not be optimal and since we know that there exists an optimal consumption stream, 7) must be the unique optimal consumption stream I am seeking. To this end, notice that the variable discount factor for the aggregator function 1) is given by 1/2) u + 1) 1/2. This shows that the discount factor is bounded above by a half. Furthermore, the higher the future utility is, the closer to zero the discount factor becomes. While the economy can grow without bound with the constant rate of growth since the production 5

6 function is of Ak-type), the future is discounted nonlinearly. From analogy to L Hospital s rule, we see that far future will be less and less important for the consumer and the upper-convergence thus follows. This is only intuition behind the fact that the upper-convergence is actually satisfied but I think that it is enough for the purpose of the exam. I can give a formal proof that the utility function is upper-convergent given the aggregator function 1).) The value function J is J x 0 ) = U 1 0, 0,..., 0, 6ˆt x 0 6/5, 6, 6,...) = W c 0, W c 1, W cˆt 1, W cˆt, )) )) uˆt+1 = W 0, W 0, W 0, W cˆt, 8)) )) ) )) = W 0, W 0, W 0, cˆt + 3)1/2 1 = W )) 0, W 0, cˆt + 3)1/ 1 = cˆt + 3)1/2)ˆ, where cˆt = 6ˆt x 0 6/5. Since ˆt itself is the function of x 0, J is the well-defined value function. Answer to Problem 2. Since θ 0, 1), the Inada condition requires that the consumption be strictly positive. Let x = 6 1/1 θ) /5. Then, c + x = 6 1/1 θ) + 6 1/1 θ) /5 = 6 6 1/1 θ) /5 = 6 x = 6x 0. This shows that c, c, c,...) and x, x, x,...) are steady-state consumption and capital streams which are feasible from x 0. Notice that here is no transition path and the economy stays in the steady state from the beginning. By the argument around the equation not inequality) 6), this path clearly satisfies the Euler equation. The same logic shows that c, c, c,...) is the unique optimal consumption stream from x 0 and the value of the utility function is then given by ) J 6 1/1 θ) /5 = U 1 c, c, c,...) = 1 = 8. Important Announcement. As I mentioned above, I did not expect the aggregator function 1) generates multiple utility functions. As I said there, I though some condition which guarantees the uniqueness is satisfied but I missed something. What did I miss? If you figure out this problem completely, I will add some marks so as to upgrade your final score for the first half of this semester), say, from B to A. Submit your result as a term paper via an by June 20. You may like to see the book by Becker, R. E. and J. H. Boyd III, Capital Theory, Equilibrium Analysis and Recursive Utility, 1997, Blackwell. 6

Slides II - Dynamic Programming

Slides II - Dynamic Programming Slides II - Dynamic Programming Julio Garín University of Georgia Macroeconomic Theory II (Ph.D.) Spring 2017 Macroeconomic Theory II Slides II - Dynamic Programming Spring 2017 1 / 32 Outline 1. Lagrangian

More information

Macroeconomics Qualifying Examination

Macroeconomics Qualifying Examination Macroeconomics Qualifying Examination January 2016 Department of Economics UNC Chapel Hill Instructions: This examination consists of 3 questions. Answer all questions. If you believe a question is ambiguously

More information

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a

ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a 316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 3a Chris Edmond hcpedmond@unimelb.edu.aui Dynamic programming and the growth model Dynamic programming and closely related recursive methods provide an important

More information

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox.

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox. Econ 50a second half) Yale University Fall 2006 Prof. Tony Smith HOMEWORK #3 This homework assignment is due at NOON on Friday, November 7 in Marnix Amand s mailbox.. This problem introduces wealth inequality

More information

Introduction to Recursive Methods

Introduction to Recursive Methods Chapter 1 Introduction to Recursive Methods These notes are targeted to advanced Master and Ph.D. students in economics. They can be of some use to researchers in macroeconomic theory. The material contained

More information

Problem Set #2: Overlapping Generations Models Suggested Solutions - Q2 revised

Problem Set #2: Overlapping Generations Models Suggested Solutions - Q2 revised University of Warwick EC9A Advanced Macroeconomic Analysis Problem Set #: Overlapping Generations Models Suggested Solutions - Q revised Jorge F. Chavez December 6, 0 Question Consider the following production

More information

An Application to Growth Theory

An Application to Growth Theory An Application to Growth Theory First let s review the concepts of solution function and value function for a maximization problem. Suppose we have the problem max F (x, α) subject to G(x, β) 0, (P) x

More information

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2

ECON607 Fall 2010 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 ECON607 Fall 200 University of Hawaii Professor Hui He TA: Xiaodong Sun Assignment 2 The due date for this assignment is Tuesday, October 2. ( Total points = 50). (Two-sector growth model) Consider the

More information

Dynamic Macroeconomic Theory Notes. David L. Kelly. Department of Economics University of Miami Box Coral Gables, FL

Dynamic Macroeconomic Theory Notes. David L. Kelly. Department of Economics University of Miami Box Coral Gables, FL Dynamic Macroeconomic Theory Notes David L. Kelly Department of Economics University of Miami Box 248126 Coral Gables, FL 33134 dkelly@miami.edu Current Version: Fall 2013/Spring 2013 I Introduction A

More information

Lecture 2 The Centralized Economy: Basic features

Lecture 2 The Centralized Economy: Basic features Lecture 2 The Centralized Economy: Basic features Leopold von Thadden University of Mainz and ECB (on leave) Advanced Macroeconomics, Winter Term 2013 1 / 41 I Motivation This Lecture introduces the basic

More information

Part A: Answer question A1 (required), plus either question A2 or A3.

Part A: Answer question A1 (required), plus either question A2 or A3. Ph.D. Core Exam -- Macroeconomics 5 January 2015 -- 8:00 am to 3:00 pm Part A: Answer question A1 (required), plus either question A2 or A3. A1 (required): Ending Quantitative Easing Now that the U.S.

More information

The economy is populated by a unit mass of infinitely lived households with preferences given by. β t u(c Mt, c Ht ) t=0

The economy is populated by a unit mass of infinitely lived households with preferences given by. β t u(c Mt, c Ht ) t=0 Review Questions: Two Sector Models Econ720. Fall 207. Prof. Lutz Hendricks A Planning Problem The economy is populated by a unit mass of infinitely lived households with preferences given by β t uc Mt,

More information

Solutions for Homework #4

Solutions for Homework #4 Econ 50a (second half) Prof: Tony Smith TA: Theodore Papageorgiou Fall 2004 Yale University Dept. of Economics Solutions for Homework #4 Question (a) A Recursive Competitive Equilibrium for the economy

More information

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ryoji Ohdoi Dept. of Industrial Engineering and Economics, Tokyo Tech This lecture note is mainly based on Ch. 8 of Acemoglu

More information

Assumption 5. The technology is represented by a production function, F : R 3 + R +, F (K t, N t, A t )

Assumption 5. The technology is represented by a production function, F : R 3 + R +, F (K t, N t, A t ) 6. Economic growth Let us recall the main facts on growth examined in the first chapter and add some additional ones. (1) Real output (per-worker) roughly grows at a constant rate (i.e. labor productivity

More information

UNIVERSITY OF VIENNA

UNIVERSITY OF VIENNA WORKING PAPERS Cycles and chaos in the one-sector growth model with elastic labor supply Gerhard Sorger May 2015 Working Paper No: 1505 DEPARTMENT OF ECONOMICS UNIVERSITY OF VIENNA All our working papers

More information

UNIVERSITY OF WISCONSIN DEPARTMENT OF ECONOMICS MACROECONOMICS THEORY Preliminary Exam August 1, :00 am - 2:00 pm

UNIVERSITY OF WISCONSIN DEPARTMENT OF ECONOMICS MACROECONOMICS THEORY Preliminary Exam August 1, :00 am - 2:00 pm UNIVERSITY OF WISCONSIN DEPARTMENT OF ECONOMICS MACROECONOMICS THEORY Preliminary Exam August 1, 2017 9:00 am - 2:00 pm INSTRUCTIONS Please place a completed label (from the label sheet provided) on the

More information

SIMON FRASER UNIVERSITY. Economics 483 Advanced Topics in Macroeconomics Spring 2014 Assignment 3 with answers

SIMON FRASER UNIVERSITY. Economics 483 Advanced Topics in Macroeconomics Spring 2014 Assignment 3 with answers BURNABY SIMON FRASER UNIVERSITY BRITISH COLUMBIA Paul Klein Office: WMC 3635 Phone: (778) 782-9391 Email: paul klein 2@sfu.ca URL: http://paulklein.ca/newsite/teaching/483.php Economics 483 Advanced Topics

More information

New Notes on the Solow Growth Model

New Notes on the Solow Growth Model New Notes on the Solow Growth Model Roberto Chang September 2009 1 The Model The firstingredientofadynamicmodelisthedescriptionofthetimehorizon. In the original Solow model, time is continuous and the

More information

Dynamic Programming Theorems

Dynamic Programming Theorems Dynamic Programming Theorems Prof. Lutz Hendricks Econ720 September 11, 2017 1 / 39 Dynamic Programming Theorems Useful theorems to characterize the solution to a DP problem. There is no reason to remember

More information

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION

DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION DYNAMIC LECTURE 5: DISCRETE TIME INTERTEMPORAL OPTIMIZATION UNIVERSITY OF MARYLAND: ECON 600. Alternative Methods of Discrete Time Intertemporal Optimization We will start by solving a discrete time intertemporal

More information

Lecture 4 The Centralized Economy: Extensions

Lecture 4 The Centralized Economy: Extensions Lecture 4 The Centralized Economy: Extensions Leopold von Thadden University of Mainz and ECB (on leave) Advanced Macroeconomics, Winter Term 2013 1 / 36 I Motivation This Lecture considers some applications

More information

Advanced Macroeconomics

Advanced Macroeconomics Advanced Macroeconomics The Ramsey Model Marcin Kolasa Warsaw School of Economics Marcin Kolasa (WSE) Ad. Macro - Ramsey model 1 / 30 Introduction Authors: Frank Ramsey (1928), David Cass (1965) and Tjalling

More information

Suggested Solutions to Problem Set 2

Suggested Solutions to Problem Set 2 Macroeconomic Theory, Fall 03 SEF, HKU Instructor: Dr. Yulei Luo October 03 Suggested Solutions to Problem Set. 0 points] Consider the following Ramsey-Cass-Koopmans model with fiscal policy. First, we

More information

Problem Set #4 Answer Key

Problem Set #4 Answer Key Problem Set #4 Answer Key Economics 808: Macroeconomic Theory Fall 2004 The cake-eating problem a) Bellman s equation is: b) If this policy is followed: c) If this policy is followed: V (k) = max {log

More information

Comprehensive Exam. Macro Spring 2014 Retake. August 22, 2014

Comprehensive Exam. Macro Spring 2014 Retake. August 22, 2014 Comprehensive Exam Macro Spring 2014 Retake August 22, 2014 You have a total of 180 minutes to complete the exam. If a question seems ambiguous, state why, sharpen it up and answer the sharpened-up question.

More information

Economics 205, Fall 2002: Final Examination, Possible Answers

Economics 205, Fall 2002: Final Examination, Possible Answers Economics 05, Fall 00: Final Examination, Possible Answers Comments on the Exam Grades: 43 possible; high: 413; median: 34; low: 36 I was generally happy with the answers to questions 3-8, satisfied with

More information

Markov Perfect Equilibria in the Ramsey Model

Markov Perfect Equilibria in the Ramsey Model Markov Perfect Equilibria in the Ramsey Model Paul Pichler and Gerhard Sorger This Version: February 2006 Abstract We study the Ramsey (1928) model under the assumption that households act strategically.

More information

Dynamic Problem Set 1 Solutions

Dynamic Problem Set 1 Solutions Dynamic Problem Set 1 Solutions Jonathan Kreamer July 15, 2011 Question 1 Consider the following multi-period optimal storage problem: An economic agent imizes: c t} T β t u(c t ) (1) subject to the period-by-period

More information

Monetary Economics: Solutions Problem Set 1

Monetary Economics: Solutions Problem Set 1 Monetary Economics: Solutions Problem Set 1 December 14, 2006 Exercise 1 A Households Households maximise their intertemporal utility function by optimally choosing consumption, savings, and the mix of

More information

Econ 504, Lecture 1: Transversality and Stochastic Lagrange Multipliers

Econ 504, Lecture 1: Transversality and Stochastic Lagrange Multipliers ECO 504 Spring 2009 Chris Sims Econ 504, Lecture 1: Transversality and Stochastic Lagrange Multipliers Christopher A. Sims Princeton University sims@princeton.edu February 4, 2009 0 Example: LQPY The ordinary

More information

Lecture 15. Dynamic Stochastic General Equilibrium Model. Randall Romero Aguilar, PhD I Semestre 2017 Last updated: July 3, 2017

Lecture 15. Dynamic Stochastic General Equilibrium Model. Randall Romero Aguilar, PhD I Semestre 2017 Last updated: July 3, 2017 Lecture 15 Dynamic Stochastic General Equilibrium Model Randall Romero Aguilar, PhD I Semestre 2017 Last updated: July 3, 2017 Universidad de Costa Rica EC3201 - Teoría Macroeconómica 2 Table of contents

More information

Competitive Equilibrium and the Welfare Theorems

Competitive Equilibrium and the Welfare Theorems Competitive Equilibrium and the Welfare Theorems Craig Burnside Duke University September 2010 Craig Burnside (Duke University) Competitive Equilibrium September 2010 1 / 32 Competitive Equilibrium and

More information

1 Recursive Competitive Equilibrium

1 Recursive Competitive Equilibrium Feb 5th, 2007 Let s write the SPP problem in sequence representation: max {c t,k t+1 } t=0 β t u(f(k t ) k t+1 ) t=0 k 0 given Because of the INADA conditions we know that the solution is interior. So

More information

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Optimal Control Ömer Özak SMU Macroeconomics II Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Review of the Theory of Optimal Control Section 1 Review of the Theory of Optimal Control Ömer

More information

The Fundamental Welfare Theorems

The Fundamental Welfare Theorems The Fundamental Welfare Theorems The so-called Fundamental Welfare Theorems of Economics tell us about the relation between market equilibrium and Pareto efficiency. The First Welfare Theorem: Every Walrasian

More information

Economics 210B Due: September 16, Problem Set 10. s.t. k t+1 = R(k t c t ) for all t 0, and k 0 given, lim. and

Economics 210B Due: September 16, Problem Set 10. s.t. k t+1 = R(k t c t ) for all t 0, and k 0 given, lim. and Economics 210B Due: September 16, 2010 Problem 1: Constant returns to saving Consider the following problem. c0,k1,c1,k2,... β t Problem Set 10 1 α c1 α t s.t. k t+1 = R(k t c t ) for all t 0, and k 0

More information

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013)

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013) The Ramsey Model (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 213) 1 Introduction The Ramsey model (or neoclassical growth model) is one of the prototype models in dynamic macroeconomics.

More information

Lecture 2 The Centralized Economy

Lecture 2 The Centralized Economy Lecture 2 The Centralized Economy Economics 5118 Macroeconomic Theory Kam Yu Winter 2013 Outline 1 Introduction 2 The Basic DGE Closed Economy 3 Golden Rule Solution 4 Optimal Solution The Euler Equation

More information

Lecture 5: Some Informal Notes on Dynamic Programming

Lecture 5: Some Informal Notes on Dynamic Programming Lecture 5: Some Informal Notes on Dynamic Programming The purpose of these class notes is to give an informal introduction to dynamic programming by working out some cases by h. We want to solve subject

More information

The Necessity of the Transversality Condition at Infinity: A (Very) Special Case

The Necessity of the Transversality Condition at Infinity: A (Very) Special Case The Necessity of the Transversality Condition at Infinity: A (Very) Special Case Peter Ireland ECON 772001 - Math for Economists Boston College, Department of Economics Fall 2017 Consider a discrete-time,

More information

Lecture notes on modern growth theory

Lecture notes on modern growth theory Lecture notes on modern growth theory Part 2 Mario Tirelli Very preliminary material Not to be circulated without the permission of the author October 25, 2017 Contents 1. Introduction 1 2. Optimal economic

More information

Neoclassical Growth Model / Cake Eating Problem

Neoclassical Growth Model / Cake Eating Problem Dynamic Optimization Institute for Advanced Studies Vienna, Austria by Gabriel S. Lee February 1-4, 2008 An Overview and Introduction to Dynamic Programming using the Neoclassical Growth Model and Cake

More information

Optimization Over Time

Optimization Over Time Optimization Over Time Joshua Wilde, revised by Isabel Tecu and Takeshi Suzuki August 26, 21 Up to this point, we have only considered constrained optimization problems at a single point in time. However,

More information

The Hansen Singleton analysis

The Hansen Singleton analysis The Hansen Singleton analysis November 15, 2018 1 Estimation of macroeconomic rational expectations model. The Hansen Singleton (1982) paper. We start by looking at the application of GMM that first showed

More information

A Summary of Economic Methodology

A Summary of Economic Methodology A Summary of Economic Methodology I. The Methodology of Theoretical Economics All economic analysis begins with theory, based in part on intuitive insights that naturally spring from certain stylized facts,

More information

A simple macro dynamic model with endogenous saving rate: the representative agent model

A simple macro dynamic model with endogenous saving rate: the representative agent model A simple macro dynamic model with endogenous saving rate: the representative agent model Virginia Sánchez-Marcos Macroeconomics, MIE-UNICAN Macroeconomics (MIE-UNICAN) A simple macro dynamic model with

More information

Session 4: Money. Jean Imbs. November 2010

Session 4: Money. Jean Imbs. November 2010 Session 4: Jean November 2010 I So far, focused on real economy. Real quantities consumed, produced, invested. No money, no nominal in uences. I Now, introduce nominal dimension in the economy. First and

More information

Macro I - Practice Problems - Growth Models

Macro I - Practice Problems - Growth Models Macro I - Practice Problems - Growth Models. Consider the infinitely-lived agent version of the growth model with valued leisure. Suppose that the government uses proportional taxes (τ c, τ n, τ k ) on

More information

Proof strategies, or, a manual of logical style

Proof strategies, or, a manual of logical style Proof strategies, or, a manual of logical style Dr Holmes September 27, 2017 This is yet another version of the manual of logical style I have been working on for many years This semester, instead of posting

More information

1 Jan 28: Overview and Review of Equilibrium

1 Jan 28: Overview and Review of Equilibrium 1 Jan 28: Overview and Review of Equilibrium 1.1 Introduction What is an equilibrium (EQM)? Loosely speaking, an equilibrium is a mapping from environments (preference, technology, information, market

More information

Economic Growth: Lecture 8, Overlapping Generations

Economic Growth: Lecture 8, Overlapping Generations 14.452 Economic Growth: Lecture 8, Overlapping Generations Daron Acemoglu MIT November 20, 2018 Daron Acemoglu (MIT) Economic Growth Lecture 8 November 20, 2018 1 / 46 Growth with Overlapping Generations

More information

A Simple Proof of the Necessity. of the Transversality Condition

A Simple Proof of the Necessity. of the Transversality Condition comments appreciated A Simple Proof of the Necessity of the Transversality Condition Takashi Kamihigashi RIEB Kobe University Rokkodai, Nada, Kobe 657-8501 Japan Phone/Fax: +81-78-803-7015 E-mail: tkamihig@rieb.kobe-u.ac.jp

More information

Solutions to Second Midterm

Solutions to Second Midterm Operations Management 33:623:386:04/05 Professor Eckstein, Spring 2002 Solutions to Second Midterm Q1 Q2 Q3 Total Max 35 33 30 94 Mean 25.9 26.4 27.6 79.8 Median 27.0 27.0 28.0 81.0 Min 8 15 20 50 Standard

More information

Dynamic optimization: a recursive approach. 1 A recursive (dynamic programming) approach to solving multi-period optimization problems:

Dynamic optimization: a recursive approach. 1 A recursive (dynamic programming) approach to solving multi-period optimization problems: E 600 F 206 H # Dynamic optimization: a recursive approach A recursive (dynamic programming) approach to solving multi-period optimization problems: An example A T + period lived agent s value of life

More information

The Fundamental Welfare Theorems

The Fundamental Welfare Theorems The Fundamental Welfare Theorems The so-called Fundamental Welfare Theorems of Economics tell us about the relation between market equilibrium and Pareto efficiency. The First Welfare Theorem: Every Walrasian

More information

Macroeconomics Qualifying Examination

Macroeconomics Qualifying Examination Macroeconomics Qualifying Examination August 2016 Department of Economics UNC Chapel Hill Instructions: This examination consists of 4 questions. Answer all questions. If you believe a question is ambiguously

More information

Existence, Optimality and Dynamics of Equilibria with Endogenous Time Preference. Cuong Le Van* Cagri Saglam** Selman Erol**

Existence, Optimality and Dynamics of Equilibria with Endogenous Time Preference. Cuong Le Van* Cagri Saglam** Selman Erol** DEPOCEN Working Paper Series No. 2011/04 Existence, Optimality and Dynamics of Equilibria with Endogenous Time Preference Cuong Le Van* Cagri Saglam** Selman Erol** * PSE, CNRS, University Paris 1, CES,

More information

Cointegration and the Ramsey Model

Cointegration and the Ramsey Model RamseyCointegration, March 1, 2004 Cointegration and the Ramsey Model This handout examines implications of the Ramsey model for cointegration between consumption, income, and capital. Consider the following

More information

Dynamic Optimization: An Introduction

Dynamic Optimization: An Introduction Dynamic Optimization An Introduction M. C. Sunny Wong University of San Francisco University of Houston, June 20, 2014 Outline 1 Background What is Optimization? EITM: The Importance of Optimization 2

More information

Problem Set 2: Proposed solutions Econ Fall Cesar E. Tamayo Department of Economics, Rutgers University

Problem Set 2: Proposed solutions Econ Fall Cesar E. Tamayo Department of Economics, Rutgers University Problem Set 2: Proposed solutions Econ 504 - Fall 202 Cesar E. Tamayo ctamayo@econ.rutgers.edu Department of Economics, Rutgers University Simple optimal growth (Problems &2) Suppose that we modify slightly

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

Lecture 5: The Bellman Equation

Lecture 5: The Bellman Equation Lecture 5: The Bellman Equation Florian Scheuer 1 Plan Prove properties of the Bellman equation (In particular, existence and uniqueness of solution) Use this to prove properties of the solution Think

More information

Basic Deterministic Dynamic Programming

Basic Deterministic Dynamic Programming Basic Deterministic Dynamic Programming Timothy Kam School of Economics & CAMA Australian National University ECON8022, This version March 17, 2008 Motivation What do we do? Outline Deterministic IHDP

More information

1 The Basic RBC Model

1 The Basic RBC Model IHS 2016, Macroeconomics III Michael Reiter Ch. 1: Notes on RBC Model 1 1 The Basic RBC Model 1.1 Description of Model Variables y z k L c I w r output level of technology (exogenous) capital at end of

More information

Modern Macroeconomics II

Modern Macroeconomics II Modern Macroeconomics II Katsuya Takii OSIPP Katsuya Takii (Institute) Modern Macroeconomics II 1 / 461 Introduction Purpose: This lecture is aimed at providing students with standard methods in modern

More information

Macroeconomics Qualifying Examination

Macroeconomics Qualifying Examination Macroeconomics Qualifying Examination August 2015 Department of Economics UNC Chapel Hill Instructions: This examination consists of 4 questions. Answer all questions. If you believe a question is ambiguously

More information

E 600 Chapter 4: Optimization

E 600 Chapter 4: Optimization E 600 Chapter 4: Optimization Simona Helmsmueller August 8, 2018 Goals of this lecture: Every theorem in these slides is important! You should understand, remember and be able to apply each and every one

More information

Economics 501B Final Exam Fall 2017 Solutions

Economics 501B Final Exam Fall 2017 Solutions Economics 501B Final Exam Fall 2017 Solutions 1. For each of the following propositions, state whether the proposition is true or false. If true, provide a proof (or at least indicate how a proof could

More information

Suggested Solutions to Homework #3 Econ 511b (Part I), Spring 2004

Suggested Solutions to Homework #3 Econ 511b (Part I), Spring 2004 Suggested Solutions to Homework #3 Econ 5b (Part I), Spring 2004. Consider an exchange economy with two (types of) consumers. Type-A consumers comprise fraction λ of the economy s population and type-b

More information

DEPARTMENT OF ECONOMICS Fall 2015 P. Gourinchas/D. Romer MIDTERM EXAM

DEPARTMENT OF ECONOMICS Fall 2015 P. Gourinchas/D. Romer MIDTERM EXAM UNIVERSITY OF CALIFORNIA Economics 202A DEPARTMENT OF ECONOMICS Fall 2015 P. Gourinchas/D. Romer MIDTERM EXAM The exam consists of two parts. There are 85 points total. Part I has 18 points and Part II

More information

Ch 3.2: Direct proofs

Ch 3.2: Direct proofs Math 299 Lectures 8 and 9: Chapter 3 0. Ch3.1 A trivial proof and a vacuous proof (Reading assignment) 1. Ch3.2 Direct proofs 2. Ch3.3 Proof by contrapositive 3. Ch3.4 Proof by cases 4. Ch3.5 Proof evaluations

More information

Endogenous Growth: AK Model

Endogenous Growth: AK Model Endogenous Growth: AK Model Prof. Lutz Hendricks Econ720 October 24, 2017 1 / 35 Endogenous Growth Why do countries grow? A question with large welfare consequences. We need models where growth is endogenous.

More information

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ]

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ] Homework #2 Economics 4- Due Wednesday, October 5 Christiano. This question is designed to illustrate Blackwell's Theorem, Theorem 3.3 on page 54 of S-L. That theorem represents a set of conditions that

More information

ECON 402: Advanced Macroeconomics 1. Advanced Macroeconomics, ECON 402. New Growth Theories

ECON 402: Advanced Macroeconomics 1. Advanced Macroeconomics, ECON 402. New Growth Theories ECON 402: Advanced Macroeconomics 1 Advanced Macroeconomics, ECON 402 New Growth Theories The conclusions derived from the growth theories we have considered thus far assumes that economic growth is tied

More information

Lecture 6: Discrete-Time Dynamic Optimization

Lecture 6: Discrete-Time Dynamic Optimization Lecture 6: Discrete-Time Dynamic Optimization Yulei Luo Economics, HKU November 13, 2017 Luo, Y. (Economics, HKU) ECON0703: ME November 13, 2017 1 / 43 The Nature of Optimal Control In static optimization,

More information

Advanced Macroeconomics

Advanced Macroeconomics Advanced Macroeconomics The Ramsey Model Micha l Brzoza-Brzezina/Marcin Kolasa Warsaw School of Economics Micha l Brzoza-Brzezina/Marcin Kolasa (WSE) Ad. Macro - Ramsey model 1 / 47 Introduction Authors:

More information

Languages, regular languages, finite automata

Languages, regular languages, finite automata Notes on Computer Theory Last updated: January, 2018 Languages, regular languages, finite automata Content largely taken from Richards [1] and Sipser [2] 1 Languages An alphabet is a finite set of characters,

More information

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox. Econ 50a (second half) Yale University Fall 2006 Prof. Tony Smith HOMEWORK # This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.. Consider a growth model with capital

More information

A Quick Introduction to Numerical Methods

A Quick Introduction to Numerical Methods Chapter 5 A Quick Introduction to Numerical Methods One of the main advantages of the recursive approach is that we can use the computer to solve numerically interesting models. There is a wide variety

More information

Chapter 3. Dynamic Programming

Chapter 3. Dynamic Programming Chapter 3. Dynamic Programming This chapter introduces basic ideas and methods of dynamic programming. 1 It sets out the basic elements of a recursive optimization problem, describes the functional equation

More information

1 Bewley Economies with Aggregate Uncertainty

1 Bewley Economies with Aggregate Uncertainty 1 Bewley Economies with Aggregate Uncertainty Sofarwehaveassumedawayaggregatefluctuations (i.e., business cycles) in our description of the incomplete-markets economies with uninsurable idiosyncratic risk

More information

Non-convex Aggregate Technology and Optimal Economic Growth

Non-convex Aggregate Technology and Optimal Economic Growth Non-convex Aggregate Technology and Optimal Economic Growth N. M. Hung y, C. Le Van z, P. Michel x September 26, 2007 Abstract This paper examines a model of optimal growth where the aggregation of two

More information

14.05: Section Handout #1 Solow Model

14.05: Section Handout #1 Solow Model 14.05: Section Handout #1 Solow Model TA: Jose Tessada September 16, 2005 Today we will review the basic elements of the Solow model. Be prepared to ask any questions you may have about the derivation

More information

A Theory of Financing Constraints and Firm Dynamics by Clementi and Hopenhayn - Quarterly Journal of Economics (2006)

A Theory of Financing Constraints and Firm Dynamics by Clementi and Hopenhayn - Quarterly Journal of Economics (2006) A Theory of Financing Constraints and Firm Dynamics by Clementi and Hopenhayn - Quarterly Journal of Economics (2006) A Presentation for Corporate Finance 1 Graduate School of Economics December, 2009

More information

Stochastic Dynamic Programming: The One Sector Growth Model

Stochastic Dynamic Programming: The One Sector Growth Model Stochastic Dynamic Programming: The One Sector Growth Model Esteban Rossi-Hansberg Princeton University March 26, 2012 Esteban Rossi-Hansberg () Stochastic Dynamic Programming March 26, 2012 1 / 31 References

More information

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming 1. Government Purchases and Endogenous Growth Consider the following endogenous growth model with government purchases (G) in continuous time. Government purchases enhance production, and the production

More information

The Real Business Cycle Model

The Real Business Cycle Model The Real Business Cycle Model Macroeconomics II 2 The real business cycle model. Introduction This model explains the comovements in the fluctuations of aggregate economic variables around their trend.

More information

ECON4515 Finance theory 1 Diderik Lund, 5 May Perold: The CAPM

ECON4515 Finance theory 1 Diderik Lund, 5 May Perold: The CAPM Perold: The CAPM Perold starts with a historical background, the development of portfolio theory and the CAPM. Points out that until 1950 there was no theory to describe the equilibrium determination of

More information

Lecture 3: Huggett s 1993 model. 1 Solving the savings problem for an individual consumer

Lecture 3: Huggett s 1993 model. 1 Solving the savings problem for an individual consumer UNIVERSITY OF WESTERN ONTARIO LONDON ONTARIO Paul Klein Office: SSC 4044 Extension: 85484 Email: pklein2@uwo.ca URL: http://paulklein.ca/newsite/teaching/619.php Economics 9619 Computational methods in

More information

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming 1. Endogenous Growth with Human Capital Consider the following endogenous growth model with both physical capital (k (t)) and human capital (h (t)) in continuous time. The representative household solves

More information

Economic Growth: Lecture 9, Neoclassical Endogenous Growth

Economic Growth: Lecture 9, Neoclassical Endogenous Growth 14.452 Economic Growth: Lecture 9, Neoclassical Endogenous Growth Daron Acemoglu MIT November 28, 2017. Daron Acemoglu (MIT) Economic Growth Lecture 9 November 28, 2017. 1 / 41 First-Generation Models

More information

Development Economics (PhD) Intertemporal Utility Maximiza

Development Economics (PhD) Intertemporal Utility Maximiza Development Economics (PhD) Intertemporal Utility Maximization Department of Economics University of Gothenburg October 7, 2015 1/14 Two Period Utility Maximization Lagrange Multiplier Method Consider

More information

General Examination in Macroeconomic Theory SPRING 2013

General Examination in Macroeconomic Theory SPRING 2013 HARVARD UNIVERSITY DEPARTMENT OF ECONOMICS General Examination in Macroeconomic Theory SPRING 203 You have FOUR hours. Answer all questions Part A (Prof. Laibson): 48 minutes Part B (Prof. Aghion): 48

More information

Solow Growth Model. Michael Bar. February 28, Introduction Some facts about modern growth Questions... 4

Solow Growth Model. Michael Bar. February 28, Introduction Some facts about modern growth Questions... 4 Solow Growth Model Michael Bar February 28, 208 Contents Introduction 2. Some facts about modern growth........................ 3.2 Questions..................................... 4 2 The Solow Model 5

More information

Introduction to Algebra: The First Week

Introduction to Algebra: The First Week Introduction to Algebra: The First Week Background: According to the thermostat on the wall, the temperature in the classroom right now is 72 degrees Fahrenheit. I want to write to my friend in Europe,

More information

EC9A2 Advanced Macro Analysis - Class #1

EC9A2 Advanced Macro Analysis - Class #1 EC9A2 Advanced Macro Analysis - Class #1 Jorge F. Chávez University of Warwick October 29, 2012 Outline 1. Some math 2. Shocking the Solow model 3. The Golden Rule 4. CES production function (more math)

More information

Eco504 Spring 2009 C. Sims MID-TERM EXAM

Eco504 Spring 2009 C. Sims MID-TERM EXAM Eco504 Spring 2009 C. Sims MID-TERM EXAM This is a 90-minute exam. Answer all three questions, each of which is worth 30 points. You can get partial credit for partial answers. Do not spend disproportionate

More information

Logic for Computer Science - Week 5 Natural Deduction

Logic for Computer Science - Week 5 Natural Deduction Logic for Computer Science - Week 5 Natural Deduction Ștefan Ciobâcă November 30, 2017 1 An Alternative View of Implication and Double Implication So far, we have understood as a shorthand of However,

More information