Our task The optimization principle Available choices Preferences and utility functions Describing the representative consumer preferences

Size: px
Start display at page:

Download "Our task The optimization principle Available choices Preferences and utility functions Describing the representative consumer preferences"

Transcription

1

2 X Y U U(x, y), x X y Y (x, y ) U(x, y ) (x, y )

3 (x, y ) (x, y ) (x, y ) (x, y ) U(x, y ) > U(x, y ) (x, y ) (x, y ) U(x, y ) < U(x, y ) U(x, y ) = U(x, y ) X Y U x y U x > x 0 U(x, y) U(x 0, y), y y > y 0 U(x, y ) U(x, y 0 ), x U x U x > 0, U y U y > 0 X Y U(x 0, y 0 ) = U(x, y ) U(αx 0 + ( α)x, αy 0 + ( α)y ) > U(x 0, y 0 ) 0 < α < U

4 x y U(x, y) U(, ) U(x, y)

5 number of oranges number of apples U = U x x + U y y U = 0 y x = U x du=0 X Y X,Y X Y X,Y U y (x, y)

6 number of oranges x y p x M M x y 4 p x x + y M number of apples y y = M p x x px X Y X Y Y X = p X Y M ( x, ȳ) px + y p x + ȳ

7 x y U(x, y) p x x + y M L(x, y, λ) = U(x, y) + λ(m p x x y) U x (x, y) λp x = 0 U y (x, y) λ = 0 } U x U y = p x λ 0, M p x x y 0, λ(m p x x y) = 0 p x x + y < M

8 λ = 0 U x = U y = 0 λ > 0 p x x + y = M x, y U x (x, y ) U y (x, y ) = p x p x x + y = M x = x (p x,, M) y = y (p x,, M) X Y λ = U x(x, y ) p x = U y(x, y ) X Y X p x Ux p x Y Uy Uy Ux p x U X Y Y X x, y

9 number of oranges number of apples U(x, y) (x, y ) V (p x,, M) = x,y {U(x, y) p xx + y = M} = U (x (p x,, M), y (p x,, M)) L = U(x, y ) + λ (M p x x y ) L M = λ + (U x λ p x ) x M + (U y λ ) y M L = λ x + (U x λ p x ) x + (U y λ ) y p x p x p x L = λ y + (U x λ p x ) x + (U y λ ) y = λ = λ x = λ y x y

10 λ = Ux p x = Uy V (p x,, M) M = U (x, y ) M x = U x M + U y y M = λ x p x M + y λ M y = λ ( p x x M + M ) = λ λ x = V p x V M V V M 0 y = f f ( ) > 0 V V M W (x, y) f(u(x, y)) W x W y = f (U)U x f (U)U y = U x U y

11 x y U(x, y) p x x + y = M x 0 y 0 L(x, y, λ) = U(x, y) + λ(m p x x y) + µ x + µ y U x (x, y) λp x + µ = 0 U y (x, y) λ + µ = 0 p x x + y = M µ 0 x 0 µ x = 0 µ 0 y 0 µ y = 0 µ µ U x (x, y) λp x = µ U y (x, y) λ = µ U x (x, y) λp x 0 x 0 x (U x (x, y) λp x ) = 0 U y (x, y) λ 0 y 0 y (U y (x, y) λ ) = 0 p x x + y = M x y M > 0 x = 0 U x (x, y) λp x < x x U x(x, y) = x 0 U x(x, y) = x > 0 U x (x, y) λp x = 0 x 0 U y(x, y) = y > 0 U y (x, y) λ = 0 y 0

12 x y U(x, y) p x x+ y M x 0 y 0 U(x, y) = x θ y θ 0 < θ < x y x > 0 y > 0 U ( y ) θ U x = θ x y = ( θ) ( ) θ x y U x = x 0 U y = U x > 0 U y > 0 y 0 x > 0 y > 0 p x x + y = M θ ( ) y θ x ( ( θ) x y ) θ = p x p x x + y = M x (p x,, M) = θm p x y (p x,, M) = ( θ)m ( ) θ ( ) θ θ θ V (p x,, M) = M p x

13 U(x, y) = x + y U x = x > 0 U y = > 0 y = p x = p L = x + y + λ(m px y) x λp = 0 λ = 0 px + y = M λ = px = y = M x (p, M) = p y (p, M) = M y M < V (p, M) = M p x y U x = x x 0 x > 0 U y = y L = x + y + λ(m px y) + µy x λp = 0 λ 0 y 0 ( λ) y = 0 px + y = M

14 λ = y = 0 λ = x λ = px px = y = M x = p y 0 M y = 0 px = M y = 0 x = M p λ 0 λ = px = M M 0 M x = {M, }, y = {M, 0} p V (p, M) = {M, } + {M, } p { M p, M = M p, V M = n + p i x i X i i = 0,,..., n α i > 0 i ( n U(x 0, x,..., x n ) = α i x ρ i ) ρ = (α 0 x ρ 0 + α x ρ + + α nx ρ n) ρ

15 X 0 p 0 = α 0 = n p i x i = p 0 x 0 + p x + + p n x n = M ( n L = α i x ρ i ) ( ρ + λ M ) n p i x i f(u) = U ρ ) n n L = α i x ρ i (M + λ p i x i L = n (α i x ρ i λp ix i ) + λm ρα i x ρ i λp i = 0 λ = ρα ix ρ i p i i = 0,..., n X 0 i =,..., n : ρα i x ρ i p i = ρα 0x ρ 0 x i = αi σ p σ i x 0 σ = p ρ 0 M = n p i x i = x 0 + n i= αi σ p σ i x 0 x M 0 = + n i= ασ i p σ i p k x k = αk σp σ k n M ασ i p σ i k = 0,..., n P P ( n α σ i p σ i ) σ

16 x k = ασ k p σ k P σ M = ( αk p k P ) σ M P k = 0,..., n M P α k σ p x /P ( n α i x ρ i α k x ρ k x k = αkp σ σ σ k MP ) ρ = α+σρ k = αkp σ σ k ( n = V (p 0,..., p n, M) = MP σ ( n p σρ k (MP σ ) ρ (MP σ ) ρ αkp σ σ k (MP σ ) ρ = MP σ P σ ρ V α σ kp σ k = M P ) ρ ) ρ ρ = 0 σ = U(x 0, x,..., x n ) = n p i x i = x αi i = x α0 0 xα xαn n α i n α i M i = 0,..., n

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA U G G G U 2 93 YX Y q 25 3 < : z? 0 (? 8 0 G 936 x z x z? \ 9 7500 00? 5 q 938 27? 60 & 69? 937 q? G x? 937 69 58 } x? 88 G # x 8 > x G 0 G 0 x 8 x 0 U 93 6 ( 2 x : X 7 8 G G G q x U> x 0 > x < x G U 5

More information

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to

More information

) k ( 1 λ ) n k. ) n n e. k!(n k)! n

) k ( 1 λ ) n k. ) n n e. k!(n k)! n k ) λ ) k λ ) λk k! e λ ) π/!. e α + α) /α e k ) λ ) k λ )! λ k! k)! ) λ k λ k! λk e λ k! λk e λ. k! ) k λ ) k k + k k k ) k ) k e k λ e k ) k EX EX V arx) X Nα, σ ) Bp) Eα) Πλ) U, θ) X Nα, σ ) E ) X α

More information

Inductive and Recursive Moving Frames for Lie Pseudo-Groups

Inductive and Recursive Moving Frames for Lie Pseudo-Groups Inductive and Recursive Moving Frames for Lie Pseudo-Groups Francis Valiquette (Joint work with Peter) Symmetries of Differential Equations: Frames, Invariants and Applications Department of Mathematics

More information

個體經濟學一. Total utility of consuming (x, y), denoted as u(x, y), is the total level of total satisfaction of consuming(x, y).

個體經濟學一. Total utility of consuming (x, y), denoted as u(x, y), is the total level of total satisfaction of consuming(x, y). 個體經濟學一 M i c r o e c o n o m i c s (I) CH2 The analysis of consumer behavior *Untility function Total utility of consuming (x, y), denoted as u(x, y), is the total level of total satisfaction of consuming(x,

More information

LOWELL. MICHIGAN, THURSDAY, MAY 23, Schools Close. method of distribution. t o t h e b o y s of '98 a n d '18. C o m e out a n d see t h e m get

LOWELL. MICHIGAN, THURSDAY, MAY 23, Schools Close. method of distribution. t o t h e b o y s of '98 a n d '18. C o m e out a n d see t h e m get UY Y 99 U XXX 5 Q == 5 K 8 9 $8 7 Y Y 8 q 6 Y x) 5 7 5 q U «U YU x q Y U ) U Z 9 Y 7 x 7 U x U x 9 5 & U Y U U 7 8 9 x 5 x U x x ; x x [ U K»5 98 8 x q 8 q K x Y Y x K Y 5 ~ 8» Y x ; ; ; ; ; ; 8; x 7;

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 612 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #5 due October 2, 2012 == show all your work for maximum credit, == put labels, title,

More information

mml LOWELL. MICHIGAN, THURSDAY, JULY 7,1932 Turkey Dinner Sets Lowell Board of Trade Going Strong For Show Boat on the Flat

mml LOWELL. MICHIGAN, THURSDAY, JULY 7,1932 Turkey Dinner Sets Lowell Board of Trade Going Strong For Show Boat on the Flat D D U DN N U N 8 N UDY UY 79 U XXXX X D N [ ND D N D N D x N N ( U N : ( N D : z q N N ( D N ; N z q 5 x N N q x q x q q (: Y x z x N ( x ) N D N x \ x U x ; U x U ; x x : Y U q D N : ND NY ; NY ; z 5

More information

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017 Complex Variables Chapter 2. Analytic Functions Section 2.26. Harmonic Functions Proofs of Theorems March 19, 2017 () Complex Variables March 19, 2017 1 / 5 Table of contents 1 Theorem 2.26.1. 2 Theorem

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

Optimization: Problem Set Solutions

Optimization: Problem Set Solutions Optimization: Problem Set Solutions Annalisa Molino University of Rome Tor Vergata annalisa.molino@uniroma2.it Fall 20 Compute the maxima minima or saddle points of the following functions a. f(x y) =

More information

Partial Differentiation

Partial Differentiation CHAPTER 7 Partial Differentiation From the previous two chapters we know how to differentiate functions of one variable But many functions in economics depend on several variables: output depends on both

More information

Calculus II. Monday, March 13th. WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20

Calculus II. Monday, March 13th. WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20 Announcements Calculus II Monday, March 13th WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20 Today: Sec. 8.5: Partial Fractions Use partial fractions to

More information

Elementary ODE Review

Elementary ODE Review Elementary ODE Review First Order ODEs First Order Equations Ordinary differential equations of the fm y F(x, y) () are called first der dinary differential equations. There are a variety of techniques

More information

Analysis I (Math 121) First Midterm Correction

Analysis I (Math 121) First Midterm Correction Analysis I (Math 11) First Midterm Correction Fall 00 Ali Nesin November 9, 00 1. Which of the following are not vector spaces over R (with the componentwise addition and scalar multiplication) and why?

More information

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai APPLIED MATHEMATICS Part 1: Ordinary Differential Equations Contents 1 First Order Differential Equations 3 1.1 Basic Concepts and Ideas................... 4 1.2 Separable Differential Equations................

More information

Homework 3 Suggested Answers

Homework 3 Suggested Answers Homework 3 Suggested Answers Answers from Simon and Blume are on the back of the book. Answers to questions from Dixit s book: 2.1. We are to solve the following budget problem, where α, β, p, q, I are

More information

Microeconomics, Block I Part 1

Microeconomics, Block I Part 1 Microeconomics, Block I Part 1 Piero Gottardi EUI Sept. 26, 2016 Piero Gottardi (EUI) Microeconomics, Block I Part 1 Sept. 26, 2016 1 / 53 Choice Theory Set of alternatives: X, with generic elements x,

More information

1.11 Some Higher-Order Differential Equations

1.11 Some Higher-Order Differential Equations page 99. Some Higher-Order Differential Equations 99. Some Higher-Order Differential Equations So far we have developed analytical techniques only for solving special types of firstorder differential equations.

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Notes on Consumer Theory

Notes on Consumer Theory Notes on Consumer Theory Alejandro Saporiti Alejandro Saporiti (Copyright) Consumer Theory 1 / 65 Consumer theory Reference: Jehle and Reny, Advanced Microeconomic Theory, 3rd ed., Pearson 2011: Ch. 1.

More information

EECS 750. Hypothesis Testing with Communication Constraints

EECS 750. Hypothesis Testing with Communication Constraints EECS 750 Hypothesis Testing with Communication Constraints Name: Dinesh Krithivasan Abstract In this report, we study a modification of the classical statistical problem of bivariate hypothesis testing.

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

3 Applications of partial differentiation

3 Applications of partial differentiation Advanced Calculus Chapter 3 Applications of partial differentiation 37 3 Applications of partial differentiation 3.1 Stationary points Higher derivatives Let U R 2 and f : U R. The partial derivatives

More information

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225 Dr. Asmaa Al Themairi Assistant Professor a a Department of Mathematical sciences, University of Princess Nourah bint Abdulrahman,

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6.2 Orthogonal Sets Math 233 Linear Algebra 6.2 Orthogonal Sets Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math233 Jiwen He, University of Houston

More information

LOWELL, MICHIGAN, MAY 28, Every Patriotic American Salutes His Nation's Flag

LOWELL, MICHIGAN, MAY 28, Every Patriotic American Salutes His Nation's Flag / U N K U Y N Y 8 94 N /U/ N N 3 N U NY NUN ;!! - K - - 93 U U - K K»- [ : U K z ; 3 q U 9:3 - : z 353 «- - - q x z- : N / - q - z 6 - x! -! K N - 3 - U N x >» } ( ) - N Y - q K x x x Y 3 z - x x - x 8

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

CHAPTER 3. Analytic Functions. Dr. Pulak Sahoo

CHAPTER 3. Analytic Functions. Dr. Pulak Sahoo CHAPTER 3 Analytic Functions BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-4: Harmonic Functions 1 Introduction

More information

Math 222 Spring 2013 Exam 3 Review Problem Answers

Math 222 Spring 2013 Exam 3 Review Problem Answers . (a) By the Chain ule, Math Spring 3 Exam 3 eview Problem Answers w s w x x s + w y y s (y xy)() + (xy x )( ) (( s + 4t) (s 3t)( s + 4t)) ((s 3t)( s + 4t) (s 3t) ) 8s 94st + 3t (b) By the Chain ule, w

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations 236861 Numerical Geometry of Images Tutorial 1 Introduction to the Calculus of Variations Alex Bronstein c 2005 1 Calculus Calculus of variations 1. Function Functional f : R n R Example: f(x, y) =x 2

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2011 2012 FLUID DYNAMICS MTH-3D41 Time allowed: 3 hours Attempt FIVE questions. Candidates must show on each answer book the type

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS NON-LINEAR LINEAR (in y) LINEAR W/ CST COEFFs (in y) FIRST- ORDER 4(y ) 2 +x cos y = x 2 4x 2 y + y cos x = x 2 4y + 3y = cos x ORDINARY DIFF EQs SECOND- ORDER

More information

Orthogonal Transformations

Orthogonal Transformations Orthogonal Transformations Tom Lyche University of Oslo Norway Orthogonal Transformations p. 1/3 Applications of Qx with Q T Q = I 1. solving least squares problems (today) 2. solving linear equations

More information

MATH 44041/64041 Applied Dynamical Systems, 2018

MATH 44041/64041 Applied Dynamical Systems, 2018 MATH 4441/6441 Applied Dynamical Systems, 218 Answers to Assessed Coursework 1 1 Method based on series expansion of the matrix exponential Let the coefficient matrix of α the linear system be A, then

More information

Name: Math Homework Set # 5. March 12, 2010

Name: Math Homework Set # 5. March 12, 2010 Name: Math 4567. Homework Set # 5 March 12, 2010 Chapter 3 (page 79, problems 1,2), (page 82, problems 1,2), (page 86, problems 2,3), Chapter 4 (page 93, problems 2,3), (page 98, problems 1,2), (page 102,

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University A Model Problem in a 2D Box Region Let us consider a model problem of parabolic

More information

A review of stability and dynamical behaviors of differential equations:

A review of stability and dynamical behaviors of differential equations: A review of stability and dynamical behaviors of differential equations: scalar ODE: u t = f(u), system of ODEs: u t = f(u, v), v t = g(u, v), reaction-diffusion equation: u t = D u + f(u), x Ω, with boundary

More information

Introduction and preliminaries

Introduction and preliminaries Chapter Introduction and preliminaries Partial differential equations What is a partial differential equation? ODEs Ordinary Differential Equations) have one variable x). PDEs Partial Differential Equations)

More information

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions

Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multiple Space Dimensions Willy Hereman and Douglas Poole Department of Mathematical and Computer Sciences Colorado

More information

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set.

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set. Lecture # 3 Orthogonal Matrices and Matrix Norms We repeat the definition an orthogonal set and orthornormal set. Definition A set of k vectors {u, u 2,..., u k }, where each u i R n, is said to be an

More information

Structural Properties of Utility Functions Walrasian Demand

Structural Properties of Utility Functions Walrasian Demand Structural Properties of Utility Functions Walrasian Demand Econ 2100 Fall 2017 Lecture 4, September 7 Outline 1 Structural Properties of Utility Functions 1 Local Non Satiation 2 Convexity 3 Quasi-linearity

More information

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET CALCULUS Berkant Ustaoğlu CRYPTOLOUNGE.NET Secant 1 Definition Let f be defined over an interval I containing u. If x u and x I then f (x) f (u) Q = x u is the difference quotient. Also if h 0, such that

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

1 Integration in many variables.

1 Integration in many variables. MA2 athaye Notes on Integration. Integration in many variables.. Basic efinition. The integration in one variable was developed along these lines:. I f(x) dx, where I is any interval on the real line was

More information

Polynomials. Math 4800/6080 Project Course

Polynomials. Math 4800/6080 Project Course Polynomials. Math 4800/6080 Project Course 2. Algebraic Curves. Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions.

More information

Math 240 Calculus III

Math 240 Calculus III Calculus III Summer 2015, Session II Monday, August 3, 2015 Agenda 1. 2. Introduction The reduction of technique, which applies to second- linear differential equations, allows us to go beyond equations

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

a P (A) f k(x) = A k g k " g k (x) = ( 1) k x ą k. $ & g k (x) = x k (0, 1) f k, f, g : [0, 8) Ñ R f k (x) ď g(x) k P N x P [0, 8) g(x)dx g(x)dx ă 8

a P (A) f k(x) = A k g k  g k (x) = ( 1) k x ą k. $ & g k (x) = x k (0, 1) f k, f, g : [0, 8) Ñ R f k (x) ď g(x) k P N x P [0, 8) g(x)dx g(x)dx ă 8 M M, d A Ď M f k : A Ñ R A a P A f kx = A k xña k P N ta k u 8 k=1 f kx = f k x. xña kñ8 kñ8 xña M, d N, ρ A Ď M f k : A Ñ N tf k u 8 k=1 f : A Ñ N A f A 8ř " x ď k, g k x = 1 k x ą k. & g k x = % g k

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

MATH 819 FALL We considered solutions of this equation on the domain Ū, where

MATH 819 FALL We considered solutions of this equation on the domain Ū, where MATH 89 FALL. The D linear wave equation weak solutions We have considered the initial value problem for the wave equation in one space dimension: (a) (b) (c) u tt u xx = f(x, t) u(x, ) = g(x), u t (x,

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Before you begin read these instructions carefully.

Before you begin read these instructions carefully. MATHEMATICAL TRIPOS Part IA Friday, 1 June, 2018 1:30 pm to 4:30 pm PAPER 2 Before you begin read these instructions carefully. The examination paper is divided into two sections. Each question in Section

More information

The Cantor space as a Bishop space

The Cantor space as a Bishop space Ludwig-Maximilians Universität Munich Fifth Workshop on Formal Topology: Spreads and Choice Sequences Institut Mittag-Leffler, Sweden 08.06.2015 The history of the subject 1 The theory of Bishop spaces

More information

Asynchronous Training in Wireless Sensor Networks

Asynchronous Training in Wireless Sensor Networks u t... t. tt. tt. u.. tt tt -t t t - t, t u u t t. t tut t t t t t tt t u t ut. t u, t tt t u t t t t, t tt t t t, t t t t t. t t tt u t t t., t- t ut t t, tt t t tt. 1 tut t t tu ut- tt - t t t tu tt-t

More information

Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2

Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2 Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2 April 11, 2016 Chapter 10 Section 1: Addition and Subtraction of Polynomials A monomial is

More information

Appendix A Functional Analysis

Appendix A Functional Analysis Appendix A Functional Analysis A.1 Metric Spaces, Banach Spaces, and Hilbert Spaces Definition A.1. Metric space. Let X be a set. A map d : X X R is called metric on X if for all x,y,z X it is i) d(x,y)

More information

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X).

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X). 4. Interval estimation The goal for interval estimation is to specify the accurary of an estimate. A 1 α confidence set for a parameter θ is a set C(X) in the parameter space Θ, depending only on X, such

More information

UNIVERSITY OF EAST ANGLIA

UNIVERSITY OF EAST ANGLIA UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2007 2008 FLUIDS DYNAMICS WITH ADVANCED TOPICS Time allowed: 3 hours Attempt question ONE and FOUR other questions. Candidates must

More information

u(x, y) = x 1 3 y v(p, q, I) = u(x(p, q, I), y(p, q, I))

u(x, y) = x 1 3 y v(p, q, I) = u(x(p, q, I), y(p, q, I)) December 4, 207 Let p, q, I > 0. We try to maximize the utility function u(x, y) = x y under the constraint I px qy = 0 () Find the statinary point of f(x, y subject to g(x, y = 0 to find (2) We define

More information

Differential Equations Class Notes

Differential Equations Class Notes Differential Equations Class Notes Dan Wysocki Spring 213 Contents 1 Introduction 2 2 Classification of Differential Equations 6 2.1 Linear vs. Non-Linear.................................. 7 2.2 Seperable

More information

NONDIFFERENTIABLE MULTIOBJECTIVE SECOND ORDER SYMMETRIC DUALITY WITH CONE CONSTRAINTS. Do Sang Kim, Yu Jung Lee and Hyo Jung Lee 1.

NONDIFFERENTIABLE MULTIOBJECTIVE SECOND ORDER SYMMETRIC DUALITY WITH CONE CONSTRAINTS. Do Sang Kim, Yu Jung Lee and Hyo Jung Lee 1. TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 8, pp. 1943-1964, November 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/ NONDIFFERENTIABLE MULTIOBJECTIVE SECOND ORDER SYMMETRIC DUALITY

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information

Introduction to Nonlinear Control Lecture # 4 Passivity

Introduction to Nonlinear Control Lecture # 4 Passivity p. 1/6 Introduction to Nonlinear Control Lecture # 4 Passivity È p. 2/6 Memoryless Functions ¹ y È Ý Ù È È È È u (b) µ power inflow = uy Resistor is passive if uy 0 p. 3/6 y y y u u u (a) (b) (c) Passive

More information

Lecture 5: Importance sampling and Hamilton-Jacobi equations

Lecture 5: Importance sampling and Hamilton-Jacobi equations Lecture 5: Importance sampling and Hamilton-Jacobi equations Henrik Hult Department of Mathematics KTH Royal Institute of Technology Sweden Summer School on Monte Carlo Methods and Rare Events Brown University,

More information

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2 Polynomials Patterns Task 1. To get an idea of what polynomial functions look like, we can graph the first through fifth degree polynomials with leading coefficients of 1. For each polynomial function,

More information

READ T H E DATE ON LABEL A blue m a r k a r o u n d this notice will call y o u r attention to y o u r LOWELL. MICHIGAN, THURSDAY, AUGUST 29.

READ T H E DATE ON LABEL A blue m a r k a r o u n d this notice will call y o u r attention to y o u r LOWELL. MICHIGAN, THURSDAY, AUGUST 29. B U D D B < / UDY UU 29 929 VU XXXV Y B 5 2 $25 25 25 U 6 B j 3 $8 D D D VD V D D V D B B % B 2 D - Q 22: 5 B 2 3 Z D 2 5 B V $ 2 52 2 $5 25 25 $ Y Y D - 8 q 2 2 6 Y U DD D D D Y!! B D V!! XU XX D x D

More information

i) This is simply an application of Berge s Maximum Theorem, but it is actually not too difficult to prove the result directly.

i) This is simply an application of Berge s Maximum Theorem, but it is actually not too difficult to prove the result directly. Bocconi University PhD in Economics - Microeconomics I Prof. M. Messner Problem Set 3 - Solution Problem 1: i) This is simply an application of Berge s Maximum Theorem, but it is actually not too difficult

More information

then the substitution z = ax + by + c reduces this equation to the separable one.

then the substitution z = ax + by + c reduces this equation to the separable one. 7 Substitutions II Some of the topics in this lecture are optional and will not be tested at the exams. However, for a curious student it should be useful to learn a few extra things about ordinary differential

More information

Outlines of Quantum Physics

Outlines of Quantum Physics Duality S. Eq Hydrogen Outlines of 1 Wave-Particle Duality 2 The Schrödinger Equation 3 The Hydrogen Atom Schrödinger Eq. of the Hydrogen Atom Noninteracting Particles and Separation of Variables The One-Particle

More information

Master Thesis. Nguyen Tien Thinh. Homogenization and Viscosity solution

Master Thesis. Nguyen Tien Thinh. Homogenization and Viscosity solution Master Thesis Nguyen Tien Thinh Homogenization and Viscosity solution Advisor: Guy Barles Defense: Friday June 21 th, 2013 ii Preface Firstly, I am grateful to Prof. Guy Barles for helping me studying

More information

Martingale optimal transport with Monge s cost function

Martingale optimal transport with Monge s cost function Martingale optimal transport with Monge s cost function Martin Klimmek, joint work with David Hobson (Warwick) klimmek@maths.ox.ac.uk Crete July, 2013 ca. 1780 c(x, y) = x y No splitting, transport along

More information

System F. Proofs and Types. Bow-Yaw Wang. Academia Sinica. Spring 2012

System F. Proofs and Types. Bow-Yaw Wang. Academia Sinica. Spring 2012 Proofs and Types System F Bow-Yaw Wang Academia Sinica Spring 2012 The Calculus Types in System F are defined as follows. type variables: X, Y,.... if U and V are types, then U V is a type. if V is a type

More information

PROVIDE HAND DAMPER WITH ACCESS DOOR WHERE SHOWN ON PLANS BRANCH DUCT BRANCH MAIN FIXED CEILINGS PLAN A

PROVIDE HAND DAMPER WITH ACCESS DOOR WHERE SHOWN ON PLANS BRANCH DUCT BRANCH MAIN FIXED CEILINGS PLAN A Y ()... : U U U, U. U U U U U. U U U U U U U U (QUY) U U U QY QU.. h U U U U QU QUY QU U Z Y., U U U U U. U Y Y. U.. U U U (U ) Y U () U () UY U U U ( ) U U U U ( ) Y Y U U Y U Y "x" " o "/".. / U U U

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Lecture 1: Review of methods to solve Ordinary Differential Equations

Lecture 1: Review of methods to solve Ordinary Differential Equations Introductory lecture notes on Partial Differential Equations - c Anthony Peirce Not to be copied, used, or revised without explicit written permission from the copyright owner 1 Lecture 1: Review of methods

More information

Math 241 Final Exam Spring 2013

Math 241 Final Exam Spring 2013 Name: Math 241 Final Exam Spring 213 1 Instructor (circle one): Epstein Hynd Wong Please turn off and put away all electronic devices. You may use both sides of a 3 5 card for handwritten notes while you

More information

Neural Networks in Structured Prediction. November 17, 2015

Neural Networks in Structured Prediction. November 17, 2015 Neural Networks in Structured Prediction November 17, 2015 HWs and Paper Last homework is going to be posted soon Neural net NER tagging model This is a new structured model Paper - Thursday after Thanksgiving

More information

Multiscale Hydrodynamic Phenomena

Multiscale Hydrodynamic Phenomena M2, Fluid mechanics 2014/2015 Friday, December 5th, 2014 Multiscale Hydrodynamic Phenomena Part I. : 90 minutes, NO documents 1. Quick Questions In few words : 1.1 What is dominant balance? 1.2 What is

More information

ECE353: Probability and Random Processes. Lecture 5 - Cumulative Distribution Function and Expectation

ECE353: Probability and Random Processes. Lecture 5 - Cumulative Distribution Function and Expectation ECE353: Probability and Random Processes Lecture 5 - Cumulative Distribution Function and Expectation Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu

More information

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections Section 6. 6. Orthogonal Sets Orthogonal Projections Main Ideas in these sections: Orthogonal set = A set of mutually orthogonal vectors. OG LI. Orthogonal Projection of y onto u or onto an OG set {u u

More information

First-Order ODE: Separable Equations, Exact Equations and Integrating Factor

First-Order ODE: Separable Equations, Exact Equations and Integrating Factor First-Order ODE: Separable Equations, Exact Equations and Integrating Factor Department of Mathematics IIT Guwahati REMARK: In the last theorem of the previous lecture, you can change the open interval

More information

Homework #3 Solutions

Homework #3 Solutions Homework #3 Solutions Math 82, Spring 204 Instructor: Dr. Doreen De eon Exercises 2.2: 2, 3 2. Write down the heat equation (homogeneous) which corresponds to the given data. (Throughout, heat is measured

More information

Calculus of Variations and Computer Vision

Calculus of Variations and Computer Vision Calculus of Variations and Computer Vision Sharat Chandran Page 1 of 23 Computer Science & Engineering Department, Indian Institute of Technology, Bombay. http://www.cse.iitb.ernet.in/ sharat January 8,

More information

2. Second-order Linear Ordinary Differential Equations

2. Second-order Linear Ordinary Differential Equations Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out). . Find and classify the extrema of hx, y sinx siny sinx + y on the square[, π] [, π]. Keep in mind there is a boundary to check out. Solution: h x cos x sin y sinx + y + sin x sin y cosx + y h y sin x

More information

Econ 101A Problem Set 1 Solution

Econ 101A Problem Set 1 Solution Econ 101A Problem Set 1 Solution Problem 1. Univariate unconstrained maximization. (10 points) Consider the following maximization problem: max x f(x; x 0)=exp( (x x 0 ) 2 ) 1. Write down the first order

More information

Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1

Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1 Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1 Session: 15 Aug 2015 (Mon), 10:00am 1:00pm I. Optimization with

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Simulation - Lectures - Part III Markov chain Monte Carlo

Simulation - Lectures - Part III Markov chain Monte Carlo Simulation - Lectures - Part III Markov chain Monte Carlo Julien Berestycki Part A Simulation and Statistical Programming Hilary Term 2018 Part A Simulation. HT 2018. J. Berestycki. 1 / 50 Outline Markov

More information

g(2, 1) = cos(2π) + 1 = = 9

g(2, 1) = cos(2π) + 1 = = 9 1. Let gx, y 2x 2 cos2πy 2 + y 2. You can use the fact that Dg2, 1 [8 2]. a Find an equation for the tangent plane to the graph z gx, y at the point 2, 1. There are two key parts to this problem. The first,

More information

Introduction of Partial Differential Equations and Boundary Value Problems

Introduction of Partial Differential Equations and Boundary Value Problems Introduction of Partial Differential Equations and Boundary Value Problems 2009 Outline Definition Classification Where PDEs come from? Well-posed problem, solutions Initial Conditions and Boundary Conditions

More information

Orthonormal Transformations

Orthonormal Transformations Orthonormal Transformations Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 25, 2010 Applications of transformation Q : R m R m, with Q T Q = I 1.

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information