No Harder Than. We want these transformations to effectively be a problem-hardness version of #, which we will call No Harder Than.

Size: px
Start display at page:

Download "No Harder Than. We want these transformations to effectively be a problem-hardness version of #, which we will call No Harder Than."

Transcription

1 No Harder Than We want these transformations to effectively be a problem-hardness version of #, which we will call No Harder Than. If we can reduce problem B to problem A appropriately, then we say that B is no harder than A (since we can use A to solve B). To do this, our transformations have to be computable in polynomial time, as well as preserve the yes / no results. Note that the answers are not known for the instances, however.

2 Essentially what we are doing is this: 1. Assume A has a polynomial time algorithm. 2. Show how a polynomial time algorithm for A can be used to solve B in polynomial time. (note that you do not have such an algorithm, so you must convert the instances instead of modifying an algorithm.) 3. Conclude that solving B in polynomial time is no harder than solving A in polynomial time, so if A has a polynomial time algorithm, so does B.

3 Note that not all instances of A need to be used problem B may be a special case of problem A. Certainly a general problem cannot be easier than its special cases. Also, a reduction is blind, in that it does not know which instances are true (have answer yes ) and which are false (have answer no ), but must convert all of them in the same way. These reductions are transitive, since you can compose two polynomial-time transformation functions and the result is also a polynomial-time transformation function.

4 The difficulty most people have working with reductions is that in most cases, problem A (to be shown as hard) is a new problem, and often a problem that you were previously trying to solve. If you are trying to show that A is hard to solve, you need to stop trying to solve it, and start trying to solve other problems using it -- essentially investigating the consequences of having a polynomial time algorithm for it. This technique has a lot in common with a proof by contradiction the difference is that we derive an unknown rather than a contradiction.

5 Example Reduction Consider the 0/1 Knapsack and Subset Sum problems. We will reduce Subset Sum to 0/1 Knapsack in order to show that 0/1 Knapsack is at least as hard as Subset Sum (and that a poly-time algorithm existing for 0/1 Knapsack means one also exists for Subset Sum). Construct the 0/1 Knapsack instance from the SS instance by: For each S[i], let W[i]=B[i]=S[i] Let W(weight limit)=b(goal benefit)=k. So if (and only if) the instance of 0/1 Knapsack is true (there is a subset within weight W=k with benefit B=k), then there is a subset of S with sum k.

6 Back to NP-hardness So now we have all 3 things that we needed for our complexity class. What does this mean? If there is a problem X such that every problem in NP reduces to X, then X is at least as hard as every problem in NP. We say that X is hard for NP, or NP-hard. Once we have one problem that is NP-hard, we can use it to find others by, eg. reducing X to Y to show that Y is also NP-hard.

7 NP-completeness If X is NP-hard and is also in NP, then we say that X is complete for NP, or NP-complete. If any NP-hard problem is in P (has a polynomial time algorithm), then Every problem that reduces to it (which is all of NP) is also in P. There are problems that are NP-hard but not known to be in NP, so we usually restrict ourselves to NPcomplete problems for this. All NPcomplete problems have the same hardness. If any NP-complete problem is in P, then P=NP.

8 Consequences of being in P Return to our question about problem A: what are the consequences of A being solvable in polynomial time? If we can show that a known NPhard problem reduces to A in polynomial time, then we know A is NP-hard. So if A is solvable in polynomial time, then P=NP. We still don t know if P=NP. Nobody does, but this has been looked at very heavily, and is conjectured by most experts to be false.

9 Reduction Source Problems To show that our problem A is NPhard, we can pick any known NPhard problem B to reduce from. However, we usually reduce from a known NP-complete problem (NPhard and also in NP) since if a problem is not known to be in NP, it may actually be more difficult than our problem A (hence there will be no reduction). In order to start off the set of NPhard problems, we need to have one problem that all problems in NP reduce to. Then we can find other NP-hard problems by reducing from it.

10 The Circuit Satisfiability Problem Input: a circuit (acyclic) with a single output bit?: Is there an input assignment that produces an output of 1? We cannot reduce from each problem in NP individually, so we will do this in bulk by describing how any P-checking algorithm can be transformed into a circuit in polynomial time. Basic idea: each step of the algorithm can be simulated by a level of the circuit, and there will be only polynomial such levels. The input will be the certificate.

11 Other Known NP-hard Problems Acyclic circuits correspond to boolean formulae, so the Satisfiability problem (Sat), of determining if there is a truth assignment for the variables of a boolean formula that produces a result of true, is also NP-hard. Theorems have also proven that this problem remains NP-hard even for the special case when the formula is expressed as a conjunction of 3- literal disjunctions (3Sat). These problems are also NPcomplete since they are in NP (use a truth assignment as the certificate, check it with the formula/circuit).

NP-Complete Reductions 1

NP-Complete Reductions 1 x x x 2 x 2 x 3 x 3 x 4 x 4 CS 4407 2 22 32 Algorithms 3 2 23 3 33 NP-Complete Reductions Prof. Gregory Provan Department of Computer Science University College Cork Lecture Outline x x x 2 x 2 x 3 x 3

More information

NP-Completeness Review

NP-Completeness Review CS124 NP-Completeness Review Where We Are Headed Up to this point, we have generally assumed that if we were given a problem, we could find a way to solve it. Unfortunately, as most of you know, there

More information

Notes for Lecture 21

Notes for Lecture 21 U.C. Berkeley CS170: Intro to CS Theory Handout N21 Professor Luca Trevisan November 20, 2001 Notes for Lecture 21 1 Tractable and Intractable Problems So far, almost all of the problems that we have studied

More information

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity Agenda What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity class A complexity class is a set All problems within

More information

Essential facts about NP-completeness:

Essential facts about NP-completeness: CMPSCI611: NP Completeness Lecture 17 Essential facts about NP-completeness: Any NP-complete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomial-time solutions

More information

NP-Complete problems

NP-Complete problems NP-Complete problems NP-complete problems (NPC): A subset of NP. If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial time solution. NP-complete languages

More information

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k.

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k. Complexity Theory Problems are divided into complexity classes. Informally: So far in this course, almost all algorithms had polynomial running time, i.e., on inputs of size n, worst-case running time

More information

NP Completeness and Approximation Algorithms

NP Completeness and Approximation Algorithms Winter School on Optimization Techniques December 15-20, 2016 Organized by ACMU, ISI and IEEE CEDA NP Completeness and Approximation Algorithms Susmita Sur-Kolay Advanced Computing and Microelectronic

More information

NP-Completeness. NP-Completeness 1

NP-Completeness. NP-Completeness 1 NP-Completeness x x x 2 x 2 x 3 x 3 x 4 x 4 2 22 32 3 2 23 3 33 NP-Completeness Outline and Reading P and NP ( 3.) Definition of P Definition of NP Alternate definition of NP NP-completeness ( 3.2) Definition

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 20 February 23, 2018 February 23, 2018 CS21 Lecture 20 1 Outline the complexity class NP NP-complete probelems: Subset Sum NP-complete problems: NAE-3-SAT, max

More information

CMSC 441: Algorithms. NP Completeness

CMSC 441: Algorithms. NP Completeness CMSC 441: Algorithms NP Completeness Intractable & Tractable Problems Intractable problems: As they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard

More information

Discrete Optimization 2010 Lecture 10 P, N P, and N PCompleteness

Discrete Optimization 2010 Lecture 10 P, N P, and N PCompleteness Discrete Optimization 2010 Lecture 10 P, N P, and N PCompleteness Marc Uetz University of Twente m.uetz@utwente.nl Lecture 9: sheet 1 / 31 Marc Uetz Discrete Optimization Outline 1 N P and co-n P 2 N P-completeness

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 25 NP Completeness Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 NP-Completeness Some

More information

Introduction to Computational Complexity

Introduction to Computational Complexity Introduction to Computational Complexity Tandy Warnow October 30, 2018 CS 173, Introduction to Computational Complexity Tandy Warnow Overview Topics: Solving problems using oracles Proving the answer to

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples Lecture 23 Computational Complexity 6.006 Fall 2011 Lecture 23: Computational Complexity Lecture Overview P, EXP, R Most problems are uncomputable NP Hardness & completeness Reductions Definitions: P =

More information

1.1 P, NP, and NP-complete

1.1 P, NP, and NP-complete CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Introduction to NP-complete Problems Date: 11/01/2008 Lecturer: Lap Chi Lau Scribe: Jerry Jilin Le This lecture gives a general introduction

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 18 February 16, 2018 February 16, 2018 CS21 Lecture 18 1 Outline the complexity class NP 3-SAT is NP-complete NP-complete problems: independent set, vertex cover,

More information

NP-Complete Reductions 2

NP-Complete Reductions 2 x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 CS 447 11 13 21 23 31 33 Algorithms NP-Complete Reductions 2 Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline NP-Complete

More information

Complexity, P and NP

Complexity, P and NP Complexity, P and NP EECS 477 Lecture 21, 11/26/2002 Last week Lower bound arguments Information theoretic (12.2) Decision trees (sorting) Adversary arguments (12.3) Maximum of an array Graph connectivity

More information

6.080 / Great Ideas in Theoretical Computer Science Spring 2008

6.080 / Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P Easy Problems vs. Hard Problems CSE 421 Introduction to Algorithms Winter 2000 NP-Completeness (Chapter 11) Easy - problems whose worst case running time is bounded by some polynomial in the size of the

More information

NP-Completeness. Until now we have been designing algorithms for specific problems

NP-Completeness. Until now we have been designing algorithms for specific problems NP-Completeness 1 Introduction Until now we have been designing algorithms for specific problems We have seen running times O(log n), O(n), O(n log n), O(n 2 ), O(n 3 )... We have also discussed lower

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine.

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine. The Class NP NP is the problems that can be solved in polynomial time by a nondeterministic machine. NP The time taken by nondeterministic TM is the length of the longest branch. The collection of all

More information

Introduction. Pvs.NPExample

Introduction. Pvs.NPExample Introduction Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 09 NP-Completeness (Chapter 34) Stephen Scott (Adapted from Vinodchandran N. Variyam) sscott@cse.unl.edu I

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP 4531 Complexity & Analysis of Data Structures & Algorithms Lecture 18 Reductions and NP-completeness Thanks to Kevin Wayne and the text authors who contributed to these slides Classify Problems According

More information

CSCI3390-Lecture 17: A sampler of NP-complete problems

CSCI3390-Lecture 17: A sampler of NP-complete problems CSCI3390-Lecture 17: A sampler of NP-complete problems 1 List of Problems We now know that if L is any problem in NP, that L P SAT, and thus SAT is NP-hard. Since SAT is also in NP we find that SAT is

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

CS 583: Algorithms. NP Completeness Ch 34. Intractability

CS 583: Algorithms. NP Completeness Ch 34. Intractability CS 583: Algorithms NP Completeness Ch 34 Intractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 26 Computational Intractability Polynomial Time Reductions Sofya Raskhodnikova S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.1 What algorithms are

More information

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA.

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA. Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA NP Completeness Susmita Sur-Kolay Advanced Computing and Microelectronics Unit

More information

Problems and Solutions. Decidability and Complexity

Problems and Solutions. Decidability and Complexity Problems and Solutions Decidability and Complexity Algorithm Muhammad bin-musa Al Khwarismi (780-850) 825 AD System of numbers Algorithm or Algorizm On Calculations with Hindu (sci Arabic) Numbers (Latin

More information

NP-Completeness. NP-Completeness 1

NP-Completeness. NP-Completeness 1 NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

A Working Knowledge of Computational Complexity for an Optimizer

A Working Knowledge of Computational Complexity for an Optimizer A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi 1 Why computational complexity? What is computational complexity theory? It s a branch of mathematics

More information

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch]

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch] NP-Completeness Andreas Klappenecker [based on slides by Prof. Welch] 1 Prelude: Informal Discussion (Incidentally, we will never get very formal in this course) 2 Polynomial Time Algorithms Most of the

More information

CS 6901 (Applied Algorithms) Lecture 3

CS 6901 (Applied Algorithms) Lecture 3 CS 6901 (Applied Algorithms) Lecture 3 Antonina Kolokolova September 16, 2014 1 Representative problems: brief overview In this lecture we will look at several problems which, although look somewhat similar

More information

NP-Complete Problems

NP-Complete Problems NP-Complete Problems Max Bisection Is NP-Complete max cut becomes max bisection if we require that S = V S. We shall reduce the more general max cut to max bisection. Add V isolated nodes to G to yield

More information

Computational Complexity

Computational Complexity Computational Complexity Ref: Algorithm Design (Ch 8) on Blackboard Mohammad T. Irfan Email: mirfan@bowdoin.edu Web: www.bowdoin.edu/~mirfan Famous complexity classes u NP (non-deterministic polynomial

More information

A An Overview of Complexity Theory for the Algorithm Designer

A An Overview of Complexity Theory for the Algorithm Designer A An Overview of Complexity Theory for the Algorithm Designer A.1 Certificates and the class NP A decision problem is one whose answer is either yes or no. Two examples are: SAT: Given a Boolean formula

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University Algorithms NP -Complete Problems Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr The Class P Definition 13.2 Polynomially bounded An algorithm is said to be polynomially bounded if its worst-case

More information

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9 1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives Classify problems as tractable or intractable Define decision problems Define the class P Define

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity NP-Complete Languages John E. Savage Brown University February 2, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity February

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

SAT, NP, NP-Completeness

SAT, NP, NP-Completeness CS 473: Algorithms, Spring 2018 SAT, NP, NP-Completeness Lecture 22 April 13, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Part I Reductions Continued Ruta (UIUC)

More information

INTRO TO MATH PROGRAMMING MA/OR 504, FALL 2015 LECTURE 11

INTRO TO MATH PROGRAMMING MA/OR 504, FALL 2015 LECTURE 11 INTRO TO MATH PROGRAMMING MA/OR 504, FALL 2015 LECTURE 11 A COMPLEXITY THEORY CRASH COURSE What is an algorithm? Precise definition requires a model of computation You might have heard some of these (won

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

CSCI3390-Lecture 18: Why is the P =?NP Problem Such a Big Deal?

CSCI3390-Lecture 18: Why is the P =?NP Problem Such a Big Deal? CSCI3390-Lecture 18: Why is the P =?NP Problem Such a Big Deal? The conjecture that P is different from NP made its way on to several lists of the most important unsolved problems in Mathematics (never

More information

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35.

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35. NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

CSCI3390-Second Test with Solutions

CSCI3390-Second Test with Solutions CSCI3390-Second Test with Solutions April 26, 2016 Each of the 15 parts of the problems below is worth 10 points, except for the more involved 4(d), which is worth 20. A perfect score is 100: if your score

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Review Basic reduction strategies. Simple equivalence: INDEPENDENT-SET P VERTEX-COVER. Special case to general case: VERTEX-COVER P SET-COVER. Encoding with gadgets:

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

Polynomial-time reductions. We have seen several reductions:

Polynomial-time reductions. We have seen several reductions: Polynomial-time reductions We have seen several reductions: Polynomial-time reductions Informal explanation of reductions: We have two problems, X and Y. Suppose we have a black-box solving problem X in

More information

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT Definition: A language B is NP-complete if: 1. B NP 2. Every A in NP is poly-time reducible to B That is, A P B When this is true, we say B is NP-hard On

More information

CS 5114: Theory of Algorithms. Tractable Problems. Tractable Problems (cont) Decision Problems. Clifford A. Shaffer. Spring 2014

CS 5114: Theory of Algorithms. Tractable Problems. Tractable Problems (cont) Decision Problems. Clifford A. Shaffer. Spring 2014 Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2014 by Clifford A. Shaffer : Theory of Algorithms Title page : Theory of Algorithms Clifford A. Shaffer Spring 2014 Clifford

More information

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

More information

CS 561, Lecture 12. Jared Saia University of New Mexico

CS 561, Lecture 12. Jared Saia University of New Mexico CS 561, Lecture 12 Jared Saia University of New Mexico Today s Outline P, NP and NP-Hardness Reductions Approximation Algorithms 1 Efficient Algorithms Q: What is a minimum requirement for an algorithm

More information

NP-COMPLETE PROBLEMS. 1. Characterizing NP. Proof

NP-COMPLETE PROBLEMS. 1. Characterizing NP. Proof T-79.5103 / Autumn 2006 NP-complete problems 1 NP-COMPLETE PROBLEMS Characterizing NP Variants of satisfiability Graph-theoretic problems Coloring problems Sets and numbers Pseudopolynomial algorithms

More information

Una descrizione della Teoria della Complessità, e più in generale delle classi NP-complete, possono essere trovate in:

Una descrizione della Teoria della Complessità, e più in generale delle classi NP-complete, possono essere trovate in: AA. 2014/2015 Bibliography Una descrizione della Teoria della Complessità, e più in generale delle classi NP-complete, possono essere trovate in: M. R. Garey and D. S. Johnson, Computers and Intractability:

More information

Lecture 18: P & NP. Revised, May 1, CLRS, pp

Lecture 18: P & NP. Revised, May 1, CLRS, pp Lecture 18: P & NP Revised, May 1, 2003 CLRS, pp.966-982 The course so far: techniques for designing efficient algorithms, e.g., divide-and-conquer, dynamic-programming, greedy-algorithms. What happens

More information

NP-Hardness reductions

NP-Hardness reductions NP-Hardness reductions Definition: P is the class of problems that can be solved in polynomial time, that is n c for a constant c Roughly, if a problem is in P then it's easy, and if it's not in P then

More information

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Goal: Evaluate the computational requirements (this course s focus: time) to solve

More information

Tecniche di Verifica. Introduction to Propositional Logic

Tecniche di Verifica. Introduction to Propositional Logic Tecniche di Verifica Introduction to Propositional Logic 1 Logic A formal logic is defined by its syntax and semantics. Syntax An alphabet is a set of symbols. A finite sequence of these symbols is called

More information

CSI 4105 MIDTERM SOLUTION

CSI 4105 MIDTERM SOLUTION University of Ottawa CSI 4105 MIDTERM SOLUTION Instructor: Lucia Moura Feb 6, 2010 10:00 am Duration: 1:50 hs Closed book Last name: First name: Student number: There are 4 questions and 100 marks total.

More information

Computational Complexity

Computational Complexity Computational Complexity Problems, instances and algorithms Running time vs. computational complexity General description of the theory of NP-completeness Problem samples 1 Computational Complexity What

More information

Limits of Computation. Antonina Kolokolova

Limits of Computation. Antonina Kolokolova Limits of Computation Antonina Kolokolova What is computation? What is information? What is learning? Are there any limits of our ability to solve problems? Theoretical Computer Science Is there a perfect

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Computational Complexity CLRS 34.1-34.4 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures 1 / 50 Polynomial

More information

INTRO TO COMPUTATIONAL COMPLEXITY

INTRO TO COMPUTATIONAL COMPLEXITY MA/CSSE 473 Day 38 Problems Decision Problems P and NP Polynomial time algorithms INTRO TO COMPUTATIONAL COMPLEXITY 1 The Law of the Algorithm Jungle Polynomial good, exponential bad! The latter is obvious,

More information

Theory of Computation Chapter 9

Theory of Computation Chapter 9 0-0 Theory of Computation Chapter 9 Guan-Shieng Huang May 12, 2003 NP-completeness Problems NP: the class of languages decided by nondeterministic Turing machine in polynomial time NP-completeness: Cook

More information

Review of unsolvability

Review of unsolvability Review of unsolvability L L H To prove unsolvability: show a reduction. To prove solvability: show an algorithm. Unsolvable problems (main insight) Turing machine (algorithm) properties Pattern matching

More information

SAT, Coloring, Hamiltonian Cycle, TSP

SAT, Coloring, Hamiltonian Cycle, TSP 1 SAT, Coloring, Hamiltonian Cycle, TSP Slides by Carl Kingsford Apr. 28, 2014 Sects. 8.2, 8.7, 8.5 2 Boolean Formulas Boolean Formulas: Variables: x 1, x 2, x 3 (can be either true or false) Terms: t

More information

DESIGN AND ANALYSIS OF ALGORITHMS. Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS

DESIGN AND ANALYSIS OF ALGORITHMS. Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS DESIGN AND ANALYSIS OF ALGORITHMS Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS http://milanvachhani.blogspot.in COMPLEXITY FOR THE IMPATIENT You are a senior software engineer in a large software

More information

Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS

Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS DESIGN AND ANALYSIS OF ALGORITHMS Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS http://milanvachhani.blogspot.in COMPLEXITY FOR THE IMPATIENT You are a senior software engineer in a large software

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harry Lewis November 19, 2013 Reading: Sipser 7.4, 7.5. For culture : Computers and Intractability: A Guide to the Theory

More information

CS 5114: Theory of Algorithms

CS 5114: Theory of Algorithms CS 5114: Theory of Algorithms Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Spring 2014 Copyright c 2014 by Clifford A. Shaffer CS 5114: Theory of Algorithms Spring

More information

NP-Complete Problems. More reductions

NP-Complete Problems. More reductions NP-Complete Problems More reductions Definitions P: problems that can be solved in polynomial time (typically in n, size of input) on a deterministic Turing machine Any normal computer simulates a DTM

More information

Philosophy 220. Truth-Functional Equivalence and Consistency

Philosophy 220. Truth-Functional Equivalence and Consistency Philosophy 220 Truth-Functional Equivalence and Consistency Review Logical equivalency: The members of a pair of sentences [of natural language] are logically equivalent if and only if it is not [logically]

More information

Computational Intractability 2010/4/15. Lecture 2

Computational Intractability 2010/4/15. Lecture 2 Computational Intractability 2010/4/15 Professor: David Avis Lecture 2 Scribe:Naoki Hatta 1 P and NP 1.1 Definition of P and NP Decision problem it requires yes/no answer. Example: X is a set of strings.

More information

Approximation Preserving Reductions

Approximation Preserving Reductions Approximation Preserving Reductions - Memo Summary - AP-reducibility - L-reduction technique - Complete problems - Examples: MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, MAXIMUM 2-SAT, MAXIMUM NAE 3-SAT, MAXIMUM

More information

Chapter Finding parse trees

Chapter Finding parse trees Chapter 16 NP Some tasks definitely require exponential time. That is, we can not only display an exponential-time algorithm, but we can also prove that the problem cannot be solved in anything less than

More information

Chapter 9. PSPACE: A Class of Problems Beyond NP. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 9. PSPACE: A Class of Problems Beyond NP. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 9 PSPACE: A Class of Problems Beyond NP Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Geography Game Geography. Alice names capital city c of country she

More information

Some problems are even unsolvable/ undecidable algorithmically, so you cannot write a computer program for them.

Some problems are even unsolvable/ undecidable algorithmically, so you cannot write a computer program for them. Thinh Nguyen, 2018 NP-COMPLETE PROBLEMS Polynomial Computers and Intractability: A Guide to the Theory of NP-Completeness, Michael R. Garey and David S. Jonson, W.H. Freeman and Company, New York, 1979,

More information

NP-Complete Problems. Complexity Class P. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar..

NP-Complete Problems. Complexity Class P. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. Complexity Class P NP-Complete Problems Abstract Problems. An abstract problem Q is a binary relation on sets I of input instances

More information

Computational Complexity

Computational Complexity p. 1/24 Computational Complexity The most sharp distinction in the theory of computation is between computable and noncomputable functions; that is, between possible and impossible. From the example of

More information

COMP 382. Unit 10: NP-Completeness

COMP 382. Unit 10: NP-Completeness COMP 382 Unit 10: NP-Completeness Time complexity 1 log n n n 2 n 3 2 n n n Space complexity 1 log n n n 2 n 3 2 n n n Complexity theory Focus on decidability (yes/no) problems What is P? Deterministic,

More information

CS 6783 (Applied Algorithms) Lecture 3

CS 6783 (Applied Algorithms) Lecture 3 CS 6783 (Applied Algorithms) Lecture 3 Antonina Kolokolova January 14, 2013 1 Representative problems: brief overview of the course In this lecture we will look at several problems which, although look

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

9. PSPACE 9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete

9. PSPACE 9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete Geography game Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable

More information

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1 NP CS 320, Fall 2017 Dr. Geri Georg, Instructor georg@colostate.edu 320 NP 1 NP Complete A class of problems where: No polynomial time algorithm has been discovered No proof that one doesn t exist 320

More information

CS 350 Algorithms and Complexity

CS 350 Algorithms and Complexity 1 CS 350 Algorithms and Complexity Fall 2015 Lecture 15: Limitations of Algorithmic Power Introduction to complexity theory Andrew P. Black Department of Computer Science Portland State University Lower

More information

6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch

6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch 6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch Today: More Complexity Theory Polynomial-time reducibility, NP-completeness, and the Satisfiability (SAT) problem Topics: Introduction

More information

Automata Theory CS Complexity Theory I: Polynomial Time

Automata Theory CS Complexity Theory I: Polynomial Time Automata Theory CS411-2015-17 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 17-0: Tractable vs. Intractable If a problem is recursive, then

More information

9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete

9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete 9. PSPACE PSPACE complexity class quantified satisfiability planning problem PSPACE-complete Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne http://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURES 30-31 NP-completeness Definition NP-completeness proof for CIRCUIT-SAT Adam Smith 11/3/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova,

More information

NP-Completeness Part II

NP-Completeness Part II NP-Completeness Part II Outline for Today Recap from Last Time What is NP-completeness again, anyway? 3SAT A simple, canonical NP-complete problem. Independent Sets Discovering a new NP-complete problem.

More information